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The three-dimensional (3D) structure of chromatin is intrinsically associated with
gene regulation and cell function'. Methods based on chromatin conformation
capture have mapped chromatin structures in neuronal systems such asin vitro
differentiated neurons, neuronsisolated through fluorescence-activated cell sorting
from cortical tissues pooled from different animals and from dissociated whole
hippocampi*®. However, changes in chromatin organization captured by imaging,
such as the relocation of Bdnfaway from the nuclear periphery after activation’, are
invisible with such approaches®. Here we developed immunoGAM, an extension of
genome architecture mapping (GAM)*®, to map 3D chromatin topology genome-wide
inspecific brain cell types, without tissue disruption, from single animals. GAM is a
ligation-free technology that maps genome topology by sequencing the DNA content
from thin (about 220 nm) nuclear cryosections. Chromatin interactions are identified
fromtheincreased probability of co-segregation of contacting loci across a collection
of nuclear slices. ImmunoGAM expands the scope of GAM to enable the selection of
specific cell types using low cell numbers (approximately 1,000 cells) withina
complex tissue and avoids tissue dissociation*'°, We report cell-type specialized 3D
chromatin structures at multiple genomic scales that relate to patterns of gene
expression. We discover extensive ‘melting’ of long genes when they are highly
expressed and/or have high chromatin accessibility. The contacts most specific of
neuron subtypes contain genes associated with specialized processes, such as
addiction and synaptic plasticity, which harbour putative binding sites for neuronal
transcription factors within accessible chromatin regions. Moreover, sensory
receptor genes are preferentially found in heterochromatic compartments in brain
cells, which establish strong contacts across tens of megabases. Our results
demonstrate that highly specific chromatin conformationsin brain cells are tightly
related to gene regulation mechanisms and specialized functions.

To explore how genome folding is related to cell specialization, we
applied immunoGAM to mouse brain tissue slices and analysed three
cell types with diverse functions (Fig. 1a): oligodendroglia (oligoden-
drocytes and their precursors (OLGs)) from the somatosensory cortex;
pyramidal glutamatergic neurons (PGNs) from the cornu ammonis 1
(CA1) of the dorsal hippocampus; and dopaminergic neurons (DNs)
from the ventral tegmental area (VTA) of the midbrain. OLGs are
important for neuronal myelination and circuit formation", whereas
PGNs are important for temporal and spatial memory formation and

consolidation’, and DNs are activated during cue-guided reward-based
learning®. Publicly available GAM data from mouse embryonic
stem (mES) cells’ were used for comparison (Supplementary Table1).

We selected cell types from brain tissue slices by immunofluores-
cence with cellmarker antibodies before genomicextraction (Fig. 1b).
Adetailed flowchart of immunoGAM quality control (QC) measures and
normalizationis shownin Extended DataFig.1a-d and Supplementary
Table 2. GAM contact matrices, each from about 850 cells, had low
biases in GC content and mappability (Extended Data Fig. 2a-c). We
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Fig.1|ImmunoGAM captures cell-type-specific chromatin contactsinthe
mouse brain.a,ImmunoGAM was applied to three brain cell types: OLGs, DNs
and PGNs (oneindependent biological replicate for OLGs and two replicates for
DNs and PGNs). b, Schematic of the ImmunoGAM workflow. OLGs were
selected by immunolabelling with GFP, DNs with tyrosine hydroxylase and
PGNs using tissue morphology. Nuclear profiles were laser microdissected,
eachfromasingle cell, with three collected together, as described for
multiplex-GAM’. ¢, Example of cell-type-specific contact differences at the
Pcdhlocus (chromosome18:36-39 Mb). GAM matrices represent co-segregation
frequencies of 50-kb genomic windows using normalized pointwise mutual

calculated local contact densities and topological domains using the
insulation square method™, and calculated compartments associated
withopen chromatin (compartment A) and closed chromatin (compart-
ment B) using principal component analysis (PCA)? (Supplementary
Tables 3-5).

As an example of cell-type-specific organization, we considered
the Pcdh locus, which contains three clusters of cell adhesion genes
(Pcdha, Pcdhb and Pcdhg) and occupies two topologically associat-
ing domains (TADs) in mES cells, as previously described® (Fig. 1c,
see Extended Data Fig. 3a for replicates). Mapping contact densities
using100-1,000 kbinsulation squares showed that the locusis gener-
ally open above 500 kb. Higher expression of Pcdha and Pcdhb coin-
cides with increased long-range contacts between the three clusters
in neurons’ and OLGs" and with additional long-range contacts with
the highly expressed FgfI gene in OLGs. We also discovered contacts
spanning tens of megabases in brain cells. For example, strong contacts
connected two regions approximately 3-and 5-Mb wide, separated by
35 Mb, which contained clusters of vomeronasal (Vmn) and olfactory
(Olfr) receptor genes (Fig.1d, see Extended Data Fig. 3b for replicates).
Thus, the application ofimmunoGAM in specific brain cell types reveals
large rearrangements in 3D chromatin architecture at short-range and
long-range genomic lengths.

To further investigate how cell-type-specific 3D genome topolo-
gies relate to gene expression and chromatin accessibility, we pro-
duced or collected published single-cell RNA sequencing (scRNA-seq)
data and single-cell assay for transposase-accessible chromatin with
high-throughput sequencing (ATAC-seq) datafrom mES cells, the cor-
tex, the hippocampus and the midbrain (Methods, Extended DataFig. 4,
Supplementary Table 6). After selecting cell populations equivalent
to those captured by immunoGAM, we compiled cell-type-specific
pseudobulk RNA-seq and ATAC-seq datasets.

Pcdha Pcdhb Pcdhg Pcdha Pcdhb Pcdhg
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information (NPMI). Dashed linesillustrate cell-type differences. NPMIscales
range between 0 and 99th percentile per cell type. Contact density heatmaps
representinsulationscores using100-1,000 kb square sizes. RNA-seq and
ATAC-seqtracks represent normalized pseudobulk reads from scRNA-seq and
SCATAC-seq, respectively, except for bulk ATAC-seq from mES cells.d, Strong
contactsbetween Vmnand Olfrreceptor gene clusters on chromosome

17 (0-60 Mb) within Bcompartments (Comp.), separated by ~35 Mb, are
observedinbrain cellsbut notin mES cells. Compartments Aand Bwere
classified using normalized PCA eigenvectors?.

TADs extensively rearrange between cell types

Complex and extensive cell-type-specific changes in TAD-level con-
tacts were frequent, for example, at a 4-Mb region that contains Scn
genesthatencode sodiumvoltage-gated channel subunits (Fig. 2a, see
Extended Data Fig. 5a for replicates). We obtained a total of approxi-
mately 2,300 TADs across cell types, with a median length of about
1Mb, whichis inline with previous reports® (Extended Data Fig. 5b).
Although pairwise comparisons of TAD border positions confirmed
previous levels of conservation*® (78-89%; Extended Data Fig. 5c),
multiway comparisons showed high cell-type specificity (Fig. 2b,
see Extended Data Fig. 5d for sparser combinations). One-third of the
borders were unique and significantly more insulated in other cell
types (Extended Data Fig. 5e), with some variability noted between
biological replicates (59-65%) (Extended Data Fig. 5f). By contrast,
only 8% of the total set of borders was shared by brain cells and 14%
by all cell types. Shared borders showed significantly stronger insula-
tioninbrain cellsthanin mES cells (Extended Data Fig. 5g), which sug-
geststhatthereisstructural stabilization after terminal differentiation.
Unique boundaries often contained expressed genes (52-55% in brain
cells,38%in mES cells) (Extended Data Fig. 5h) and genes with enriched
Gene Ontology (GO) terms relevant to the specialized cell type (Fig. 2c,
Supplementary Table 7), such as ‘membrane depolarization’ and ‘cog-
nition”in PGNs or genes important for dopaminergic differentiation
and dopamine synthesis in DNs.

Long neuronal genes meltin brain cells

Many neuronal genes involved in specialized functions are long
(>300 kb) and produce many isoforms owing to complex RNA pro-
cessing'®. Chromatin reorganization was most apparent at long genes
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Fig.2|Chromatin domainsrearrange extensively inbraincells, notably at
long genesthat undergo melting events. a, Example of cell-type-specific
contacts at genomic regions (chromosome 2: 64.3-67.3 Mb) with differential
expression. Dashed boxes represent 500 kb insulation scores used to determine
TAD boundaries (indicated with coloured boxes below). Replicate 1is shown for
brain cells. b, UpSet plots representing multiway TAD boundary comparisons
show extensive cell-type specificity. Boundaries were defined as 150 kb genomic
regions centred onthe lowest insulation score windows and were considered
different whenseparated by >50 kb edge-to-edge. ¢, Cell-type-specific borders
containgenes with GO termsrelevant for cell functions. The top four GO terms
were themost enriched, and the fifth was selected (over-representation
measured by Z-score; one-sided Fisher’s exact permuted Pvalues < 0.01).

in both PGNs and DN (Fig. 2d, e). For example, Grik2 loses contact
density in PGNs compared to mES cells, especially around the transcrip-
tion start site (TSS) and transcription end site (TES) (Fig. 2d). By con-
trast, Dscam decondenses across its entire gene body in DNs (Fig. 2e).
To assess whether decondensation relates to the expression of long
genes, we compared the insulation of the most and least expressed
long genes (Extended Data Fig. 5i). Highly expressed genes were sig-
nificantly less insulated at TSSs and TESs and throughout gene bod-
ies in both DNs and PGNs, but not in OLGs or mES cells. The general
contactloss at highly expressed long neuronal genes is reminiscent of
the decondensation, or ‘melting’, observed by microscopy at polytene
chromosome puffs’ or tandem gene arrays®.

To detect melting genome-wide inan unbiased manner, we devised
the MELTRON pipeline. MELTRON calculates a ‘melting score’ as the
significant difference between cumulative probabilities of insulation
scores across arange of genomic scales (100-1,000 kb) between two
celltypesand withinregions of interest, here defined as all (479) long
genes (Fig. 2f). We found 120-180 melting genes with melting scores
of >5 (Kolmogorov-Smirnov test, P<1x 107°) between brain cells and
mES cells (Fig. 2g, Supplementary Table 8). Grik2 had melting scores
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Asterisk indicates multiple Hist1genes.d, e, Grik2and Dscam overlap with
cell-type-specific TAD borders and extensively decondense, or ‘melt’,in PGNs
and DNs, respectively.f, The MELTRON pipeline was applied atlong genes
(>300 kb, 479 genes) to determine melting scores from contact density maps
thatrepresentinsulationscore values using100-1,000 kb squares. Genes were
considered to meltifthe melting score computed across their coding region
was>5(P<1x107% one-sided Kolmogorov-Smirnov testing using maximum
distances between distributions). g, Melting associates with higher expression,
especiallyin PGNs and DNs (two-sided Wilcoxon rank-sum test; **P< 0.01,
%P < (.0001; Pvalues fromlefttoright,P=3.5x1072,P=1.8 x10°%,P=8.3x107°).
IsRRPM, length-scaled RNA reads per million; RPM, reads per million.

of12and 26 in PGNs (replicates1and 2, respectively), whereas Dscam
had scores of 38 and 50 in DNs (replicates 1and 2, respectively) and
Magi2 had a score of 73 in OLGs (Extended Data Fig. 6a, b). Melting
scores in the PGN and DN replicates correlated well (Extended Data
Fig. 6¢).

Melting genes were significantly more transcribed and showed higher
chromatinaccessibility than non-melting long genes, especially in PGNs
and DNs (Fig. 2g, Extended Data Fig. 6d-f). Of interest, many top (3%)
melting genes (24 out of 44) are sensitive to topoisomerase l inhibition
inex vivo neuronal cultures®, which was in contrast to 16% (42 out of 261)
withintermediate meltingscores or16% of non-melting genes (Extended
DataFig. 6g). This result suggests that extensive melting of long genes
is associated with the resolution of topological constraints?. Melting
genes often belonged to compartment A in both mES cells and the
correspondingbrain cell (43-58%), especially when highly transcribed
inboth cell types (Extended Data Fig. 6h). Genes melting in OLGs and
DNs were less likely to be lamina-associated or nucleolus-associated
in mES cells, whereas PGNs did not show any preferred association
(Extended DataFig. 6i,j). Therefore, melting of long genesis not trivially
associated with a transition from a heterochromatic state in mES cells
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to open chromatin in brain cells, although such events can occur
(forexample, Magi2in OLGs or Dscamin DNs) (Supplementary Table 8).

We next examined in more detail melting in neurexin 3 (Nrxn3) and
RNAbinding Fox 1homologue 1(RbfoxI) genes, both of whichare highly
sensitive to topoisomerase linhibition?. Nrxn3 encodes amembrane
protein involved in synaptic connections and plasticity. In mES cells,
Nrxn3 spans two TADs with high contact density, localizes in com-
partment B and associates with the nuclear laminaand the nucleolus.
InDNs, Nrxn3extensively melts (replicate scores of 48 and 49), is highly
transcribed and accessible and belongs to compartment A (Fig. 3a,
see Extended Data Fig. 7a for all cell types and replicates). Rbfox1
encodes aRNA-binding protein that regulates alternative splicing. In
meES cells, RbfoxI lies within adense contact domainin compartment A,
has very low expression and low chromatin accessibility. It also has
nucleolar-associated domain and partial lamina-associated domain
memberships. Rbfox1 extensively melts in PGNs (scores of 65 and 39),
which coincides with its highest expression and high accessibility in
these cells (Fig. 3b, Extended Data Fig. 7b).

To further understand the melting process in the Nrxn3 region, we
used a polymer-physics-based approach? to generate ensembles of 3D

Fig.3|Extensive decondensation and relocalization of highly expressed
long neuronal genes. a, b, Examples of two melting genes. Nrxn3 occupies
twodense TADsin mES cells but meltsin DNs where itis most highly expressed
and accessible (a; chromosome 12: 87.6-92.4 Mb). RbfoxI is highly condensed
inmES cellsand meltsin PGNs whereit is highly expressed and accessible

(b; chromosome16:4.8-9.8 Mb). Compartment tracks are shown foreach cell
type, and published lamina-associated domains (LADs*’) and nucleolus-
associated domains (NADs*®) for mES cells. ¢, Polymer models show extensive
Nrxn3melting in DNs compared to mES cells. Colour bars shows DN domain
positions. d, Gyration radii of green melting domains are significantly higherin
DNsthaninmES cells (****P=1.1x10"%%; two-sided Mann-Whitney test, n = 450).
Arrowsindicate positions of exemplar models. e, Genomic regions covered by
cryo-FISH probes across the entire Rbfox1gene, or targeting the gene TSS,
middle of the coding region (Mid) or TES (Supplementary Table 11 contains the
probelist).f, RbfoxI (pseudocoloured green) occupies small, rounded fociin
mES cells, oftenat the nucleolus periphery (immunostained for nucleophosmin
1,ref.*’; pseudocoloured purple). In PGNs, RbfoxI occupies larger, decondensed
fociaway fromnucleoli. Arrows indicate RbfoxI fociin mES cells (orange) and
PGNs (blue). Scale bars, 3 pm. g, RbfoxI occupies significantly larger areasin
PGNsthanin mES cells (**P=0.008; two-sided Mann-Whitney test; two
experimental replicates (Repl.1and Repl.2) withn=13,39and 38, 25respectively).
Most Rbfox1focilocalize at the nucleolar peripheryinmES cells, but away from
thenucleolusin PGNs. h, Cryo-FISH experiments that target TSS, Mid and TES
regions of RbfoxI (pseudocoloured cyan, green, purple) show extensive
separationin PGNs compared with mES cells. Arrows indicate Rbfox1 fociin
mES cells (orange) and PGNs (blue). Scale bars, 3 um. i, The TSSand TES regions
of Rbfox1 aresignificantly more separated in PGNs than mES cells (two-sided
Mann-Whitney test; **P< 0.01; from left toright, P=0.003, P=0.179,P=0.331; NS,
notsignificant).j, Schematics summarizing the melting oflong genesin
neurons, whichisaccompanied by locus relocalization away fromrepressive
nuclear landmarks.

modelsin mES cells and DNs from GAM matrices (Fig. 3¢, Supplemen-
tary Tables 9 and 10). 3D models were validated by reconstructing in
silico GAM matrices (Extended Data Fig. 7c). mES cell models showed
intermingled globular domains, including the green and red domains
that contain Nrxn3 (Supplementary Video 1, see Extended Data Fig. 7d
for additional examples). In DNs, the melted green domain becomes
highly extended and has high gyrationradii (Fig. 3¢, d, Supplementary
Video 2), while the upstream (grey) and downstream (blue) domains
condense (Fig. 3a, Extended Data Fig. 7e).

Next, we applied fluorescence insitu hybridization on cryosections
(cryo-FISH)*>?* to visualize Rbfox1 in mES cells and PGNs (Fig. 3e, Sup-
plementary Table11). InmES cells, a fluorescence-labelled probe across
RbfoxIrevealedcircularfoci(averageareaof 0.44 + 0.17 um? mean+s.d.)
oftenlocalized at the nucleolar surface (59%) or the nuclear periphery
(27%; Fig. 3f, g, Extended DataFig. 7f). In PGNs, RbfoxI decondensed and
elongated with significantly highareas (0.59 + 0.31 pm? Mann-Whitney
test, P<0.01) and localized to the nucleoplasm interior (77%). Using
specific probes for the TSS, the middle and the TES of Rbfox1 revealed
increased separation between the TSS and the TES in PGNs compared
tomES cells (Fig.3h,i;0.65 + 0.41 pmand 0.37 + 0.22 um, respectively;
Mann-Whitney test P < 0.01; Extended Data Fig. 7g).

The extensive changes in RbfoxIlocalization and condensation led us
to askwhether melting is generally related to changesinintrachroma-
somal and interchromosomal contacts. We assessed this by comparing
their trans-cis contact ratios (Methods). Melted genes had significantly
lower trans—cis values (higherintrachromosomal contacts) in DNs and
PGNs thaninmES cells (Extended DataFig.8a-c), butnotin OLGsorin
non-melting long genes (Extended Data Fig. 8a, d). Of note, RbfoxI had
a higher trans-cis ratio in PGNs, whereas Nrxn3 had a lower trans—cis
ratio in DNs (Extended Data Fig. 8e, f). Decreased trans-cis ratios of
melting genes in DNs or PGNs were independent of NAD association
inmES cells (Extended Data Fig. 8g), whereas non-melting genes with
low trans—cisvalues were generally associated with NADs in mES cells
(Extended Data Fig. 8h).
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Fig.4|Neuron-specificgenesestablish specific contactsrichin putative and other expressed genes. e, Differential contacts with the mostabundant

TF-binding sites. a, GAM contacts from PGNs and DNs (mouse replicate1) were  TF feature pairsin DNs contain differentially expressed genes (top) with
normalized (Z-score) and subtracted to produce differential contacts matrices. = DN-specific functions (middle; one-sided Fisher’s exact permuted P < 0.01).

The top 5% most differential contacts (top 5% diff.) ranged from 0.05to 5 Mb. Thetop enriched GO terms show that differential contacts between DN
Contacts containing TF motifs withinaccessible chromatinoneach contacting  upregulated genes (bottom) containgenesupregulated in DNs (green) and
window were selected in the most (top five) enriched in PGNs or DNs or with other expressed genes. f, Left, Egrl is highly expressed (chromosome 18:

the highest discriminatory power (information gain; Extended Data Fig. 9f). 33.7-36.0 Mb) and contacts with its downstream domainin PGNs compared

b, Multiple TF pairs coincide in the same PGN (left) or DN (right) differential with DNs. Right, the differential contact matrix showsincreased PGN-specific
contacts. Themostabundant groups of contacts are shown for each cell type. contactsintheentireregionsurrounding £grI (right). The Egrl-containing TAD
c, Differential contacts with the most enriched combination TF feature pairs (inset; chromosome 18:34.65-35.85 Mb) has multiple putative TF-binding sites
containexpressed genesinboth windows. d, Differential contacts with the found within PGN-accessible regions, most notably surrounding the £grl gene
most abundant TF feature pairs in PGNs contain differentially expressed genes (grey dashed box), not found in DNs. g, Schematics summarizing the presence
(top), with PGN-specific roles (middle; one-sided Fisher’s exact permuted of genesrelated to synaptic plasticity in PGN-specific contactsand todrug
P<0.01). Thetop enriched GO terms show that differential contacts between addictionin DN-specific contacts, with accessible chromatin harbouring

PGN upregulated genes (bottom) contain genes upregulated in PGNs (blue) bindingsites for differentially expressed TFs.

Together, polymer modelling from GAM data and single-cellimaging  (5%) most differential contacts between PGNs and DNs within 5 Mb (ref. %)
highlight that domain melting is a previously unappreciated topologi-  (Fig.4a,adetailed pipelineis providedin Extended DataFig. 9a). Wesearched
calfeature of very long genes. Domain melting occurswhengenesare  forbinding motifsinaccessible regions, which typically coverabout 1.3 kb
highly expressed, or highly accessible, inbrain cell types,and the pro-  of'the 50-kb contacting windows (Extended Data Fig. 9b), from differen-
cessisrobustly captured by immunoGAM (Fig. 3j). The decondensation tiallyexpressed transcriptionfactors (TFs) that covered >5% of differential
of long genes in brain cells relative to mES cells often coincides with  contacts (16 DN-specificand 32 PGN-specific TFs; Extended DataFig.9c,d,
extensive reorganization of their chromosomal contacts, preferentially ~ Supplementary Table 12). Out of 1,275 possible combinations of TF motif
alongside increased intrachromosomal contacts. pairs, we prioritized 19 pairs (combinations of 14 TF motifs) that were most

enrichedin contacts ofagiven cell type or withahigh ability to distinguish

cell types (information gain; a full pipeline and criteria are provided in
Differential hubs of expressed genes Extended DataFig. 9e, f, and see Supplementary Table 13 for all TF pairs).
To explore how extensive chromatin rearrangements relate to changes We searched for differential contacts containing the most com-
in cis-regulatory elements and expressed genes, we extractedthetop  mon TF-pair combinations (Fig. 4b, a full list is shown in Extended
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brain cells relative to mES cells and move from compartment Bin mES cells to
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P=0.c,GAM contact matrices containing Vmn and orphanreceptor genes
(chromosome 7:35-55 Mb) show large clusters of strong interactions between
B compartmentsin OLGs, PGNs and DNs, but not mES cells. Dashed boxes
indicateinteracting regions.

Data Fig. 9g). In PGNs, homodimers and heterodimers for Neurod1
and/or Neurod2 putative binding sites characterized the most abun-
dant contacts, together with Egrl, Etv5, Lhx2, Maz, Nr3cl, Pou3f2 and
Ubpl (Neurod group; 5,572 contacts). In DNs, contacts containing
NeurodI and Neurod2 appeared as heterodimers (660 contacts). The
most frequent TF-motif pair in DNs, and the second mostin PGNs, isa
Ctcfhomodimer (892 and 781 contacts, respectively). The next most
abundant DN-specific contacts contained Foxal combined with Ctcf,
Nr2fl or Nr4al (Foxal-TF group; 1,612 contacts). All groups spanned
0.05-5 Mb and captured strong contacts (Extended Data Fig. 10a,
b). The selected differential contacts rarely coincided with two TAD
borders (Extended Data Fig. 10c) and often involved compartment A
windows (Extended Data Fig. 10d). Networks of differential contacts,
built on the basis of motif co-occurrence using all 50 differentially
expressed TFs, confirmed connectivity between multiple TF motifsin
PGNs, and between Foxal or Neurod and specific TFsin DNs (Extended
DataFig.10e, f, Supplementary Table 14).

Many contacts in each TF-motif group contained expressed genes
in both contacting windows (30-45% in DNs, 40-50% in PGNs) that
were significantly above the genome-wide or top 5% contact frequen-
cies (10-16%; Fig. 4c, Extended Data Fig. 10g). Many of these genes
were differentially expressed between PGNs and DNs (1,490 and 975,
respectively, out of 3,537 differentially expressed genes; Extended
DataFig.10h).In PGN-specific contacts, both the Neurod and Ctcf-Ctcf
groups contained PGN upregulated genes with GO terms related to
synaptic plasticity (Fig. 4d). Two PGN upregulated genes, Dig4 (which

isimportant for long-term potentiation®*) and Shisa6 (which prevents
desensitization of AMPA receptors during plasticity®) were present
within a hub of Neurod contacts that contained other activity-related
genes, including Map2k4 and Dnah?9 (see Extended Data Fig. 10i for
the differential contact matrix). DN upregulated genes found with
the Foxal-TF (139 out of 1,844), the Neurod-TF (87) or the Ctcf-Ctcf
(80) pair are involved in synaptic organization and addiction path-
ways (Fig. 4e). For example, Dnm3 has altered protein expression in
an alcohol-dependence paradigm? and makes contacts containing
the Foxal-TF pair with Mrpsi4 (downregulated after nicotine expo-
sure?), Cacynp (upregulated following alcohol exposure?®) and Pou2fI
(aco-factor associated with alcohol dependence®) (see Extended Data
Fig.10jfor the differential contact matrix). Of note, Fgr1, animmediate
early gene upregulated inactivated neurons®, establishes PGN-specific
contacts containing accessible regions covered by £gr1 and Neurod
motifs (Fig. 4f, see Extended Data Fig. 10k for replicate data). Egrl was
highly upregulated in PGNs (log,(fold-change) = 3, PGNs compared
to DNs) and gained contacts with its adjacent TAD. It also contained
accessible chromatin peaks rich in TF motifs belonging to the Neurod
group thatarenotseenin DNs. Binding of EGR1 proteintoits own pro-
moter is confirmed in published chromatinimmunoprecipitation with
sequencing (ChIP-seq) data from the cortex®.

Together, our strategy identifies hubs of chromatin contacts specific
for different neuron types that contain putative binding sites for dif-
ferentially expressed TFs (Fig. 4g). These interconnected hubs bring
together distal genes with specialized neuronal functions, such as
synaptic plasticity in PGNs or drug addiction in DNs.

Extensive A/B compartment reorganization

Last, wefound broad changesin A/B compartmentalizationbetweenall
celltypes (Extended DataFig.11a,b), with lowest Pearson’s correlations
of compartment eigenvector values between brain cellsand mES cells
and highest correlations between neuronal replicates (Extended Data
Fig.11c). Only 12% of genomic windows changed from compartment Bin
meES cells tocompartment Ain brain cells or between compartment Ain
meES cellstocompartment Bin brain cells (7%; see Extended DataFig.11d,
e for per-chromosome transitions). Similar mean and total genomic
lengths occupied contiguously by A or Bcompartments characterized
allcelltypes (Extended Data Fig. 11f). B-to-A transitions from mES cells
to brain cells contained 335 genes more strongly expressed in brain cells
than in mES cells (Extended Data Fig. 12a). Their enriched GO terms
included ‘behaviour’ and ‘gated ion channel activity’ (Fig. 5a). A-to-B
transitions in mES cells to brain cells contained mostly silent genes in
allcelltypes (572 out of 715 genes), except 50 transcriptional regulation
genes highly expressed in mES cells (Fig. 5a, Extended Data Fig. 12b).

We found that A-to-B transitions were enriched for sensory receptor
genessuchas Vmn (149 genes out of 572 silent genesin the group) and
Olfr (179 genes), and these were often found in clusters® (Fig. 5b).
Although silent, only 35% of Vmn and 66% of Olfr genes belonged to
compartment B in mES cells compared with 82-96% and 72-85%,
respectively,inbrain cells (Extended Data Fig.12c). Vmn and Olfr genes
were often involved in strong clusters of contacts in brain cells that
spanned up to 50 Mb (Fig. 5c, additional examplesin Fig.1d, Extended
DataFig.12d, e). Long-range contacts in brain cells were significantly
stronger when B compartments contained Vmn or, to a lesser extent,
Olfr genes (at distances >3 Mb) (Extended Data Fig. 12f). This result
suggests that sensory genes are not only more likely to belong to het-
erochromatic B compartments but also to more strongly contact other
B compartments in brain cells.

Discussion

Here weintroduced immunoGAM to capture genome-wide chromatin
conformationstates of specialized cell populations inthe mouse brain.

Nature | Vol 599 | 25 November 2021 | 689



Article

We discovered extensive reorganization of chromatin topology across
genomic scales, including cell-type-specific TAD reorganization that
involves genes relevant to brain cell specialization (Extended Data
Fig.12g).

We reported melting of long genes (>300 kb) with highest expres-
sion levels and/or accessible chromatin in brain cells. Single-cell
imaging of Rbfox1 in PGNs showed that the most prominent decon-
densation occurred between TSSs and TESs. Many long genes
have specialized regulation in brain cells, for example, by topoi-
somerase activity” or DNA methylation®, by long stretches of
H3K27ac or H3K4mel acting as enhancer-like domains® or by large
transcription loops*. Their regulation is further complicated by
intricate RNA processing dynamics'®, which are required for adap-
tive responses based on activation state. Many of the highlighted
genes, including Nrxn3, Rbfox1, Grik2 and Dscam, have genetic
variants associated with or directly causal of neuronal diseases® *°.
Thus, understanding how gene melting relates to regulation will
become important to understanding the mechanisms of neurologi-
cal disease.

Cell-type-specific networks of contacts were enriched for putative
binding sites of differentially expressed TFs and connected hubs
of differentially expressed genes with specialized functions?>3°,
which is reminiscent of transcription factories*'. DN-specific loops
contained genes related to drug-exposure response and addiction
paradigms. Midbrain VTA DNs are the first brain cells that respond
to addictive substances, including amphetamines, nicotine and
cocaine***, Future studies can explore the relationship between
DN-specific chromatin landscapes and the regulation of these critical
genes, with potential implications for the onset of addiction.
PGN-specific contacts connected hubs of synaptic plasticity genes.
Of note, PGN-specific contacts at the EgrI gene, which is involved
in the activation of long-term potentiation, contained £grl binding
motifs, which suggests that there may be self-activation mechanisms.
Together with reports that de novo chromatinlooping can accompany
transcriptional activation®, our work suggests that coordinated TF
bindingat distant locationsin the linear genome, butin close contact
duetothe3D chromatinlandscape, may be critical for theinduction
of long-term potentiation.

Our results also highlighted the specialization of repressive
long-range contacts in brain cells. Repressed Olfr genes form a large
interchromosomal hubinmature olfactory sensory neurons toregulate
specificity of single Olfr gene activation**. We showed that sensory
genes also form strong cis-contactsin brain cells not directly involvedin
sensory processes, aresult confirmed in adult cortical neurons®. Tight
3D compartmentalization of Vmn and Olfr genes may be important
for their repression in brain cells, as Olfr genes can be stochastically
activated and mis-expressed in neurodegenerative diseases*.

Finally, we showed that immunoGAM requires low cell numbers
(approximately 1,000 cells) from single individuals while retaining
the spatial organization of cells within brain tissues. This highlights
its potential to provide insights into the aetiology and progression
of neurological disease. Collectively, our work showed that cell spe-
cialization in the brain and chromatin structure are intimately linked
atmultiple genomic scales.
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Methods

Randomization, blinding, and sample size

Randomization and blinding were not relevant for the current study.
The experiments and the subsequent analyses were performed on
wild-type animals or cell lines, for which no clinical trial, treatment or
disease comparison was performed. Samples were processed in differ-
entlaboratories by different people, and there was no selection criteria
for the wild-type mice used in the study. The appropriate number of
samples fora GAM dataset varies and depends on multiple parameters
such as nuclear volume, level of chromatin compaction, quality of
DNA extraction, and so on. Because most of these parameters can be
assessed only after the data have been collected and processed, we
recommend that the optimal resolution is defined during the collec-
tion of each GAM dataset, rather than trying to estimate optimal sam-
ple size before data collection. GAM data can be collected in multiple
batches from the same starting material, therefore the sample size can
be increased until the desired resolution is achieved. For scRNA-seq
experiments in mES cells, no statistical method was used to prede-
termine sample size. Libraries were generated twice, from mES cells
from different biological replicates, to account for experimental vari-
ability. For scATAC-seq experiments, no statistical method was used
to predetermine sample size.

Animal maintenance

Collectionof GAM datafrom DNs was performed using one C57BI/6NCrl
(RRID: IMSR_CR:027; WT) mouse, which was purchased from Charles
River, and from one tyrosine hydroxylase-green fluorescent
protein (TH-GFP; B6.Cg-Tg(TH-GFP)21-31/C57B6) mouse, obtained
as previously described®®*'. All procedures involving WT and TH-
GFP animals were approved by the Imperial College London’s Animal
Welfare and Ethics Review Body. Adult male mice aged 2-3 months
were used. Allmice had access to food and water ad libitum and were
keptonal2-hlight/12-h dark cycleat20-23 °C and 45 + 5% humidity.
WT and TH-GFP mice received an intraperitoneal injection of saline
14 days or 24 h, respectively, before tissue collection, and they
were part of alarger experiment for a different study. Collection of
single-nucleus ATAC-seq (snATAC-seq) data from the midbrain VTA
was performed using male C57BI/6NI (RRID: IMSR_CR:027; WT) mice,
aged 7 and 9 weeks, which were a gift from M. Gotthardt. Mice for
SnATAC-seq were housed inatemperature-controlled roomat22 +2°C
with humidity of 55 £ 10% in individually ventilated cages with 12-h
light/12-h dark cycles and with access to food and water ad libitum.
All experiments involving snATAC-seq animals were carried out
following institutional guidelines as approved by LaGeSo Berlin and
following the Directive 2010/63/EU of the European Parliament on the
protection of animals used for scientific purposes. Organ preparation
was done under license X9014/11.

Collection of GAM data from somatosensory oligodendrocyte cells
was performed using Sox10::cre-RCE::loxP-EGFP animals®?, which
were obtained by crossing SoxI0::cre animals®* ona C57BL/6j genetic
background with RCE::loxP-EGFP animals® on a C57BL/6xCD1 mixed
genetic background, both available from The Jackson Laboratory.
The cre allele was maintained in hemizygosity, whereas the reporter
allele was maintained in hemizygosity or homozygosity. Experimental
procedures for Sox10::cre-RCE::loxP-EGFP animals were performed
following the European directive 2010/63/EU, local Swedish direc-
tive L150/SJVFS/2019:9, Saknr L150 and Karolinska Institutet com-
plementary guidelines for the procurement and use of laboratory
animals, Dnr1937/03-640. The procedures described were approved
by the local committee for ethical experiments on laboratory animals
in Sweden (Stockholms Norra Djurférsdksetiska nimnd), licence
number130/15. One male mouse was killed at post-natal day 21 (P21).
Mice were housed to amaximum number of 5 per cage inindividually
ventilated cages with the following light/dark cycle: dawn 6:00-7:00,

daylight 7:00-18:00, dusk 18:00-19:00, night 19:00-6:00. All mice
had access to food and water ad libitum and were housed at 22 °C
and 50% humidity.

Collection of GAM data from hippocampal CA1PGNs was performed
using two 19-week-old male Sarb 2™ mice. C57BI/6NCrl (RRID: IMSR _
CR:027; WT) mice were purchased from Charles River, Sath2™°* mice
that carry the loxP flanked exon 4 have been previously described®.
The experimental procedures were done according to the Austrian
Animal Experimentation Ethics Board (Bundesministerium fiir Wis-
senschaft und Verkehr, Kommission fiir Tierversuchsangelegenheiten).
All mice had access to food and water ad libitum and were kept on a
12-h light/12-h dark cycle at 22.5 °C and 55 + 10% humidity.

Tissue fixation and preparation

WT, TH-GFP and Satb2™"** mice were anaesthetised under isoflurane
(4%), given a lethal intraperitoneal injection of pentobarbital (0.08 pl,
100 mg ml™ Euthatal) and transcardially perfused with 50 ml ice-cold
PBSfollowed by 50-100 ml 4% depolymerized paraformaldehyde (PFA;
electron microscopy grade, methanol-free) in 250 mM HEPES-NaOH
(pH 7.4-7.6). Sox10::cre-RCE::loxP-EGFP animals were killed using an
intraperitonealinjectionofketaminolandxylazinefollowedbytranscardial
perfusionwith 20 mIPBS and 20 ml4% PFAin 250 mM HEPES (pH 7.4-7.6).
Brains from WT or TH-GFP mice were removed, and the tissue containing
the VTA was dissected from each hemisphere at room temperature
and rapidly transferred to fixative. For Satb2™/°* mice, the CAl field
ippocampus was dissected from each hemisphere at room temperature.
For Sox10”*E mice, brain tissue containing the somatosensory cortex
was dissected at room temperature. Following dissection, tissue
blocks were placed in 4% PFA in 250 mM HEPES-NaOH (pH 7.4-7.6) for
post-fixationat4 °Cfor1h.Brains were then placed in 8% PFA in 250 mM
HEPES andincubated at 4 °Cfor2-3 h. Tissue blocks were thenplacedin
1% PFA in 250 mM HEPES and kept at 4 °C until tissue was prepared for
cryopreservation (up to 5 days, with daily solution changes).

Cryoblock preparation and cryosectioning

Fixed tissue samples from different brain regions were further dissected
toproduceabout1.5 x 3 mm tissue samples suitable for Tokuyasu cryo-
sectioning? (Extended Data Fig. 1a) at room temperature in 1% PFA in
250 mM HEPES. For the hippocampus, the dorsal CAlregion was further
isolated. Approximately 1-3 x 1-3 mm blocks were dissected from all
brainregions and were further incubated in 4% PFA in 250 mM HEPES
at4 °Cfor1h. The fixed tissue was transferred to 2.1 M sucrose in PBS
and embedded for16-24 h at 4 °C, before being positioned at the top
of copper stub holders suitable for ultracryomicrotomy and frozen
inliquid nitrogen. Cryopreserved tissue samples are kept indefinitely
immersed under liquid nitrogen.

Frozentissueblocks were cryosectioned with an Ultracryomicrotome
(Leica Biosystems, EM UC7), with an approximate 220-230 nm thick-
ness® Cryosections were captured in drops of 2.1 M sucrose in PBS
solution suspended in a copper wire loop and transferred to 10-mm
glass coverslips for confocal imaging or onto a 4.0-um polyethylene
naphthalate (PEN; Leica Microsystems, 11600289) membrane on metal
framed slides for laser microdissection.

Immunofluorescence detection of GAM samples for confocal
microscopy
Forconfocalimaging, cryosectionswereincubatedinsheepanti-TH(1:500;
Pel Freez Arkansas, P60101-0), mouse anti-pan-histone H11-4 (1:500;
Merck, MAB3422) or chicken anti-GFP (1:500; Abcam, ab13970) followed
by donkey anti-sheep or goat anti-chicken IgG conjugated with Alexa
Fluor-488 (for THand GFP; Abcam) or donkey anti-mouse IgG conjugated
with Alexa Fluor-555 or Alexa Fluor-488 (for pan-histone; Invitrogen).
For PGNs, cryosections were washed (3 times, 30 minintotal) in PBS,
permeabilized (5 min) in 0.3% Triton X-100 in PBS (v/v) and incubated
(2 h, room temperature) in blocking solution (1% BSA (w/v), 5% fetal



bovine serum (FBS (w/v), Gibco,10270), 0.05% Triton X-100 (v/v) in PBS).
After incubation (overnight, 4 °C) with primary antibody in blocking
solution, the cryosections were washed (3-5 times, 30 min) in 0.025%
Triton X-100in PBS (v/v) and immunolabelled (1 h, room temperature)
with secondary antibodies in blocking solution followed by 3 washes
(15min) in PBS. Cryosections were then counterstained (5 min) with
0.5 pg ml™4’,6’-diamino-2-phenylindole (DAPI; Sigma-Aldrich, D9542)
in PBS, and then rinsed in PBS and water. Coverslips were mounted in
Mowiol 4-88 solution in 5% glycerol, 0.1 M Tris-HCI (pH 8.5).

The number of SATB2-positive cells present in the hippocampal
CAl area of the Satb2™"* control mice was determined by counting
nucleipositive for SATB2 immunostaining (1:100; Abcam, ab10563678).
To avoid counting the same nuclei, only every 30th ultrathin section
cut through the tissue was collected, and the remaining sections dis-
carded. Twenty-five nuclei were identified in the pyramidal neuron
layer perimage inthe DAPI channel, and only SATB2-positive cells were
counted. We confirmed that most cells (96%) withinthe CAllayer were
PGNs (data not shown).

For DNs and OLGs, cryosections were washed (3 times, 30 min in
total) in PBS, quenched (20 min) in PBS containing 20 mM glycine,
then permeabilized (15 min) in 0.1% Triton X-100 in PBS (v/v). Cryosec-
tions were thenincubated (1 h,roomtemperature) inblocking solution
(1% BSA (w/v), 0.2% fish-skin gelatin (w/v), 0.05% casein (w/v) and 0.05%
Tween-20 (v/v) in PBS). Afterincubation (overnight, 4 °C) with the anti-
body in blocking solution, the cryosections were washed (3-5 times,
1h)inblocking solutionand immunolabelled (1 h, room temperature)
with secondary antibodies in blocking solution, followed by 3 washes
(15 min) in 0.5% Tween-20 in PBS (v/v). Cryosections were then coun-
terstained with 0.5 pg mI™ DAPIin PBS, then rinsed in PBS. Coverslips
were mounted in Mowiol 4-88.

Digital images were acquired with a Leica TCS SP8-STED confocal
microscope (LeicaMicrosystems) using a x63 oil-immersion objective
(numerical aperture of 1.4) or a x2 oil-immersion objective, using a
pinhole equivalent to1 Airy disk. Images were acquired using 405-nm
excitation and 420-480-nm emission for DAPI, 488-nm excitation
and 505-530-nm emission for TH or GFP, and 555-nm excitation and
560-nm emission using a long-pass filter at 1,024 x 1,024 pixel resolu-
tion.Images were processed using Fiji (v.2.0.0-rc-69/1.52p), and adjust-
ments included the optimization of the dynamic signal range with
contrast stretching.

Immunofluorescence detection of GAM samples for laser
microdissection

For laser microdissection, cryosections on PEN membranes were
washed, permeabilized and blocked as for confocal microscopy, and
incubated with primary and secondary antibodies asindicated above
except for the use of higher concentrations of primary antibodies,
as follows: anti-TH (1:50), anti-pan-histone (1:50) or anti-GFP (1:50).
Secondary antibodies were used at the same concentration. Cell stain-
ing was visualized using a Leica laser microdissection microscope (Leica
Microsystems, LMD7000) using a x3 dry objective. Following detection
of cellular sections of the cell types of choice containing nuclear slices
(nuclear profiles (NPs)), individual NPs were laser microdissected from
the PEN membrane and collected into PCR adhesive caps (AdhesiveStrip
8Copaque, Carl Zeiss, 415190-9161-000). We used multiplex-GAM®, for
whichthree NPs were collected into each adhesive cap and the presence
of NPsineachlid was confirmed with a x5 objective using a420-480-nm
emission filter. Control lids not containing NPs (water controls) were
included for each dataset collectionto keep track of contamination and
noise amplification of whole-genome amplification (WGA) and library
reactions, and can be found in Supplementary Table 2.

WGA of NPs
WGA was performed using an in-house protocol. In brief, NPs were
lysed directly inthe PCR adhesive capsfor4 h (or 24 hfor160 out of 585

GAM samples from DN replicate 1) at 60 °C in 1.2x lysis buffer (30 mM
Tris-HCIpH 8.0,2 mMEDTA pH 8.0, 800 mM guanidinium-HCI, 5% (v/v)
Tween 20, 0.5% (v/v) Triton X-100) containing 2.116 units ml™ Qiagen
protease (Qiagen, 19155). After protease inactivation at 75 °C for 30 min,
the extracted DNA was amplified usingrandom hexamer primers with
an adaptor sequence. The pre-amplification step was done using 2x
DeepVent mix (2x Thermo polymerase buffer (10x), 400 pm dNTPs,
4 mMMgSO, in ultrapure water), 0.5 UM GAT-7N primers (5-GTG AGT
GAT GGT TGA GGT AGT GTG GAG NNNNNN N) and 2 units pl ' DeepVent
(exo-) DNA polymerase (New England Biolabs, M0259L) in the program-
mable thermal cycler for11 cycles. Primers that annealed to the general
adaptor sequence were then used inasecond exponential amplification
reactiontoincrease the amount of product. The exponential amplifica-
tion was done using 2x DeepVent mix, 10 mM dNTPs,100 uM GAM-COM
primers (5-GTGAGTGATGGTTGAGGTAGTGTGGAG) and 2 units pl™
DeepVent (exo-) DNA polymerase in the programmable thermal cycler
for 26 cycles. For a small number of NPs from DNs (Supplementary
Table 2), WGA was performed using a WGA4 kit (Sigma-Aldrich) using
the manufacturer’sinstructions; the recent formulation of thiskitis no
longer suitable for GAM data production fromsubcellular nuclear slices.

GAM library preparation and high-throughput sequencing
Following WGA, the samples were purified using SPRI beads (0.725 or
1.7 ratio of beads per sample volume). The DNA concentration of each
purified sample was measured using a Quant-iT Pico Green dsDNA
assay kit (Invitrogen, P7589) according to the manufacturer’s instruc-
tions. GAM libraries were prepared using an lllumina Nextera XT library
preparation kit (Illumina, FC-131-1096) following the manufacturer’s
instructions withan 80% reduced volume of reagents. Following library
preparation, the DNA was purified using SPRIbeads (1.7 ratio of beads
persample volume) and the concentration for each sample was meas-
ured using a Quant-iT PicoGreen dsDNA assay. An equal amount of DNA
from each sample was pooled together (up to 196 samples), and the
final pool was additionally purified three times using the SPRI beads
(1.7 ratio of beads per sample volume). The final pool of libraries was
analysed using DNA High Sensitivity on-chip electrophoresis on an
Agilent 2100 Bioanalyzer to confirm the removal of primer dimers
and to estimate the average size and DNA fragment size distribution
inthe pool. NGSlibraries were sequenced on an Illumina NextSeq 500
machineaccording to the manufacturer’sinstructions using single-end
75 bp reads. The number of sequenced reads for each sample can be
found in Supplementary Table 2.

Tn5-based libraries are preferred for GAM data sequencing to
increase fragment sequence variation, which helps avoid the need
for dark cycles in the current lllumina machines. This choice greatly
reduces the cost of sequencing and decreases the frequency of noise
reads from absent windows seen with the previous protocol®.

GAM data sequence alignment

Sequenced reads from each GAM library were mapped to the mouse
genome assembly GRCm38 (December 2011, mm10) with Bowtie2
(v.2.3.4.3) using default settings®. All non-uniquely mapped reads,
reads with mapping quality <20 and PCR duplicates were excluded
from further analyses.

GAM datawindow calling and sample QC

Positive genomic windows present within ultrathin nuclear slices were
identified for each GAM library. In brief, the genome was split into
equal-sized windows (50 kb), and the number of nucleotides sequenced
ineach binwas calculated for each GAM sample with bedtools*. Next, we
determined the percentage of orphan windows (that is, positive windows
that were flanked by two adjacent negative windows) for every percentile
ofthe nucleotide coverage distribution and weidentified the percentile
with the lowest percentage of orphan windows for each GAM sample in
the dataset. The number of nucleotides that corresponds to the percentile
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with the lowest percentage of orphan windows ineachsample was used as
anoptimal coverage threshold for window identificationineach sample.
Windows were called positive if the number of nucleotides sequencedin
each binwas greater than the determined optimal threshold.

Each dataset was assessed for QC by determining the percentage of
orphanwindowsin each sample, the number of uniquely mapped reads
to the mouse genome and the correlations from cross-well contamina-
tion for every sample (Supplementary Table 2). Most GAM libraries
passed the QC analyses (86-96% in each dataset; Extended DataFig. 1b,
c). To assess the quality of sampling in each GAM dataset, we meas-
ured the frequency with which all possible intrachromosomal pairs of
genomic windows are found in the same GAM sample; we found that
98.8-99.9% of all mappable pairs of windows were sampled at least
once at resolution 50 kb at all genomic distances. Each sample was
considered to be of good quality if they had <70% orphan windows,
>50,000 uniquely mapped reads and a cross-well contamination score
determined per collection plate of <0.4 (Jaccard index). The number
of samplesineach cell type that passed QCis summarized in Extended
DataFig.2a. Following QC analysis, we noted that the 160 (out of 585) DN
replicate1samplesincubated with lysis buffer for 24 hhad decreasesin
orphanwindows (median =26% and 36% for 24 hand 4 h, respectively)
and increases in total genome coverage (median = 9% and 6% for 24 h
and4 h, respectively). Although these differences were minor, we rec-
ommend 24 h lysis for future work.

Publicly available GAM datasets from mES cells

For mES cells, GAM datasets were downloaded from the 4D Nucle-
ome portal (https://data.4dnucleome.org/). We used 249 x 3 NP GAM
datasets from mES cells (clone 46C), which were grown at37°Cina
5% CO, incubator in Glasgow modified Eagle’s medium (MEM), sup-
plemented with 10% FBS, 2 ng ml leukaemia inhibitory factor (LIF)
and1 mM 2-mercaptoethanol, on 0.1% gelatin-coated dishes. Cells were
passaged every other day. After the last passage, 24 hbefore collection,
mES cellswerere-plated in serum-free ESGRO Complete Clonal Grade
medium (Merck, SFO01-B). Thelist of 4DN sample identity numbersis
provided in Supplementary Table 1.

Visualization of pairwise chromatin contact matrices

To visualize GAM data, contact matrices were calculated using point-
wise mutual information (PMI) for all pairs of windows genome-wide.
PMI describes the difference between the probability of a pair of
genomic windows being found in the same NP given both their joint
distribution and their individual distributions across all NPs. PMI was
calculated using the following formula, where p(x) and p(y) are the
individual distributions of genomic windows xandy, respectively, and
p(x,y) are their joint distribution:

PMI =log(p(x,y)/p(x)p(¥)) 1)

PMI canbebounded between-1and1to produce anormalized PMI
(NPMI) value given by the following formula:

NPMI =PMI/(-log(p(x,y))) (2)

For visualization of the contact matrices, scale bars are adjusted
in each genomic region displayed to a range between 0 and the 99th
percentile of NPMI values for each cell type.

Insulation score and topological domain boundary calling

TAD calling was performed by calculating insulation scores in NPMI
GAM contact matrices at 50-kb resolution, as previously described®’.
Theinsulation square method was chosen as it was previously shown
that the domain borders detected in GAM data are also found in Hi-C,
for which they are the most robust (most insulated)?’. The insulation
score was computed individually for each cell type and biological

replicate, with insulation square sizes ranging from 100 to 1,000 kb.
TAD boundaries were called using a500-kb insulation square size and
based onlocal minima of the insulation score. This approach does not
detect meta-TADs or sub-TADs, and results in numbers and lengths of
domains were similar to previous reports®*®. Future work with higher
resolution GAM datasets will enable further analyses of the reorgani-
zation of domains at finer genomic scales to investigate changes in
sub-TADs, which have been previously shown to occur following cell
commitment to neuronal lineages®.

Within each dataset, boundaries that were touching or overlap-
ping by at least one nucleotide were merged. Boundaries were fur-
therrefined to consider only the minimum nsulation score withinthe
boundary and one window on eachside, to produce a 3-bin ‘minimum
insulation score’ boundary. In comparisons of boundaries between
different datasets, 150-kb boundaries were considered different when
separated by at least one 50-kb genomic bin, that is, if the centre of
the boundaries are separated by at least 200 kb (note chromosome Y
was excluded from the analysis). In Fig. 2b, we considered the bound-
ary coordinate as the genomic window within aboundary with the
lowest insulation value. TAD border coordinates for all cell types can
be found in Supplementary Table 3, and the full range of insulation
scores (100-1,000 kb) for all cell types canbe found in Supplementary
Table 4. UpSet plots for TAD border overlaps, compartments and TF
motif analyses were generated using either custom Python or Rscripts
or using the UpSetR package (v.1.4.0).

Identification of compartments Aand B

For compartment analysis, matrices of co-segregation frequency
were determined using the ratio of independent occurrence of a sin-
gle positive window in each sample over the pairwise co-occurrence
of pairs of positive windows in a given pair of genomic windows.
GAM co-segregation matrices at 250-kb resolution were assigned to
either A or B compartments, as previously described”. In brief, each
chromosome was represented as a matrix of observed interactions
0O(if) between locus i and locus; (co-segregation) and separately for
E(i,j), whereby each pair of genomic window is the mean number of
contacts with the same distance between iandj. A matrix of observed
over expected values O/E(i,j) was produced by dividing O by E. A cor-
relation matrix C(i,j) was produced between column i and column; of
the O/E matrix. PCAwas performed for the first three components on
matrix Cbefore extractingthe component with the best correlationto
GC content. Loci with PCA eigenvector values with the same sign that
correlate best with GC content were called Acompartments, whereas
regions with the opposite sign were Bcompartments. For visualizations
and Pearson’s correlations between datasets, eigenvector values on
the same chromosome in compartment A were normalized from O to
1, whereas values on the same chromosome in compartment B were
normalized from -1to 0. Compartments were considered common if
they had the same compartment definition within the same genomic
bin. Compartment changes between cell types were computed after
considering compartments that were common between biological
replicates unless otherwise indicated.

Toidentify and visualize gene expression differences among genes
in changing compartments, k-means clustering was performed on trip-
licate pseudo-replicates of each cell type using a custom Python script
(Extended Data Fig. 12a, b). The number of clusters were determined
using the elbow method, with k-means = 6 for genesin compartment B
in mES cells and compartment A in brain cells, and k-means =5 for
compartment A in mES cells and compartment B in brain cells.

mES cell culture for scRNA-seq and scATAC-seq

mES cells from the 46C clone, derived from E14tg2a and expressing
GFP under the SoxI promoter®, were a gift from D. Henrique (Instituto
deMedicinaMolecular, Faculdade Medicina Lisboa, Lisbon, Portugal).
mES cells were cultured as previously described®. In brief, cells were
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routinely grown at 37 °C, 5% (v/v) CO,, on gelatine-coated (0.1% v/v)
Nunc T25 flasks in Gibco Glasgow’s MEM (Invitrogen, 21710082), sup-
plemented with10% (v/v) fetal calf serum (BioScience LifeSciences, 7.01,
batchnumber110006) for scRNA-seq or Gibco FBS (Invitrogen, 10270-
106, batch number 41F8126K) for ATAC-seq, 2,000 units ml™ LIF (Mil-
lipore, ESG1107), 0.1 mM B-mercaptoethanol (Invitrogen, 31350-010),
2 mM L-glutamine (Invitrogen, 25030-024),1 mM sodium pyruvate (Inv-
itrogen, 11360070), 1% penicillin-streptomycin (Invitrogen, 15140122)
and 1% MEM non-essential amino acids (Invitrogen, 11140035). Medium
was changed every day and cells were split every other day. mES cell
batches tested negative for Mycoplasma infection, which was per-
formed according to the manufacturer’s instructions (AppliChem,
A3744,0020). Before collecting material for scRNA-seq or ATAC-seq,
cellswere grown for 48 hin serum-free ESGRO Complete Clonal Grade
medium (Merck, SFO01- B), supplemented with 1,000 units mI™ LIF,on
gelatine -coated (Sigma, G1393-100 ml, 0.1% v/v) Nunc 10-cm dishes,
with a change in medium after 24 h.

46CE14tg2 mES cells are not listed inthe ICLAC Register of Misidenti-
fied Cell Lines. The 46C E14tg2 mES cell line was generated by insertion
of an eGFP cassette under the control of the SoxI promoter in E14tg2
cells. Reads aligned with the GFP sequence were identified in the GAM
sequencing datafrom mES cells. In addition, genome sequencing data
from GAM mES cell samples was mined for single nucleotide polymor-
phisms (SNPs). Although GAM sequencing reads are sparsely distrib-
uted across the genome, there was a 64% overlap of GAM mES cell SNPs
with SNPsidentified from the parental E14tg2 genome sequencing data
(https://www.ncbi.nlm.nih.gov/sra?term=SRX389523; data not shown).

Single-cellmRNA library preparation

Two batches (denoted batch A and B) of single-cell mMRNA-seq librar-
ies were prepared according to the Fluidigm manual “Using the C1
Single-Cell Auto Prep System to Generate mRNA from Single Cells and
Libraries for Sequencing”. Cell suspension wasloaded on10-17 um C1
Single-Cell Auto Prep IFCs (Fluidigm, 100-5760, kit 100-6201). After
loading, the chip was observed under the microscope to score cells as
singlets, doublets, multiplets, debris or other. The chipwasthenloaded
againon Fluidigm C1IFCs, and cDNA was synthesized and pre-amplified
in the chip using a Clontech SMARTer kit (Takara Clontech, 634833).
In batch B, we included Spike-In Mix 1 (1:1,000; Life Technologies,
4456740) as per the Fluidigm manual. Illumina sequencing libraries
were prepared using a Nextera XTkit (Illumina, FC-131-1096) and a Nex-
teraIndexkit (Illumina, FC-131-1002), as previously described®, Librar-
ies from each microfluidic chip (96 cells) were pooled and sequenced on
4 lanesonllluminaHiSeq2000, 2x100-bp paired-end (batch A) or1lane
onllluminaHiSeq 2000, 2x125-bp paired-end (batch B) at the Wellcome
Trust Sanger Institute Sequencing Facility (Supplementary Table 15).

scRNA-seq data processing, mapping and expression estimates
To calculate expression estimates, mRNA-seq reads were mapped
with STAR (spliced transcripts alignment to a reference, v.2.4.2a)%*
and processed with RSEM using the ‘single-cell-prior’ option (RNA-seq
by expectation-maximization, v.1.2.25)%. The references provided to
STAR and RSEM were the GTF annotation from UCSC Known Genes
(mm10, v.6) and the associated isoform-gene relationship information
from the Known Isoforms table (UCSC), adding information for ERCC
sequencesinsamples from batch B. Tables were downloaded fromthe
UCSC Table browser (http://genome.ucsc.edu/cgi-bin/hgTables) and
for ERCCs, fromthe ThermoFisher website (http://www.thermofisher.
com/order/catalog/product/4456739). Gene-level expression estimates
in ‘Expected Counts’ from RSEM were used for the analysis.

scRNA-seq data processing QC

Cells scored as doublets, multiplets or debris during visual inspec-
tion of the C1chip were excluded from the analysis. Datasets were also
excludedifany of the following conditions were met: <500,000 reads

(calculated using sam-stats from ea-utils.1.1.2-537)%; <60% of reads
mapped (calculated with sam-stats); <50% reads mapped to mRNA
(picard-tools-2.5.0, http://broadinstitute.github.io/picard/); >15% of
reads mapped to chrM (sam-stats); if present, >20% of reads mapped
to ERCCs (sam-stats). Following processing, 98 single cells passed qual-
ity thresholds in the final dataset. Correlations between previously
published mES cells (clone 46C) mRNA-seq bulk®? and the scRNA-seq
mES cell transcriptomes were performed to assess the quality of the
single-cell data. Correlations were performed as previously described®’.
Average single-cell expression was highly correlated with bulk RNA-seq
data (Extended Data Fig. 4c).

scRNA-seq analysis

To utilize published single-cell transcriptomes from brain cell types of
interest, we selected P21-22 OLGs®®, P22-32 CA1PGNs® and P21-26 VTA
DNs’ on the basis of the cell type and subtype definitions provided in
the respective publications. The matrices of counts provided in each
publication, along with the single-cell mES cell transcriptomes pro-
duced that passed QC, were combined with no prior batch correction
due to the lack of equivalent cell types across all single-cell datasets.
The combined matrix of counts was normalized by applying the Log-
Normalize method and scaled using Seurat (v.3.1.4)". The scaled data
were used for a PCA, followed by processing through dimensional-
ity reduction using uniform manifold approximation and projection
(UMAP)*for visualization purposes using the Seurat R package™, with
default parameters. Visualization of known cell-type-specific marker
genes confirmed that the different transcriptomes are grouped into
cell-type-specific clusters (Extended Data Fig. 4e). Single mES cell tran-
scriptomes from batch A and B clustered together, and were pooled
for further analyses. Genes that could not be mapped to the chosen
reference GTF were removed (UCSC; accessed fromiGenomes July 17,
2015; https://support.illumina.com/sequencing/sequencing_software/
igenome.html).

Togenerate bigwig tracks for visualization, raw fastq files fromeach
single cell within the same cell type were pooled into one fastq file.
Reads were mapped to the mouse genome (mm10) using STAR with
default parameters but-outFilterMultimapNmax 10. BAM files were
sorted and indexed using Samtools (v.1.3.1)”* and normalized (reads
perkilobase of transcript per million (RPKM)) bigwigs were generated
using Deeptools (v.3.1.3)” bamCoverage. To account for differencesin
the number of technical replicates in OLG samples, cells were divided
into groups by the number of runs (1,2 and 6). The median of the reads
for the group with the lowest sequencing depth was used as a threshold
to normalize the other groups (that is, the rest of the fastq files were
randomly downsampled to that number of reads). The three groups of
raw reads were pooled together and processed by applying the same
method as for the other cell types. Pseudobulk expression was deter-
mined using the regularized log (R-log) value for each gene (Extended
DataFig. 4f,g).Ineach cell type, only the genes with R-log values of >2.5
inall pseudobulk replicates were considered expressed.

Differential gene expression analysis

For differential expression analysis for all cell types, pseudobulk
replicate samples were obtained by randomly partitioning the total
number of single cells per dataset into three groups and pooling all
unique molecular identifiers (UMIs) per gene of cells belonging to
the same replicate. To determine differentially expressed genes, all
six possible pairwise comparisons between samples were performed
using DEseq2 (v.1.24.0) with default parameters”. Inaddition, shrunken
log, fold-changes were added with the IfcShrink function, using
default parameters. Genes classified as differentially expressed in at
least one comparison were considered for further analysis (adjusted
P value < 0.05; Benjamini-Hochberg multiple testing correction
method). A summary table for the differential expression analysis
of all cell types can be found in Supplementary Table 12. For the TF
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motif analysis, only the differentially expressed genes obtained from
the comparison between DNs and PGNs were considered for further
analysis (Extended Data Fig. 9¢, d).

Tn5 purification

The pTXB1plasmid carrying the Tn5-intein-CBD fusion construct with
the hyperactive Tn5 protein containing the E54K and L372P mutations
was obtained from Addgene (plasmid 60240). Tn5 expression and
purification was performed as previously described’, except that the
final storage buffer was 50 mM HEPES-KOH pH 7.2,0.8 MNacCl, 0.1 mM
EDTA, 1 mM dithiothreitol and 55% glycerol.

Tn5 adapter mix preparation

To generate 100 uM adapter mix, 200 uM Tn5MErev (5’-[phos]
CTGTCTCTTATACACATC) was mixed with of 200 pM Tn5ME-A
(5-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG; Adapter_mixA,
1:1ratio). Separately, 200 pM Tn5MErev was mixed with 1 volume of
200 pM Tn5ME-B (5’-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG;
Adapter_mixB, 1:1ratio). The two mixtures wereincubated for 5 min at
95 °C and gradually cooled to 25 °C at aramp rate of 0.1°C s, Finally,
the Adapter_mixA was mixed with Adapter_mixB at al:1ratio forafinal
100 uM adapter mix.

mES cell ATAC-seq library preparation

ATAC-seq libraries were generated from approximately 75,000 mES cell
nuclei following the Omni ATAC protocol”” with amodified transposi-
tion reaction: TAPS-DMF buffer (50 mM TAPS-NaOH, pH 8.5,25 mM
MgCl,, 50% DMF), 0.1% Tween-20, 0.1% digitonin, in 0.25x PBS. A total of
3 plofthe Tn5mix (5.6 pg Tn5and 0.143 volume of 100 pM adapter mix)
was added to the transposition reaction mix. Libraries were prepared as
described inthe Omni ATAC protocol. The final library was sequenced
with an [llumina NextSeq 500 machine according to manufacturer’s
instructions, using paired-end 75 bp reads (150 cycles).

Isolation of the VTA for snATAC-seq

Male C57BI/6NI (RRID: IMSR_CR:027; WT) mice, aged 7 and 9 weeks,
werekilled by cervical dislocation. Brains were removed and the tissue
containing the midbrain VTA was dissected from each hemisphere
at room temperature and rapidly frozen on dry ice. Frozen midbrain
samples were kept at =80 °C until further processing.

DN snATAC-seq library preparation

Two 10X Genomics scATAC-seq libraries from the midbrain VTA, VTA-1
and VTA-2 (from mice aged 7 or 9 weeks, respectively), were generated
from midbrain VTA samples according to the 10X Genomics manual
“Nucleilsolation from Mouse Brain Tissue for Single Cell ATAC Sequenc-
ing Rev B” for flash-frozen tissue with minor adjustments. In brief,
500 pl 0.1% lysis buffer (10 mM Tris-HCI, pH 7.4, 10 mM NacCl, 3 mM
MgCl,, 1% BSA, 0.01% Tween-20, 0.01% Nonidet P40 substitute, 0.001%
digitonin, and 1x complete Mini, EDTA-free protease inhibitor cocktail,
Millipore-Sigma, 11836170001) was added to the frozen samples and
immediately homogenized using a pellet pestle (15 times), followed by
5minincubation onice. The lysate was pipette mixed 10 times, then
incubated 10 min onice. Finally, 500 pl of chilled wash buffer (10 mM
Tris-HCI, pH 7.4,10 mM NacCl, 2 mM MgCl,, 1% BSA, 0.1% Tween-20)
wasadded tothelysed cells, and the suspension was passed through a
30-um CellTrics strainers (Th Geyer, 7648779). The final approximately
500 pl nuclei suspension was stained with DAPI (final concentration
0.03 pug ml™) for about 5 min.

Around 200,000 DAPI-positive events were sorted using a BD FAC-
SArialll flow cytometer with 70-pum nozzle configuration with sample
and sort collection device cooling set to4 °Cinto 300 pl Diluted Nuclei
buffer (commercial buffer from 10X Genomics) in a 1.5-ml Eppendorf
tube. A first gate excluded debris in a forward scatter/side scatter plot
(see examples in Extended Data Fig. 4h, i). A consecutive, second gate

in a DAPI-A/DAPI-H plot was used to exclude doublets and nuclei with
incomplete DNA content (BD FACSDiva software, v.8.0.2). The collected
nucleiwere centrifuged at 500gfor 5 minat4 °Candresuspendedin 20 pl
Diluted Nucleibuffer. The nucleus concentration was determined using
a Countess Il FL Automated Cell Counter in DAPI fluorescence mode.
snATAC-seq libraries were prepared per the Chromium Next GEM Single
Cell ATAC Reagent kits v.1.1 User Guide. In brief, nuclei were loaded on
amicrofluidics chip together with transposition reagents, transposase
enzyme, beads with oligo-dT tags and oil to create an emulsion. After-
wards, the transposase reaction takes place inside the droplets. The
barcoded cDNAisrecovered from the emulsion, amplified and cleaned
using a bead purification process. The cDNA is then using for library
construction, including enzymatic fragmentation, adapter ligationand
sample index PCR. Libraries were sequenced with either an [llumina
NextSeq 500 machine using paired-end 75 bp reads (for VTA-1,150 cycles)
oraNovaSeq 6000 using paired-end 75 bp reads (for VTA-2,100 cycles).

ATAC-seq data processing, mapping, processing and QC

For bulk mES cell ATAC-seq, paired-end reads were mapped to
the mouse genome (mml0) using Bowtie with the following
parameters:—-minins 25-maxins 2000-no-discordant-dovetail-
soft-clipped-unmapped-tlen. Low-quality mapped reads (MQ < 30) and
mitochondrial reads were removed. Duplicated reads were removed
with Sambamba’ (v.0.6.8). Reads passing quality checks were con-
verted to BAM format for further analyses.

For VTA snATAC-seq, paired-end reads were demultiplexed and
mapped to the mouse genome (mm10) using the 10X Genomics
Cellranger software (version cellranger-atac-1.2.0). The two VTA
SnATAC-seq libraries were analysed using ArchR software (v.0.9.1)”.
Doublets were removed following default parametersin ArchR. Next,
low-quality cells (identified as TSS enrichment score <4 and <2,500
unique fragments per cell) were removed for further analyses.

Next, dimensionality reduction was performed using the Latent
semanticindexing (LSI) dimensionality reduction method from ArchR,
with default parameters (except iterations =10, resolution = 0.2, var-
Features = 60,000). The ArchRaddHarmony function was used to run
the Harmony algorithm for batch correction with default parameters,
followed by clusters calling. Gene scores were determined as specified
by ArchR”. DNs were identified as the cluster with higher gene scores
for Th, awell-known DN marker, and confirmed by additional DN marker
expression (for example, Lmx1b, Foxa2, Foxal and Slc6a3). The DN
clusteriscomposed of 216 cellsintotal (113 from VTA-1and 103 from the
VTA-2). UMl duplicates were collapsed to one fragment. To visualize an
approximation for gene expression, gene scores were calculated using
the createArrowFiles (addGeneScoreMat = TRUE) function in ArchR.

Processing of published OLG and PGN scATAC-seq

sCATAC-seq BAM files for OLGs were downloaded from the sciATAC-seq
in vivo atlas of the mouse brain®’. Next, reads were extracted from
the BAM file that corresponded to cells from the cluster identified as
oligodendrocytes from the prefrontal cortex (458 cells), to produce
a pseudobulk ATAC BAM file. The original data, mapped to the mm9
genome, were converted to mm10 using the liftOver tool from UCSC
utilities (https:/genome.ucsc.edu/cgi-bin/hgLiftOver).

SCATAC-seq datasets were obtained from hippocampal PGNs®. ABAM
file containing all cell types was supplied by A. Adey (Molecular and
Medical Genetics, Oregon Health & Science University, Portland, OR,
USA).Reads were extracted from the BAM file that corresponded to the
NR1PGN population (270 cells) to produce a pseudobulk ATAC BAMfile.

Generation of normalized ATAC-seq bigwig tracks

A size factor normalization was applied to generate ATAC-seq big-
wig tracks comparable between mES cells, OLGs, PGNs and DNs.
First, a count matrix was generated for all TSS regions (+250 bp),
which contained reads from at least two of the four cell types.
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The TSS list was extracted from the genes.gtf file included in the cell
ranger reference data (refdata-cellranger-atac-mm10-1.2.0l; https://
support.10xgenomics.com/single-cell-atac/software/pipelines/latest/
advanced/references). To calculate size factors, the TSS count matrix
was processed through DESeqDataSetFromMatrix and estimateSize-
Factors from the DESeq2 package™. For all cell types, the scale factor
(SF) = (cell type size factor) x 1.

Each pseudobulk ATAC-seq BAM file from mES cells, PGNs and OLGs
was converted to the bedGraph format using the genomeCoverageBed
function from bedtools” with the following parameters: -pc-bg-scale
SF.For DNs, ATAC-seq fragment files were converted to the bedGraph
format using the genomeCoverageBed function from bedtools* with
the following parameters: -g chrom.sizes -bg -scale SF. The mm10
chrom.sizes file was downloaded from UCSC using fetchChromSize
from UCSC utilities (http://hgdownload.soe.ucsc.edu/admin/exe/).
ThebedGraphfiles were then converted to bigwig using the bedGraph-
ToBigWig function from UCSC utilities.

DN and PGN ATAC-seq peak calling

ATAC-seq peaks were called in DNs following the iterative overlap
peak merging procedure described in the ArchR package”. First, two
pseudobulk replicates were generated by running the addGroupCov-
erages function and then reproducible peaks were called using the
addReproduciblePeakSet function. For PGNs, peaks for the NR1 cluster
were obtained from Sinnamon etal.®. For further analyses, peaks were
considered positive if they were found in at least 10% of single nuclei
(>10 nucleiin DNs; >13 cells in PGNs).

RNA and ATAC-seq length-scaled ATAC reads per million

To calculate length-scaled RNA reads per million (ISRRPM) for 479 long
genes (>300 kb), the mES cell BAM file (paired-end) was read using the
readGAlignmentPairs function from the GenomicAlignments function
fromthe GenomicAlignments packagein R (v.1.20.1; https://bioconduc-
tor.org/packages/release/bioc/html/GenomicAlignments.html). For
published single-cell datasets (OLGs, PGNs, DNs; single-end libraries),
BAM files were loaded using the readGAlignments function from the
GenomicAlignment package. Owing to the very long length of some
reads, all BAM fragments were resized to the 5’ end base pair to avoid
overlapping with multiple features. Next, the following formula was
used to compute ISRRPM values for each cell type and per gene:

ISRRPM = number of overlaps between RNA fragments and long
gene body gene length (10°°)
x total number of RNA fragments 10°%)

To calculate length-scaled ATAC reads per million (ISARPM) for 479
long genes (>300 kb), concordant paired-end fragments were extracted
for all cell types using the readGAlignmentPairs function from the
GenomicAlignments package in R with the following total number of
fragments: 37,261,746 (mES cells), 2,121,258 (OLGs), 4,594,229 (PGNs)
and 8,939,526 (DNs). Next, the following formula was used to compute
IsARPM values for each cell-type and per gene:

IsARPM = number of overlaps between ATAC fragments and
long gene body gene length (10°°)
x total number of ATAC fragments (10_6)

GO analysis

GO term enrichment analysis was performed using GOElite (v.1.2.4)%.
In Extended Data Fig. 4n, DN snATAC-seq marker genes were extracted
with the getMarkerFeatures function from ArchR with default param-
eters. Marker genes were selected as genes with log, fold change values

of >1and false discovery rate of <0.01in the DN cluster compared with all
clusters fromthe VTA (total of 973 genes). Allunique genes were used as
the background GO dataset. InFig.2c, allgenes expressedinatleast one
celltype, annotated to mm10, were used as the background dataset. In
Fig.4d, e, allgenes expressed in PGNs or DNs were used as the background
dataset, and in Fig. 5a, b, all unique genes were used. Default param-
eters were used for the GO enrichment: GO terms that were enriched
above the background (significant permuted P values of <0.05, 2,000
permutations) were pruned to select the terms with the largest Z-score
(>1.96) relative to all corresponding child or parent paths in a network
of related terms (genes changed >2). GO terms which had a permuted
Pvalue of >0.01, contained fewer than 6 genes per GO term or from the
‘cellular_component’ ontology, were not reported in the main figures.
Afulllist of unfiltered GO terms can be found in Supplementary Table 7.

MELTRON pipeline

To assess gene insulation differences, insulation square values at 10
length scales (100-1,000 kb) were calculated for genes >300 kb in
length (n=479; calculated for aminimum 8x 50-kb bins, thatis, 400 kb
minimum length). Cumulative probability distributions of insulation
square values were calculated for each dataset, and the brain cells were
compared to mES cell probability distributions for each gene by com-
puting the maximum distance between the distributions and applying
aKolmogorov-Smirnov test. Pvalues were corrected for multiple test-
ing using the Bonferroni method, and -log,, transformed to obtain a
domain melting score. Domain melting scores for each gene in each
comparison canbe found in Supplementary Table 8. For visualization,
empirical cumulative probabilities and insulation score values were
smoothed using a Gaussian kernel density estimate (adjust = 0.3).

Calculation of the trans—-cis contact ratio

Todetermine theinteraction strength of contacts to all (¢rans) somatic
chromosomes relative to interaction strength to their own (cis) chro-
mosome, cis and trans NPMI-normalized matrices were calculated at
250-kbresolution. Bins detected inless than 3%, or more than 75%, of 3
NP samples were removed from the analysis. To be sensitive to outliers,
NPMIl values of both cis (NPMI.) and trans (NPMI;) contacts for every
bin were summarized with the arithmetic mean. The trans-cis contact
ratio was then obtained using the following formula:

2 NPMI; + genomic bins(ny)
2 NPMI, + genomic bins(n.)

trans—cis contact ratio =

Trans-cisvalues of bins spanning long genes were summarized with
the median.

Modelling and insilico GAM

To reconstruct 3D conformations of the Nrxn3locus, we employed
the Strings & Binders Switch (SBS) polymer model of chromatin®%*,
In the SBS model, a chromatin region is modelled as a self-avoiding
chainof beads, including different binding sites for diffusing, cognate,
molecular binders. Binding sites of the same type can be bridged by
their cognate binders, which then drives polymer folding. The optimal
SBS polymers for the Nrxn3locus in mES cells and DNs were inferred
using PRISMR, a machine-learning-based procedure that finds the
minimal arrangement of the polymer binding sites that best describe
input pairwise contact data, such as Hi-C** or GAM®, Here, PRISMR
was applied to the GAM experimental data by considering the NPMI
normalizationona4.8 Mbregionaround the Nrxn3gene (chromosome
12:87,600,000-92,400,000; mm10) at 50-kb resolution in mES cells
and DNs. The procedure returned optimal SBS polymer chains made
of 1,440 beads, including 7 different types of binding sites, in both
cell types. A full list of x, y and z coordinates for mES cell and DN poly-
mer model structures can be found in Supplementary Tables 9 and
10, respectively.
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Next, to generate thermodynamic ensembles of 3D conformations
ofthelocus, molecular dynamics simulations were run of the optimal
polymers, using the freely available LAMMPS software (v.5june2019)%.
In these simulations, the system evolves according to the Langevin
equation, with dynamics parameters derived from classical polymer
physics studies®. Polymers are first initialized in self-avoiding con-
formations and then left to evolve to reach their equilibrium globular
phase®®. Beads and binders have the same diameter 0 =1, expressedin
dimensionless units, and experience a hard-core repulsion by use of
atruncated Lennard-Jones potential. Analogously, attractive inter-
actions are modelled with short-ranged Lennard-Jones potentials®.
Arange of affinities between beads and cognate binders were sampled
in the weak biochemical range, from 3.0 K;7to 8.0 K; T (Where K is
the Boltzmann constant and 7 the system temperature). In addition,
binders interact nonspecifically with the polymer with a lower affin-
ity, sampled from O K;Tto 2.7 K, T. For the sake of simplicity, the same
affinity strengths were used for all different binding site types. The
total binder concentration was taken above the polymer coil-globule
transition threshold®>. For each of the considered cases, ensembles of
up to 450 distinct equilibrium configurations were derived. Full details
about the model and simulations are discussed in Barbieri et al.** and
Chiariello et al.®*.

Insilico GAM NPMImatrices were obtained from the ensemble of 3D
structures by applying the in silico GAM algorithm'®, here generalized to
simulate the GAM protocol with 3NPs per GAM sample and to perform
NPMInormalization. Insilico GAM NPMImatrices can be obtained using
previously published algorithms'®, by aggregating the content of three
insilicoslicesinto one tube, and then applying the NPMInormalization
formula (see the section ‘Visualization of pairwise chromatin contact
matrices’, therein'). Specifically, the same number of slices were used
asinthe GAM experiments, 249 x 3 NPs for mES cellCs and 585 x 3NPs
for DNs. Pearson’s correlation coefficients were used to compare the
insilico and experimental NPMI GAM matrices.

Example of single 3D conformations wererendered by a third-order
spline of the polymer bead positions, with regions of interest high-
lighted in different colours. To quantify the size and variability of the
3DstructuresinmES cellsand DNs, the average gyration radius (R,) was
measured from the selected domains encompassing and surrounding
the Nrxn3gene, expressed in dimensionless units oin Fig. 3d, Extended
DataFig. 7e. Analyses and plots were produced with the Anaconda
package v.4.7.12, and 3D structure visualizations were produced with
POV Ray, v.3.7 (http://www.povray.org/download/).

Cryosections for FISH experiments

Fixed and cryopreserved hippocampal CAl tissue and mES cells were
cryosectioned as previously described (see ‘Cryoblock preparation
and cryosectioning’ above) with anapproximate thickness of 400 nm
and transferred to glass coverslips (thickness number 1.5, diameter
10 mm) coated with laminin (Sigma-Aldrich, P8920) according to the
manufacturer’sinstructions for the three-colour FISH experiment (TSS,
middle and TES), or washed in 100% ethanol and autoclaved for the
immunofluorescence whole-gene FISH experiment (nucleolus, RbfoxI).

BAC probeslabelling and precipitation

BACstargeting the RbfoxIlocus (Supplementary Table 11) were obtained
from the BACPAC Resources Center (https://bacpacresources.org)
and amplified from glycerol stocks using aMIDIprep kit (NucleoBond
XtraBAC purificationkit, Machery-Nagel, 740436). Purified BACs were
labelled using anick translation kit (Abbott Molecular, 7J0001) accord-
ing tothe manufacturer’sinstructions and the following fluorophores
(all Invitrogen, Thermo Fisher Scientific): ChromaTide Alexa Fluor
488-5-dUTP (C11397), ChromaTide Alexa Fluor 568-5-dUTP (C11399)
and Alexa Fluor 647-aha-dUTP (A32763). Labelled BAC probes were
co-precipitated with yeast tRNA (20 pg pl™ final concentration; Inv-
itrogen, AM7119) and mouse Cot-I DNA (3 pg pl ™ final concentration;

Invitrogen, 18440-016) overnight at—20 °C. After clean up in 70% etha-
nol, the probes were dissolved in 100% deionized formamide (for 1 h;
Sigma, F9037) before adding (1:1) a2x hybridization mix (20% dextran
sulfate, 0.1 M phosphate bufferin 4x saline-sodium citrate (SSC); mix-
ingfor1h), denatured (10 min, 80 °C), and reannealed (30 min, 37 °C)
before hybridization.

Immunolabelling before FISH

Immunofluorescence labelling of the nucleolus was performed
as described above (‘Immunofluorescence detection for confocal
microscopy’) by incubating the cryosections overnight (at 4 °C) with
amouse monoclonal antibody anti-nucleophosmin B23 (agift from H.
Busch*), followed by incubation (1 h) with donkey antibodies raised
against mouse IgG conjugated with Alexa Fluor-555 (Invitrogen). Before
cryo-FISH, the bound antibodies were fixed (1 h, 4 °C) in 8% depolymer-
ized PFA (EM-grade) in250 mMHEPES-NaOH (pH 7.6) and rinsed in PBS.

Cryo-FISH

Cryo-FISH was performed as previously described** with a few modi-
fications. Inbrief, cryosections were washed (30 min) in1x PBS, rinsed
with 2x SSC (Sigma, S6639) and incubated (2 h, 37 °C) in 250 pg mi™*
RNase A (Sigma, R4642) in 2x SSC. After washing in 2x SSC, cryosec-
tions were treated (10 min) with 0.1 MHCI, dehydrated inethanol (30%,
50%,70%,90%,100% series, 3 min each onice) and denatured (10 min)
at80 °Cin70% formamide, 2x SSC, 0.05 M phosphate buffer (pH 7.4).
Cryosections were dehydrated as described above, and overlaid on
hybridization mixture on HybriSlip (Invitrogen, H18202). After sealing
with rubber cement and incubation (48 h, 37 °C) in a moist chamber,
cryosections were washed (25 min, 42 °C) in 50% formamide in 2x SSC,
(30 min, 60 °C) in 0.1x SSC and (10 min, 42 °C) in 0.1% Triton X-100 in
4xSSC. After rinsing with 1x PBS, coverslips were mounted in Vectash-
ield mounting medium (anti-Fading) with DAPI (Vector Laboratories,
H-1200).

Cryo-FISH microscopy

Cryo-FISHimages were collected sequentially with a Leica TCSSP8-STED
confocal microscope (Leica Microsystems DMI6000B-CS) using Leica
Application Suite Xv.3.5.5.19976 and aHC PL APO CS2 x63/1.40 oil objec-
tive (numerical aperture of 1.4, Plan Apochromat) (see Immunofluores-
cence detection for confocal microscopy’) using the following settings:
405-nm excitationand 420-500-nm emission (for DAPI), 488-nm excita-
tion and 510-535-nm emission (for probes labelled with ChromaTide
Alexa Fluor-488 and for nucleophosmin), 568-nm excitation and 586—
620-nm emission (for probes labelled with ChromaTide Alexa Fluor-568),
647-nm excitation and 657-700-nm emission (for probes labelled with
AlexaFluor-647),and 555-nm excitation and 586-640-nm emission (for
immunofluorescence labelling of nucleophosmin with Alexa Fluor-555).
Allimages were collected with a x4 zoomat1,024 x 1,024 pixel resolution
(pixel size of 0.0451 pm, resolution of 22.1760 pixels pm™).

Cryo-FISH image analysis

Images were analysed using Fiji software (v.2.0.0-rc-69/1.52p)%.
All images were pre-processed as previously described?. Genomic
fociwere visually identified, and areas of the manually defined objects
were measured using the Fiji-Area tool. For the cryo-FISH experiment
combined withimmunofluorescence, the location of genomic lociin
relation to the nuclear lamina or nucleolus was assessed on the basis
ofthe overlap of foci with the nucleolus (identified by nucleophosmin
immunolabelling) or the nuclear lamina (as defined by the periphery
ofthe DAPI staining) by at least three pixels. To determine the distance
between the TSS, middle and TES genomic foci, we took the centre of
mass of the selected objects, as defined by Fiji-Center of mass function
(the brightness-weighted average of the xand y coordinates of all pixels
within the selected areas). Distances between the objects were meas-
ured using the Fiji-Line tool between the centres of mass defined for
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each object. Images for visualization in figure panels were processed
using Fiji or Adobe Photoshop CS6, for which adjustments included
the optimization of the dynamic signal range with contrast stretching.

Determination of differential contacts between GAM datasets
Significant differences in pairwise contacts between a pair of GAM
datasets were determined as previously described with modifications’.
In brief, genomic windows with low detection, defined as less than 2%
ofthe distribution of all detected genomic windows for each chromo-
some, were removed from both datasets to be compared. Contacts
were filtered to be within 0.5-5 Mb distance and above 0.15 NPMI, and
NPMI contact frequencies at each genomic distance of each chromo-
some were normalized by computing a Z-score transformation, and
a differential matrix (D) was derived by subtracting the two Z-score
normalized matrices’.

TF-binding site analysis

To find TF-binding motifs present within specific contacts, signifi-
cant differential contacts were determined for DNs and PGNs. Acces-
sible regions within the differential contacts were determined using
SCATAC-seq for PGNs®' and DNs. To account for methodological dif-
ferences, including lower sequencing depth in PGN scATAC-seq data
(Extended DataFig. 41), we considered only the peaks that occurredin
>10% of cells (>10 cells in DNs; >13 in PGNs). Motif finding within accessi-
bleregionsinsignificant contacts was performed using the Regulatory
Genomics Toolbox (v.0.12.3; https://www.regulatory-genomics.org/
motif-analysis/introduction/) with TF motifs (from the HOCOMOCO
database, v.11)*° obtained for TFs expressed in either DNs or PGNs
(R-log = 2.5) to determine the percentage of windows containing each
TF motif. Next, TF motifs were filtered based on (1) the percentage of
windows containing the motif (>5%) and (2) the differential expression
ineither PGNs or DNs (-log;,(adjusted Pvalue) >3, see ‘Differential gene
expression analysis’above), whichresultedin 50 TF motifs for feature
pair analysis (33 TF motifs from PGNs and 17 from DNs; Extended Data
Fig.9¢,d).

Feature pairs associated with specific contacts were determined
as previously described® and testing the 1,275 combinations of motif
pairs (1,225 heterotypic motif pairs and 50 homotypic motif pairs). The
number of contacts containing each pair of selected TF motifs (PGN¢
and DNy;), together with the percentage of total significant differen-
tial contacts in PGNs and DNs (PGN and DN), were used to determine
the enrichment score for all TF feature pair interactions (that is, the
ratio between frequencies of contacts in PGNs or DNs, (PGN;/PGN)/
(DNy/DN)). The effectiveness of a TF pair for discriminating between
contacts from PGNs and DNs was assessed by using the information
gain measure®®, Enrichment and information gain for all TF feature
pairinteractions, as well as differential expression values for TFs (DNs
compared to PGNs), canbe found in Supplementary Table 13. The top
feature pairs were extracted on basis of the highest information gain
(tenfeature pairs), PGN enrichment (five feature pairs) and DN enrich-
ment (five feature pairs) scores. Contact overlaps for top feature pairs
were visualized using UpSet plots.

Network and community detection analysis of TF-binding sites
insignificant differential contacts

To determine theinterconnectivity between different TF motifs found
in accessible regions of significant differential contacts, the number
of contacts for each pair of TF motifs (1,275 pairs) was determined.
After filtering pairs of TF motifs involved in less than 20% of the total
contacts (15,833 and 5,400 contacts minimum in PGNs and DNs, respec-
tively), a network was built for each cell type with TF motifs as nodes
and number of contacts as weighted edges. The Leiden algorithmwas
used to detect communities of strongly interconnected nodes, using
the leiden package in R**2, with a resolution of 1.01 for both PGNs and
DNs (Extended Data Fig. 10f, Supplementary Table 14).

GAM aggregated contact plots

Tovisualize the average contact intensity for aset of genomic contacts,
NPMI contact frequencies at each genomic distance of each chromosome
were first normalized by computing a Z-score transformation. The result-
ing Z-score values were determined for each contact and for each contact
ina4-binradius (50-kb bins). For each chromosome, Z-score values for
each set of contacts and for the surrounding bins were summarized by
thearithmetic mean. Mean values computed for each chromosome were
added together and divided by the number of chromosomes.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Raw fastq sequencing files for all samples from DN, PGN and OLG GAM
datasets, together with non-normalized co-segregation matrices, nor-
malized pair-wised chromatin contacts maps and raw GAM segregation
tables are available from the GEO repository under accession number
GSE148792. Raw fastq sequencing files for mES cell GAM datasets are
available from 4DN data portal (https://data.4dnucleome.org/). The
4DN sample IDs for all samples used in the study are available in Sup-
plementary Table 1. All polymer model 3D structures produced for the
analyses of this work are available in Supplementary Tables 9 and 10.
Raw confocal and laser microdissection images, as well as images and
ROIs for cryo-FISH experiments are available at: https://github.com/
pombo-lab/WinickNg_Kukalev_Harabula_Nature_2021/tree/main/
microscopy_images/.

Rawsingle cellmES cell transcriptome data are available from ENA data
portal (https://www.ebi.ac.uk/ena/browser/home). The ENAsampleIDs
forallsamplesusedinthe study areavailablein Supplementary Table15.
Position sorted BAM files for ATAC-seq datafrommES cellsand DNs are
available from the GEO repository under accession number GSE174024,
together with processed bigwig files. A public UCSC session with all data
produced, aswell as all published data utilized in this study is available at
http://genome-euro.ucsc.edu/s/Kjmorris/Winick_Ng_2021_GAMbrain-
publicsession. Source data are provided with this paper.

Code availability

Processing and plotting scripts for MELTRON and insulation scores are
available at: https://github.com/pombo-lab/Meltron/. Processing and
plotting scripts for the trans-cis contactratios are available at https://
github.com/pombo-lab/GAM _trans_cis_ratio/. Custom pythonandR
scripts for GAM window calling, GAM quality control, GAM genome
sampling quality and resolution, production of NPMI matrices, aggre-
gated maps, k-means clustering, calculation of insulation scores and
compartment calling were deposited in https://github.com/pombo-lab/
WinickNg_Kukalev_Harabula_Nature_2021/tree/main/code/.
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a ImmunoGAM experimental workflow
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Extended DataFig.1|ImmunoGAM experimental pipelineand GAM data
quality control. a,ImmunoGAM experimental pipeline. VTAand CAldissections
and cryoblock preparations are shown as examples. After fixation, brain tissue is
dissected and cryopreserved insucrose/PBS solution, before sectioningonan
ultracryomicrotome (-220nm thick tissue slices; -100 °C). For confocal imaging,
DAPIstaininglabels nuclear slices and helps to morphologically identify the
CA1PGN layerinthe hippocampus, or was combined with THimmunolabelling to
identify DNsin the midbrain, or with GFPimmunolabelling to identify OLG
lineage cellsinthe cortex (scale bars =10 um for OLGs and DNs, 100 pum for PGNs).
Forlaser microdissection, nucleiwereidentified by indirectimmunofluorescence
using anti-pan-histone antibodies to morphologically select PGNs of the
pyramidal neuron layer, or were combined withimmunofluorescence detection
of TH for DNs or GFP for OLGs. Laser microdissectionimages are shown as
examples (scalebars=30 pmfor DNs,200 pm for PGNs). Three nuclear slices
wereselected and laser microdissected from the tissue to fallinto the same

0.2 ja At Chr7: 60-80Mb
[ ——

Window
Detection
Frequency

PCRIid, as described for multiplex-GAM® (scale bars =30 pm for panelsaandb,
400 pm for panels c-e). Genomic DNA content was extracted fromeach sample
and amplified using whole-genome amplification, followed by Illumina NextSeq
sequencing.b, Quality control parameters (uniquely mapped reads, genome
coverage of positive windows, and percentage of orphan windows; see Methods)
forallcombined GAM samples collected frombrain cell types. Each data point
representsa GAM sample. Samples passing QC are shownin green, samples not
passing QCinred. ¢, Percentages of uniquely mapped reads and orphan
windows per GAM sample, shown separately for each dataset produced in this
study. Samples not passing QC are showninred, water control samples
(laser-microdissected material not containing anuclear profile) are shownin
black.d, Normalized point-wise mutual information (NPMI) normalization
correctsfor differencesinthe co-segregation matrix caused by changesin the
window detection frequency (WDF; see Methods). Example shown for PGNs
replicate1(R1;chr7:60,000,000-80,000,000).



Article

a Summary of GAM datasets used in this study

Samples that did not pass quality control

GAM Water GAM Number % locus pairs
samples . controls samples of cells detected at
D collected Qrphan Uniquely Cross- passing per least once within
ataset (3NPs per windows mapped reads ~contam- quality  dataset 5Mb (50-kb
sample) >70% <50,000 inated control resolution)
DNs R1 656 58 11 11 13 585 1755 99.8
DNs R2 316 19 6 6 6 291 873 99.9
PGNs R1 218 7 2 2 2 209 627 99.9
PGNs R2 288 7 1 1 6 275 825 99.8
OLGs 335 46 4 4 0 290 870 99.7
mESCs - - - - 249 747 99.9
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Extended DataFig.2|Normalization ofimmunoGAM data.a, Summary of
GAMdatasetsusedin thisstudy. VTA DNs were collected from two animals, an
8-week old wild-type mouse and a10-week old mouse carrying a TH-GFP
reporter.PGNs were collected from two 8-week old wildtype littermate mice.
Cortical OLGs were collected based on detection of GFP expression froma
3-week old Sox10-cre-LoxP-GFP mouse. GAM data from mES cell (clone 46C)
was previously published", and available from the 4DNucleome portal after
quality control (https://data.4dnucleome.org/; Supplementary Table1).

b, 50-kb windows for PGNs R1were divided into equally sized groups
depending on their GC content, mappability, window detection frequency
(WDF) or Dpnliirestriction density. Heatmaps of mean observed/expected bias

(represented as afold change) are shown for co-segregation, D-prime

(used for previous GAM normalizations®), PMland NPMI normalizations.
NPMInormalizationresultsin the lowest absolute bias percentage for all tested
categories (box plots on right). Box plot definitions were as follows: 25™
percentile lower limit, 75" percentile upper limit, and center line as the median;
interquartile range (IQR) was 25" to 75" percentile; upper whisker was

(75" percentile + (IQR*1.5)), lower whisker was (25" percentile - (IQR*1.5)) or
zeroifnegative; outliers outside the whiskers were indicated with open circles.
n=100 for each biastested, representing all combinations of deciles in PGNs
R1.c, Absolute bias analysis for remainingimmunoGAM datasets. Box plot
definitionswere asin panelb.
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Extended DataFig. 4 |Curation of scRNA-seq and snATAC-seq datafrom
published datasets and datasets produced for the present study.

a, Schematicrepresentation of scRNA-seq datasets used in this study.

We collected published scRNA-seq datasets from cortex and hippocampus,
and produced scRNA-seq from midbrain. From each of the brain tissues, we
select the specific celltypes that were matched with those collected for the
presented GAM data. The selected datasets from each cell type were combined
and visualized through UMAP embedding, coloured by expression of each
marker gene: Sox10 for OLGs, Camk2a for PGNs and Th for DNs. Cluster
contoursare drawn to highlight separation between cell types. All marker
genes were found highly expressed in their respective cell types. b, scRNA-seq
datasets were also generated from mES cells. UMAP clusteringis coloured by
the expression of Nanog. ¢, Pearson’s correlation plot of gene expressionin
mES cells (clone 46C) between published bulk? versus single-cell RNA-seq.
Average single-cell expressionis highly correlated with bulk RNA-seq (two-
sided Pearson’s Rproduct-moment correlation; R=0.93, p <2.2x107). Only genes
commontoboth datasetsarerepresented (totalgenesinbulk dataset=22822,
totalgenesinsingle cell dataset=23208, commontoboth =22045).d, Single
cell expression of Rbfox3, a pan-neuronal marker, overlaid on the UMAP of
single cell transcriptomes. e, Additional examples of UMAPs for single cell
transcriptomes of cell-type markers. Pou5fI and Sox2 were used as markers for
meES cells, Olig2 and Pdgfra for OLGs, Wfsl and Satb2 for PGNs, and Slc6a3 and
CalbIfor DNs. All markers show higher expressionin their respective cell types.
f, Distribution of regularized log (R-log) values for pseudobulk scRNA-seq
datasets. For eachcell type, cells were randomly partitioned into 3 pseudobulk
replicates before poolingand normalizing reads. The distribution of R-log
valuesis bi-modal for all celltypes and pseudobulk replicates. To consider
expressed genes for downstreamanalysis, a2.5R-log threshold (dashed red
lines) was appliedinall datasets. Genes with R-log>2.5in all three pseudobulk
replicates are considered expressed for that celltype. g, Example scRNA-seq
pseudobulk tracks of sequenced reads for marker genesin eachcell type.
Tracks were RPKM normalized to allow for cell-type comparisons. Markers
were: Esrrb for mES cells, Pdgfra for OLGs, Wfslfor PGNs and Slc6a3 for DNs.

Allmarkers are specifically expressed in their respective cell types. h, Exemplar
plots of fluorescence-activated cell sorting (FACS) and gating strategy in
midbrain VTA samples. Two biological replicate samples fromindependent
mice, VTA-1(top) and VTA-2 (bottom) were sorted to determine percentage of
intact nuclei. Debris was excluded with a first gate (left; SSC/FSC plots,
n=10000 for VTA-1and VTA-2, atotal of n=200000 DAPI positive events were
sorted) and damaged nuclei with asecond gate using DAPI (right; DAPI-H/
DAPI-A plots, n=8687 and 8748 for VTA-1and VTA-2, respectively). The frequencies
of parent populations areindicated by circles within the plots, and the target
intactnucleiareindicated by theboxed area. i, Table indicating the total
number of recorded events for VTA-1and VTA-2 exemplar FACS gating as shown
inExtended DataFig.4h, as well as the number and percentage of intact nuclei.
j, Distribution of fragment sizes for (sc)ATAC-seq dataused in this study. Bulk
ATAC-seq datawas generated from mES cells. snATAC-seq was generated from
midbrain VTA, from which 216 nuclei were classified as DNs (see Methods).

OLG and PGN scATAC-seq was collected from published data (see Methods,
Supplementary Table 6). k, Aggregated sequencing reads at 2kb genomic
regions centered on transcription start sites (TSSs). Nucleosome-free regions
(NFRs; <147 bp) were extracted from the ATAC alignment BAMfilesin each cell
type (i.e. fragments). NFRs are enriched at the TSS for all ATAC-seq datasets.

I, Number of fragments per cell/nucleus for sc/snATAC-seq datasets. The number
ofunique fragments per nucleus was highest for DNs. m, Single-cell accessibility
maps for DNs generated in the present study were visualized together by UMAP
embedding, and coloured by expression of DN marker genes or marker genes
for OLGs and PGNs. Per-cell gene scores were calculated for each DNs marker
gene (see Methods). DNs expressed DN-specific markers Pitx3, Foxa2, Lmx1b
and Th, while not expressing OLG and PGN markers Olig2 and Camk2a,
respectively.n, Top four enriched gene ontologies (GO) for DN marker genes
(973 genes; over-representation as measured by Z-Score; see Methods for
marker selection), containing terms relevant for dopamine metabolism,
synaptic transmission and behaviour. Allenriched GOs were highly
significantly enriched (one-sided Fisher’s exact permuted p-values =0).
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Extended DataFig. 5| Identification of contact density changes, TAD
borders, and differencesin contacts betweencell types.a, GAM contact
matrices for replicates 2 obtained from PGNs and DNs, withina2-Mb region
(50-kbresolution; Chr2:64,800,000-66,800,000). Contact density maps,
TADborders, pseudobulk scRNA-seq, and pseudobulk scATAC-seqtracks are
indicated for each cell type below matrices. b, Distributions of TAD lengths in
each GAM dataset. TAD length was calculated as the distance between two
boundary points (defined as lowest insulation score point withinaboundary).
c, Pairwise comparisons of TAD boundary overlap between cell types. TAD
boundaries were determined using insulation square method, using square
size of 500kb, and the minimum sscore considered +1binoneither side, givinga
constant total of 150-kb TAD boundaries. The matrix of percentages of
common TAD boundaries is not symmetrical as the percentage of overlap
betweenboundaries varies with the direction of the comparison. The first
datasetinthe comparisonisspecified onthey axis,and thesecond onthe
x-axis. d, Four-way comparison of TAD boundary overlap between all cell types
isshownasan UpSet plot. TAD boundaries were defined asin 5c. e, Average
insulation score profiles centered on cell-type specific TAD borders show low
averageinsulationscoresinthecelltype where the borders are detected, with
highly significant differences at central border window with all other cell types
(two-sided Mann-Whitney U test for central TAD border window in unique
cell-type borderand compared toall other cell types; ****p <0.0001; p=1.1x10"2°,
1.2x1077,and 1.0x10™ for mES cells compared to OLGs, PGNs and DNs,
respectively; p=6.0x107"%,2.4x1072,and 4.1x10 ™ for OLGs compared to

meES cells, PGNs and DNs, respectively; p=1.0x107°,2.0x10"%, and 1.3x10™°° for
PGNs compared to mES cells, OLGs and DNs, respectively; and p=6.7x107°,
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1.8x107'?,and 8.5x107°® for DNs compared to mES cells, OLGs and PGNs,
respectively). f, Venn plots show overlap between TAD boundariesin PGN or DN
replicates1and 2. Overlaps were performed by comparingreplicate1(R1) to
replicate 2 (R2), and conversely R2 to R1. g, Average insulation score profiles of
common TAD borders (first UpSet plot group) centered on the lowest insulation
pointwithineach TAD border are shown for each cell type (two-sided
Mann-Whitney test for central TAD border window in mES cell border and
compared to each brain cell-type; ****p <0.0001; p=8.6x107°,1.5x107'%, and
1.0x107" for mES cells compared to OLGs, PGNs and DNs, respectively).

h, Percentage of TAD borders containing expressed genes (R-log>2.5) ineach
celltype forthe groups shownind. Higher percentage of borders contain
expressed genesingroupswithshared bordersintwo or more celltypes.Inall
groups, brain cells have ahigher percentage of borders with expressed genes
compared to mES cells. i, Average insulation score profiles at the gene TSS or
TES for genes >300kb inlength, using insulation square size 500kb. The top
and bottom 20% expressing genes were determined using the length-normalized
number of reads covering the gene body (length-scaled RNA Reads per Million;
IsRRPM). The top expressing long genes have significantly lower insulation
scorescompared to the lowest expressed genes, at both the TSSand TES, in
DNsand PGNs, while mES cells are lower at the TSS only, and OLGs show no
detectabledifference (two-sided Mann-Whitney testat TSS or TES windows;
*p<0.05,*p<0.01, ***p <0.001, ***p<0.0001; p-values at the TSS, p=0.02,
0.009,0.328,0.027 for DNs, PGNs, OLGs and mES cells, respectively; p-values
atthe TES, p=7.2x107%,1.8x107%,0.323, 0.177 for DNs, PGNs, OLGs and

mES cells, respectively).
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Extended DataFig. 6 | Identification of domain meltinginlong expressed
genes. a, Cumulative probability of insulation square scores ranging from
100-1000kb for Grik2inall cell types and replicates (left). Comparison
between PGNsreplicates1and 2 and mES cells, with maximum distance (d) and
TAD melting scores (right). Cumulative probability distributions of insulation
scores and domain melting scores for Grik2in PGNs, Dscamin PGNs, and Magi2
in OLGs (right). Allgenes were compared to mES cells, with maximum distance
(d) indicated for each comparison. b, Example of domain melting for Magi2in
OLGs.c, Correlation of replicate domain melting scores for replicates1and 2in
PGNs and DNs (two-sided Pearson’s R product-moment correlation was calculated
forall479 long genes; ****p <2.2x10** for both PGNs and DNs;). d, Domain
melting scores foreach gene (n=479)in PGNsR2and DNs R2, compared to
mES cells. Genes with melting scores > 5are coloured in each cell type. Density
estimates of length-scaled RNA reads per million (ISRRPM) transcription levels
areshown for genes with melting scores > 5 (coloured by cell type) compared to
non-melting genes (grey; two-sided Wilcoxon rank-sum test; ****p =5.4x107°
and 6.5x10 ™in PGNs and DN, respectively). e, Melting genes have higher
density of openchromatinregions throughout their gene bodies (length-scaled
ATAC-seq RPM values; ISARPM), especially in PGNs and DNs, and to a minor
extentin OLGs (two-sided Wilcoxon rank-sum test; *p<0.05, ****p<0.0001;
p-values fromleft toright, p=0.015,4.0x107°,1.3x107). f, Domain melting
scorescompared tolength-scaled ATAC-seq reads per million (ISARPM)
transcription levels for each gene (n=479)in PGNs R2and DNs R2. Density
estimates of ISARPM open chromatin levels are shown for genes with melting
scores>5(coloured by cell type) compared to non-melting genes (grey;

two-sided Wilcoxon rank-sum test; ***p=2.6x10"*and 2.2x10*in PGNs and
DNs, respectively). g, Long genes within the top 3% melting scoresin any
cell-type (24 of 44 genes) have a higher likelihood of sensitivity to
topoisomerase inhibition*’ compared to genes with intermediate melting
scores (42 of 261) and genes with no domain melting (27 of 174; two-sided x*
test; ****p-value =5.0e-9). h, Heatmaps of genes with domain melting in OLGs,
and with domain meltingin atleast1replicate for PGNs and DNs, clustered by
changeintranscription level (length-scaled RNA RPM; ISRRPM) from mES cells
tobrain cell type. ATAC-seq (length-scaled ATAC RPM; ISARPM), compartments
ineachcell-type, and percentage of mES cell lamina- and nucleolus-associated
domain (LAD* and NAD*®, respectively) in mES cells are shown for comparison.
Thedensity of the change in ISRRPM, ISARPM, and melting scores are shown for
eachcluster (violin plots on right). Compartment changes are shown as bar
plots (lowerright).i, mES cell LAD association (defined as >50% of gene body
with feature) for genes with or without melting domains in brain cell types and
replicates. For DNsand OLGs, genes with domain melting were less likely to be
LAD associated in mES cells, compared to non-melting genes (Two-sided
Fisher’s exact test; **p <0.01, *p<0.001; p-values from left to right, p=0.001,
0.272,0.209,0.003,0.0001). j, mES celINAD association (defined as > 50% of
genebody with feature) for genes with or without melting domains inbrain
cell-typesandreplicates. For DNs and OLGs, genes with domain melting were
lesslikely tobe NAD associated in mES cells, compared to non-melting genes
(Two-sided Fisher’s exact test; *p <0.05, **p <0.01; p-values from left to right,
p=0.003,0.2720.209, 0.055,0.008).
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Extended DataFig.7 | Characteristics and mechanisms of domain melting
inlongexpressed genes. a, Contact density maps foreach celltype and
replicate, at the Nrxn3locus, calculated using insulation square sizes ranging
from100-1000 kb. Contact density isreduced in PGNs and DNs replicate

2 (R2),similar toR1but occurring inslightly differing regions of the gene.

b, Contactdensity maps for each cell type and replicate, at the Rbfox1locus.
Contactdensityisreducedin OLGs and PGNsR2, inthe same regionasR1.

¢, Ensembles of polymer models were produced for the Nrxn3locus in mES cells
andin DNs from experimental GAM data using PRISMR modelling (n=450).
The quality of the models was verified by applying in-silico GAM to the
ensemble of polymers and comparison between NPMI-normalized contact
matrices fromin-silicoand experimentalimmunoGAM (Pearsonr=0.72and
0.79 formES cellsand DNs, respectively). Colour bars below in-silico matrices
highlight the position of domainsin DNsand are used to colour the polymer
examplesshowninFig.3cand Extended DataFig.7d. d, Additional examples of
polymer models for the Nrxn3locus in mES cells and DNs. The Nrxn3 melted
TADisrepresented by thegreen colouredregionandis moredecondensedin

DNsthan mES cells. See Fig. 3¢ for location and colouring of the domains.

e, Distribution of gyration radii of alldomains in polymer models for

mES cellsand DNs (see Fig. 3c for location and colouring of the domains;
n=450, two-sided Mann-Whitney test between mES cells and DNs; dashed lines
indicate quartiles; ****p<0.0001; domains from left to right p=3.0e-151,
0.0005,1.1e-92,2.0e-147,7.3e-40,2.5e-67).f, Exemplarimages of whole gene
cryo-FISH for RbfoxI (green) in mES cells and PGNs, using probes that label

the whole gene. Nucleoli (purple) were detected by an anti-nucleophosmin1
antibody. Yellowinset of the ~400 nmsection shows asingle nucleus. Inset on
nuclear section (yellow box) with Rbfox1 FISH signal and each imaging channel.
Yellow outline indicates region of RbfoxI signal used for area measurement and
localization to nuclear landmarks. g, Exemplarimages of tri-colour cryo-FISH
for RbfoxITSS (teal), Mid (green) and TES (purple) in mES cellsand PGNs
(seeFig.3efor schematic). Yellowinset ofthe 400 nm section shows asingle
nucleus. Inset on nuclear section (yellow box) is shown for all three FISH
signals, and eachimaging channel separately. Yellow outlineindicates region
of RbfoxI signal used for center of mass distance measurements.
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Extended DataFig. 8 |See next page for caption.
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Extended DataFig. 8 | Melting genes oftenshow increased contacts with
their own chromosome. a, Melting genes are more likely to gainintra-
chromosomal contactsin PGNsand DNsR1, but not OLGs, compared to

meES cells (two-sided Wilcoxon rank-sum test; **p<0.01, ***p<0.001; p-values
fromlefttoright,p=0.003,0.0003, 0.329). Median trans-cis contact ratios
were calculated for each gene with domain melting in DNs, PGNs, or OLGs, and
compared tomES cells. b, Median trans-cis contact ratios were calculated for
each gene with domainmeltingin PGNs R2 or DNs R2. Median trans-cisratios
were significantly lower for PGNs and DNs R2 melting genes when compared to
mES cells (two-sided Wilcoxon rank-sum test; *p<0.05, ***p<0.0001; p-values
were p=0.037and 0.0003 for PGNs and DNs, respectively). ¢, Correlation of
median trans-cisratios for alllong genes (>300kb) in Rland R2 for PGNs or
DNs. InPGNs, median trans-cisratios were significantly correlated between
replicates, withahigh correlation value (Two-sided Pearson’s R product-moment
correlation; R=0.9, ****p < 2.2x107¢). DNs had a lower correlation, though the
correlation was still significant (R=0.16, ***p = 0.0005). d, Median trans-cis
contactratios were calculated for each gene without domain melting.
Non-melting genes show no preference for changes in trans-cis contact ratios
betweenbrain cellsand mES cells (two-sided Wilcoxon rank-sum test). e, The
RbfoxIlocus gains contacts with other chromosomes in PGNs, compared to
mES cells. Trans-cis contact ratios were determined by the mean ratio between
trans NPMIscores and cis NPMIscores (250kb genomic bins), and normalizing
eachratio asapercentile for each chromosome. Inset (grey shaded region)

showsa7Mbregion (Chrl6:3,000,000-10,000,000) containing the Rbfox1
gene (blue shaded region).f, Trans-cis contact ratios are shown for
chromosome12in mES cellsand DNs. Inset (grey shaded region) shows a7Mb
region (Chr12:85,000,000-92,000,000) containing the Nrxn3gene (green
shaded region). g, Median trans-cisratios for genes with melting domains,
separated by association with NAD association (defined as >50% of gene body
with feature). For DNs, median trans-cisratios were significantly decreased
when compared to mES cells, regardless of association with NADs (two-sided
Wilcoxon rank-sum test; *p<0.05, **p<0.01; p-values from left to right,
p=0.927,0.233,0.100, 0.010, 0.044,0.003). For PGNs, median trans-cisratios
were significantly decreased for non-NAD associated genes (**p<0.01), and
trending toward significance for NAD-associated genes, when compared to
mES cells (p=0.1). OLGs had nosignificant differences in median trans-cis
values forboth NAD associated and non-associated genes, when compared to
mES cells. h, Median trans-cisratios for genes without melting domains,
separated by association with NAD association (defined as >50% of gene body
with feature). NAD-associated genes had significantly lower trans-cis valuesin
allbrain cell types when compared to mES cells (two-sided Wilcoxon rank-sum
test; **p<0.01; p-values from left toright, p=0.002,0.205, 0.013,0.147,0.002,
0.911). For all brain cell types, non-melting genes that were not associated with
NADs had nosignificant differencesin median trans-cis values when compared
tomEScells.
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Extended DataFig. 9| Analysis of transcription factor bindingsites and
differentially expressed genesin GAM differential contacts between DNs
and PGNs. a, GAM contacts from PGNs and DNs (mouse replicate 1) were
normalized (Z-Score) and subtracted to produce differential contacts
matrices. Top 5% differential contacts ranged 0.05-5Mb. Contacts containing
TF motifs within accessible chromatin on each contactingwindow were
selectedinmost (top 5) enriched in PGNs or DNs or with highest discriminatory
power (information gain). b, Distribution of the number of ATAC-seq peaks per
50kb GAM window in DNs and PGNs (upper panel; mean(p) =2.6 and 2.0 in DNs
and PGNs, respectively). Number of base pairs covered by ATAC-seq peaks per
50kb GAM window in DNs and PGNs (lower panel; 1=1270 and 1326 in DNs and
PGNs, respectively). ¢, Correlation plot of cell type and replicates for
differential gene expression analysis. Pseudobulk replicates correlate most
highly with one another, followed by brain cell types. Right, heatmap of
differentially expressed (DE) genes between PGNs and DNs, clustered by cell
type.d, Selection of TF motifs based on percentage of TF motifsin accessible
regions within unique windows (> 5%) and differential expression between
PGNs (Benjamini-Hochberg corrected two-sided Wald test; log10(p. adj.) <3)
and DNs (-log10(p. adj.) > 3). PGN-selected TFs (33) are shown in blue, DN-
selected TFs (17) areshowningreen. Alist of selected TFs are shown below, with
TF motifs continuing after the TF enrichment analysis in (f) coloured in blue
(PGNs) or green (DNs). e, Full pipeline to determine pairs of genomic windows

in GAM differential contacts containing transcription factor binding sites’.
GAM contacts from PGNs and DNs were normalized and compared to produce a
differential Z-Score matrix witha 0.05-5Mb distance range. The top 5%
differential contacts with >0.15 NPMl values for each dataset were extracted
fromthe differential matrices. Accessible chromatin regions were mapped to
the top differential contacts. Next, TF motifs were filtered based on expression
inatleastone celltype. Accessible regions in differential contacts were used to
determine the percentage of TF motifs within unique windows. To find TFs with
the potential to drive contact specificity between DNs and PGNs, we chose for
further analyses the TF motifs that were found in DN or PGN accessible regions
within differential contacts which (1) were presentin atleast 5% of contacts,
and (2) the TFs were differentially expressed between DNs and PGNs (-log10
(p.adj.) >3). The 50 TFs which met the requirements were further investigated
to determine the frequency of each motif pair (TF feature pair) in PGN and DN
differential contacts. The top-20 TF feature pairs were selected for further
analyses based: (a) on Information gain score (top 10 feature pairs selected),
and (b) onenrichmentin either PGNs (top 5 selected) or DNs (top Sselected).

f, TF motif pairs selected by enrichmentscoresin DNs or PGNs, or by the
highestInformation gainscores. g, Overlaps of top 20 TF feature pair contacts
for PGN and DN significant differential contacts. The top 40 groups with
overlapping TF features are shown for each cell type.
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Extended DataFig.10|Features of top differential contacts containing
pairs of TF bindingssites. a, Percentage of contacts at each genomic distance
for top differential contacts found in TF feature pair groups. Contactsin all
groupsare enriched atdistances >2 Mb. b, Aggregated maps of average
Z-scores for TF-containing contact groupsin PGNs and DNs. The Z-Score was
determined foreach contactand a200kb (4 genomic bin) radius. For each
group, chromosome- and distance-matched contacts were randomly sampled
three times from the genome-wide distribution (one exemplar is shown for
eachgroup).c, Percentage of contacts (< 2Mb) that fall withina TAD border in
bothwindows, one window or no windows. For both cell types, most contacts
donotoverlapwith TAD borders, with aslight no differences detected for top
differential contacts found in TF feature pair groups, except amodestincrease
for contacts that have both windows with aborder for Ctcf-Ctcfcontaining
contactsinboth PGNs and DNs.d, Overlap of TF-containing contact groups
with compartmentidentity in each contacting window. For both cell types,
TF-containing contact groups were more likely to be in A-compartmentin
both contacting windows, compared to the genome-wide average and all top
differential contacts. e, TF motif network and community analysis. After
determining the number of contacts for each TF pair, only pairs involved
in>20% of total TF-containing contacts were considered. A network was built
witheach TFasanodeand contacts as the edge weight. Community detection

was performed using a Leiden algorithm, before visualizing the network.
f,Network analysis and community detection for TF motifs found within DN or
PGN differential contacts. g, Overlap of TF-pair containing contacts with1000
random circular permutations of PGN and DN expressed gene regions shows
thatthe observed enrichments of contacts with genesinboth windows are
significantly higher than the expected distribution (two-sided t-test;
***empirical p=0.001for all observed values tested). The enrichments were
alsoseen, tosmaller degree than for the TF-pair containing contacts, for all
contactsbetween A-compartment windows. h, Number of PGN or DN
differentially expressed (DE) genes found in differential contacts according to
sets of TF feature pairs. i, Differential Z-Score matrix showing PGN-upregulated
genes that form contacts across a-4.5-Mb linear genomic distance (pink box;
Chrl1:65,400,000-70,400,000). Upperright inset shows PGN significant
differential contacts containing the Neurod group (contacts are shown in pink).
Genes highlighted inblue are upregulated in PGNs. j, Differential Z-Score
matrix showing DN-upregulated genes that form contacts acrossa-5-Mb linear
genomicdistance (pink boxes; Chrl:160,000,000-166,000,000). Upper right
inset shows DN significant differential contacts containing the FoxaI-TF group
(contactsare showninorange). Genes highlighted ingreenare upregulatedin
DNs. k, GAM contact matrices showinga2.3-Mbregion surrounding the Egr1
gene for PGNsR1and R2(Chr18:33,700,000-36,000,000).
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Extended DataFig.11|Identification of compartments and differences
between celltypes. a, Openand closed chromatincompartments (AandB,
respectively) display different genomic distributions in mgS cells, OLGs, PGNs
and DNs. Mousereplicates1and 2 (R1and R2, respectively) are shown. Purple,
compartmentA; orange, compartmentB. b, Comparison of compartmentA/B
membershipin GAM datasets from PGNs and DNs and their replicates.
Compartment changes show good overlap betweenreplicates. Purple,
compartmentA; orange, compartmentB. ¢, Pearson’s correlation of
eigenvectors shows the largest differences between mES cells and brain cell
types.d, UpSet plot showing all combinations of compartments changes Most
genomic windows share membership tocompartments A, followed by B, in all
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celltypes. The most frequent compartment changes occur from compartment
BinmES cellsto Ainallbrain cells (pink box), followed by changes from Ain
mES cellstoBinall brain cells (blue box). e, Compartment changes for each cell
type comparisonineach chromosome. Only compartments common to both
replicates were used in the comparison. Brain cell types have higher overlap
with eachother ascompared to mES cells. PGNs and DNs had the most overlap
for most chromosomes. f, Violin plots of the distribution of compartment
lengths show similar lengths between cell types. Right, percentage of the
genome covered by Aor Bcompartmentsin each cell type shows similar
distribution between celltypes.
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g Cell-type specialization of 3D genome topology in the brain
i. Contact density changes ii. Domain melting iii. Networks of TF binding sites iv. Strong B compartments contain
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Extended DataFig.12|See next page for caption.



Extended DataFig.12|Genomicregionsinvolved instronglong-range
contactsinbrain cellsregions containsensoryreceptor clustersinB
compartments. a, Heatmap of gene expression for genes that change
compartments between compartment Bin mES cells to compartmentAin all
braincells. Clustering of genes by expression shows six distinct clusters where
clusters3and 4 containgenes thatincrease their expression between mES cells
and all brain cell types. Gene ontology (GO) in Fig. 5a was done on genes from
clusters3and 4 combined (pink box). Expressionis calculated as the R-log value
foreachcelltype (see Methods). b, Heatmap of gene expression for genes that
change from compartment A in mES cells to compartment B in brain cells.
Clustering of genes by expressionidentifies five clusters. Genesincluster 4 are
expressed in mES cells and show lower expressionin the brain cell types; they
were used for GO analysis presented in Fig. 5a (light blue box). Genesin clusters
2and3arenotexpressed in mES cells nor brain cells; they were combined and
used for GO analyses presented in Fig. 5b (dark blue box). Expression s
calculated asthe R-log value for each cell-type. c, A higher proportion of Olfr
and Vmn genes are found in Bcompartments in brain cells, compared to

mES cells.d, GAM contact matrices show interactions between an Olfr/Vmn
gene cluster and asecond Olfr cluster (dashed boxes) separated by 25 Mb (Chr7:

80,000,000-110,000,000). The contacts between the two receptor clusters
arestrongestin OLGs, where the Bcompartmentis strongest. e, GAM contact
matrices show strong interactions that spana30Mb distance between
compartment B regionsin OLGs, PGNs and DNs (purple circle), but not

mES cells (Chr7:52,000,000-95,000,000). Dashed boxes indicate contacts
containing Olfrand Vmn gene clusters. f, Distribution of the top 20% of Z-Score
normalized contacts for each genomic window at distances >3 Mb (Two-sided
Mann-Whitney U test; exact p-values are indicated on the plot). g, Summary
diagram. The 3D genome is extensively reorganized inbrain cells to reflectits
gene expression specialization. (i) Contacts are rearranged at multiple scales,
where formation of new TAD borders can coincide with genesimportant for cell
specializationinall cell types. (ii) Domain melting occurs at very long genes
which are highly transcribed and with high chromatinaccessibility in brain
cells. (iii) The most specific contacts in neurons contain complex networks of
binding sites of neuron-specific transcription factors. Contacts bridge genes
expressedinthe neurons where the contacts are observed, with specialized
functions, such asinsynaptic plasticity (PGNs) and addiction (DNs). (iv) Finally,
B compartments contain clusters of sensory receptor genessilentinall cell
types which formstrong contactsacross tens of megabases.
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Reporting Summary

Mature Research wishes to impreve the reproducibility of the wark that we publish. This form provides structure for consistency and transparency
in reporting. For further Information on Mature Research polides, see our Editorial Pallcies and the Editorial Palley Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the ﬁgure legend, table legend, main text, or Methn-d.s section,
Confirmed

E The exact sample size (n) for each experimental group/condition, given as a discrete number and unlt of measurement

{4 A statement on whether measurements were taken f-om distinct samples or whether the same sample was measured repeatedly

& The statistical test(s) used AND whether they are ane- or two-sided
Y Ginly comman tests showld be described solely by name; describe mare complex techniques in the Methods section,

| ] Adescription of all covariates tested
<] A deseription of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

4 A full description of the statistical parameters Including central tendency (e.g. means) or other basic estimates (e.g. regrassion coefficlent)
AND variation {e.g. standard deviation) or associated estimates of uncertainty (e g confidence intervals)

E For null hypothesis testing, the test statistic {e.g. F, t, r) with confidence Intervals, effact sizes, demes of freedom and P value noted
Give P values as exact volues whenever sultable,

fj For Bayesian analysis, Information on the choice of priors and Markov chaln Monite Carlo settings
E For hierarchical and complex designs, identification of the appropriate fevel for tests and full reporting of cutcomes
E Estimates of affect sizes (s.g. Cohen's d, Pearson's r), indicating how they were calculated

tiur weh calfectinn on stetistics for Blologists cortains orticies on mony af the soinks abave.
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Software and code

Paolicy information about availabilivy of computer code
Data collection  Leica Laser Microdissection vE.2; Laica Application Suite X v3.5.5.19976; BD FACSDiva v8.0.2

Data analysis bedtmols v2.29.2; UpSetR v1.4.0; Seurat v3.1.4; samtoots vi.3.1; deeptools v3,1.3; DESeq2 v1.24.0; bowtie? v2.3.4.3; 10x Genomic Cellranger
v1.2.0; ArchA w03, 1; GanomicAlignments v1.20.1; Regulatery Genomics Toalbew v0.12.3; lelden’ package w.3.3; STAR v2.4.2a, RSEM v1.2.25,
Ea3-utils v1.1.2-537, Picard-vools vZ.5.0; Sambamba vi.6.6; GOEite vi2.4; LAMMPS, v.5june2019; Anaconda package v.4.7.12; POV Ray v.3; Fili
software v2.0.0-rc-691.52p; Adobe Phetoshop CS6; UCSC utilities http://hgdowninad.soe ucsc.edu/adminfexe/; MELTRON and trans-cls
contact ratio pipelines were depasited in hitpsy//eithub.com/pomba-lab/Matiron; custom python and R seripts for GAM window calling, GAM
guality comtrol, GAM genome sampling quality and resolution, production of NPMI matrices, aggregated maps, k-means clustering, calculation
of insulation scare and compartment calling were depesited in hitps://github.com/pombo-lab/WinickiNg_Kukakey_ Harabula_Mamre_3021

For manuscripts ukilizing custom algorithms or software that ane centrs! to the research but not vet described in pubiished Fersture, software must be mede evallable te editors end
revlewers. We srongy encourage code deposition in @ cormmunity regositony [e.g. GitHui). See the Natura iﬁeatﬁuﬁmi&_mhmmzmm For Further inlormetion,

Data

Policy information about ayallability of data

All manuscripts must include a data availability staterment. This statement should provide the following information, where applicable:
- Acoession codes, unique ientifiers, or web links Tor publicly avaeilable datasets
- & list of figures that have assoclated raw data
= A description of any restrictions on data avaliability

Farw fastq sequencing files for all samples from DN, FGM and OLG GAM datasats, together with non-narmalizad co-segregetion matrices, normalized pair-wisa
chromatin contacts maps and raw GAM segregation tables are available fram the GED repasitory under accassion number GSE04364. Raw fastg sequencing files for
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MESE GAM datasess are available from 40N data portal {https:{fdata.ddnucleome arg/}. The 40N sample 105 for gll samples used in the study are available In
supplemental Table 1. 3

fiaw confocal and laser microdissection images, a5 weli as images and ROLs for cryo-FISH experiments are available at: hitps://github.com/pombo-lab/
WinickNg_Kuksley_Harabula_Nature_2021/tree/maln/microscopy_images/.

Raw single cell mESC transeriptome data are available from ENA data portal {httpsywww_ebl ac.uk/ena/browser/home). The ENA sample s for afl samples used in

the study are avallable in Supplemental Table 13. Raw single cell and bulk ATAC-seq bam-flles for ONs and mESCS, respectively, are available fram the GED
repository under accesslon number GSE174024, together with processed bigwig flles. A public UCSC session with all data produced, as wall 25 all published data
wtifized in this study Is available at: hitp://genome-sura.ucss.edu/s/Kimarrs Winick_Ng_2021_SAMbrainpublicsession.

UCSC Table browsar: hrtp://genome. ucsc edu/egl-bin/heTables; ERCCs: hitps:/fwww. thermofisher.com//order/catalog/product/4456735;

Call ranger refdata-cellranger-atac-mm10-1.2.0: https:/fsupport.10ngenomics.com/single-cell-atac software/pipelines/latest/advanced/referencestoverview;
HOCOMOCD database vi1: https:/fhocomocollautosome.ny

Field-specific reporting

Please select the one below that s the best fit for your research. If you are not sure, read the appropriate sectlons before making your selection.

X Life sciences " [] Behavioural & social sclences [ | Ecological, evolutionary & environmental sciences
Far 2 referance copy of the document with &)l sections, see nature com/docy ments/ar-repering-semmary-fat.ogf

Life scieqpeé study design

Al studies must disclose on these points even when the disclosure |s negative.

Sample size The appropriate number of samples far a GAM dataset veries and depends on multiple parameters such as ruclear volume, level of chromatin
compaction, quality of DNA extraction, ete. Since most of these parameters can be assessed only after the data has been cotlected and
processed, we recammand that the optimal resclution is defined during the collection of each GAM dateset, rether than trylng to estimate
optimal sample size before data collection. GAM data can be collected in multiple batches from the same starting material, therefore the
sample size can be increased untlt the desired resolution is achieved.

Aesolution ks determined by comparing the distribution of iIntra-chromaosomal co-segregatian frequencles for all pousible pairs of lociata
given resolution, using the standard Poissan distribution. In case multiple datasets from different samples are anaiyzed together, we
recommend choosing the highest possible resolution appropriate for every dasaset involved in the analysis. In the present study, we
measured co-segregation frequanches for all GAM datasets, finding that 98.5 - 99.9% of all meppable pairs of windows were sampled at least
once at 50 kb resolution considering all genomic distancas. The serlpt to test the quality of genome sampling at given resalution was upleaded
to GitHub (Ftipsy/ Eithub.com/pombe-labWinickig_Xukalev_Harabule_Mature_2021/blob/main/code/GAM,. define.warking.resslutlen.py).
For single call ATAC-zeq dats, no statisticsl mathed was used to predetermine sampla size, & in https:/www.nature.com/articles/
541593-018-0073-3proaf=t :

For scANA-seq (MESCs), na statistical mathed was used to predetermine sample size. Librarles ware generated twice, fram mESCs from
different biologieal repllcetes, 1o account for experimental variability, 3

Data exclusions  The quality of individual GAM libraries was determined using a comblnation of several quality metrics: clustering of positive windaws,
sequencing depth and lack of sample contamination. Due to the nature of genome sampling by ulirathin oyosectioning, good quallty positive
windows are expected to cluster pext to each gther, while nolsa is expected 1o behave randomiy and net cluster on the linear genome
sequence, Pasitive windows in low quality GAM samples (i.e. from the water conzrols, or sampbes not amplified during the whole-genome
amplification reaction] often do not cluster with ather pasitive windows, termed "orphan windows®. I this study, an individua! GAM sample

_was considered to be of good quality i it had < 70% orphan windows, = 50,000 uniquely mapped reads and no sign of cross-well
contamination, a5 determinad by low Jaccard Index score fo the distribution of positive windows in all samples processed at the same time.
For single-cell ATACseq (midbrain VTAL single calls were considered of dow quality {and remaved from the analysig) if TS5 enrichmant score
was < 4 and there ware < 2500 unigus fragments per cefl. After processing of raw data and ciustering, the DN population was (dentifiad (ses
Methods) and single-cell IDs ware extracted, ATAC-seq fragments derhved from ON single-cells were subset from the original ¥TA position
sorted BAM file and grouped into a3 subset containing only DM fragments. The subset file was uploaded 1o GED (GSE174024).

Far scRiA-seq (mESCs], lbraries were excluded from the analysls i they were derved from cells that appeared as debris or doublets/

multiplets upon visusl Inspections of the C1 chip, or If the libraries appeared as outliers in number of sequencing reads ar mapping statistics,
a5 fully detailed in the Methods section.

Replication For the twa neuranal call types, single animal replicates were produced and had simitar results in all matrics tested. Variations in replicates
ara reported through the main and supplemental data.

Randomization  Randomization was not relevant to our study. The expariments and the subsequent analysis were performed on wild type animals or cel! lines,

whara no {reatment or disease comparison was performed. As described in the Methods section, our samples wers processed in diffarent
- labs by different people. There was no selection criteria for the wild type mice used in the study.

Blinding Blinding was not relevant to our study, We did not perform clinical trials, nor compared disease models er different treaoments. As described

in the Methods saction our samples were processad in different labs by different people. There was no selection criteria for the wild typa
mice used |n the study. :

Reporting for specific materials, systems and methods
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We reguire [nformation from authers about some types of materials, excerimental systems and methods used in many studiat. Here, indicate whether gach material,
g . t T E & 3 &
system or meshod listed & relevant to your study. if you are not sure if a list [zemn applies to your research, read the appraprlate sectlon before selecting a responsa.

Materials & experimental systems Methods

nfa | involved In the study nfa | involved in the study

(1134 Antibodies B[] chip-seq

1|5 Eukaryotic cell lines 71|34 Flow cytometry

3|1 Paleeontoiogy and archaeslogy | [] mAi-based neurnimaging

[11[€ Animals and other organisms

)| [] Humen research participants

B[] Clintcal data

E ||'_""| Dual use research of concern

Antibodies -

Antibodies used Pel-Fraaz Arkansas, Catalog number PEC10L-0; Sheep anti-tyrosine Hydrawylase, Lot number ajol217p;
Merek, Catalog number MAB3422, Mouse antl-pan-histane, clone H11-£, Lot number 2842169; .
Abcam, Catalog number ab13%70 Chicken anti-GFP; Lot number GRIZEE51-21;
invitrogen, Dankey anti-sheep g, AlexsFleor-488, Catelog number 4-11015;
mouse anti-nucleophasmin B23 was a kind gift from Harris Busch;
Abcam, Goat anti-chicken i, Alexafluor-428, Catalog number ab150169;
Imvitrogen, Dankey anti-mouse Ig, AleeFlucr-488, Catalog number A-10035;
Invitrogen, Donkey anti-moyse Ig, AlexeFluor-555, Catalog number A-32773;

Hn;'alldaﬂan Pel-Frear Arkanzas, Catalog number FS0101-0, Sheep anti-tyrosine Hydrengylase, Lot number ajal1217p - validated by Western blot in
rat caudate lysate [hitpsy/ww. peffrees-bio com wp-content/uploads,/2014/07,/74041-PD5-PE0101-Tyrosine-Hydraxylase-Antibody-
sheep-Aev-02.pdf)

Marck, Catalog number MAB2423, Mouse anti-pan-histone, clone H11-4, Lot number 2842163 - validated by Westem blot on jurkat
tysates (https:/www.merckmillipore.com/DE/de/producy/anti-Histone-antibody-clone-HL1-4,MM_NF-MAB3427 FRefereruRL=https
HIAMIFHIFPwww googhe.com¥2 F&bd=1#anchor_Product¥20irformation)

Abeam, Catalog number ab13970, Chicken anti-GFP; Lot number GR236651-21 -validated by Western blot in whole cell Tysates of
mouse cardiomyocybes overexXpressing a GFP plasmid (https://www.abcam.com/GFP-antibody-ab13970, htmiPgelsm=aw.ds|

aw dsEgrlid=CiwkCAwmeilBhABEwA-uaeFVTDLhCilj2h-NEFOF k{1 nn-BBUPICHCP4)c)CTMYSHKInrEpETFBoCekLICAVD_BWE)

matse anti-nucleophasmin B23 was valldated by western blot in Hela nuclear extract [Valdez, B.C,, et al. Identification of the Nuclear
and Mucleelar Localizztion Signals of the Protein pl20, 1. Biol. Chem. 269, 23776-23783 (1934))

Eukaryotic cell lines

Palicy infermation about cell lines

Cell line source(s) The mousa embryonic stam calls clone 45C derived from El4tgia cells were provided by Or. Domingos Henrique from
Institute de Medicine Moleculer, Feculdade Medicina Lisbas, Lisbon, Portugal

Authentication 4EC E14tg7 mESCs 2ra not listed in the ICLAC Registar of Mizidentifiad Cell Lines, The 46C E14tg2 mESC line was generated by
insertion of an eGEE cassette under the contral of the Soxl-promater in E14 1g2 cells, Reads aligned with GFP sequence wers
|dentifled In the GAM segquencing data from mESCs. Additionally, genome sequencing data from GAM mESC samples was
rrined for SMPs, Though Gan sequencing reads are sparsely distributed across the genome, there was a 54% overlap of GAM

mESC SNPs with SNPs identified from the parental E14%2 genome secuencing data [hitps,fwww.onebinlm.nib.gov/sa?
DRMM=SRX3BL523),

Mycoplasma contamination The cells were negative for Mycoplasma contamination. The Myzoplasma test was performed according to the
manufacturer's instructions {AppliChem Cat#A3744 0020}

Commonly misidentified lines  no commenly misidentified celllines were used in the study (45C £14tg2 MESC are nat listed In the ICLAC Register of -
(5ee JCLAC register) misidentifled cell ines htps:ficlac.org/databases/ cross-contaminations/)

Animals and other organisms

Palley Information about studles involving animals: ARRIVE guidelines recommended for reporting animal research

|aboratory animals All animals used in this study were fram the specles Mus musculys,
Tha fallowing mousa straing were used:
- CSTBLGNI (RRID: IMSR_CR-027; W) for snATAC-seq experments mice, adult male, ages 7 and 9 weeks;
CS7BL/6NI mice were housed in 3 tempareture contredled roem at 22+2°C with humidity of 55£10% In Individualfy vantilated cages
with 12-hours light/12-hours dark cycles with free access to foed and water ad libitum. :
- CSTBISNCr] {RRID: IMSS_CR:027; WT) for GAM experiments, mice purchased from Charles River, adult male, 2-3 months old;
- TH-GFF mice (B6.Cg-Tg(TH-GFP)21-31/C578E], adult male, 2-3 manths ald;
C57Bl/aNCr and TH-GFP mice had accass to food and water ad libitum and were kept on 8 12 h:12 hday/right oydle at 20-23"C at



458% [+/-5%) humidity.

« Sonrl 0o Cre-RCE - lowP-EGFP animals were obitained by crossing Sox10::Cre animals on 2 C57BLAG] genetic background with RCE::lexP-
EREP animals on & CS7BL/BXCDL mixed genetic background, both mouse lines available from The Jackson Laborataories, Adult male,
sacrificed at P21. The mice racehved regular chew diet [either R70 diet or R34, Lantmannen Lantbruk, Swedan, or CRM-P, 801722,
$pecial Diet Services). General housing parameters such as relative humidity, temperature, and ventilatian foltaw the European
conventlen for the protection of vertebrate animals used for experimental and other scientiflc purposes treaty ETS 123, Briefly,
consistent relazive air humidity of 50%, 22 *C and the alr guality is controlled with the use of stand-alone air handling units
supplemented with HEPA filtrated 2ir. Maonitoring of huskendry parameters i dane using SeanClima [Scanbur) unlts, Water was
praviced by using & water bottle, which was changed weekly.

- Sath2flox/flox mice that carry the flesed exon 4 of the 5atb2 gene have been generated by micrainjection of embryonic stem cells
clote Satbz_GO7, IME.NE subline from KOMP repository, into blastooysts front CS7BY/SNCr (RRID: IMIEA_CR:037; WT} mice,
purchased fram Charles River. Adult males, sacrificed at 19 waeks otd. All mice had accass to food and water ad libitum &nd were
kept an 8 12h:12 hday/night cycle at 2.5 *C {+/-1°C) at 55% {+/-10%) humidity.
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Wild animals Mo wild animals were used In the study

Fleld-collected samples  No fleld-collectad samples were used in the sody

s Bun.odsy |

Ethics oversight Experimantal procedures invaiving C57BL/SNI were approvad by the regulations of local animal care commiitee (Landesamt fir
Gasundhelt und Saziales, Berlin, Germany) and follow the Directive 2010/63/EU of the European Parlisment on tha protection af
amimals used for sclentific purposes, organ preparation was done under [lkense X3014/11.

Experimental procedures Invalving C57BI/ENCH and TH-GFP animals were appraved by the imperial College Londan's Animal Wetfare
and Ethical Review Body.

experimentsl procedures invalving Sox10:-Cre-RCE:loe-EGFP animals were performed following the Europesn directve 2010/53/
EU, local Swedish directive L150/5/VF5/2019-8, Saknr 1150 and Karolinska institutet complementary guidalines for procurement and
use of laboratary anlmals, Dnr 1937/03-640, The procedures described were approved by the local committee for ethical
experiments on |aboratory animals In Sweden {Stockholms Marra Djuriérsfksetiska ndmnd], lic.nr. 130/15.

Experimental procedures immohving Satoizflow/flox mice were done according ta the Austrian Animal Experimentation Ethics Board
{Bundesministerium fir Wissenschaft und Verkehr, Kermmission fir Tierversuchsangelegenheiten}

Mate thet full information on the approval of the stedy protocol must also be provided in the manuscript.

Flow Cytometry

Plots
Confirm that:
[ The axis labels state the marker and fluorochrome used {e.g. CD4-FITCL
(] The axis scales are clearly visible. Include numbers slong axes only for bottom left plot of group {a 'group' s an analysis of identical markersi.
5. Al plots are contour plots with outliers or pseudocolor plots.

B¢ A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Male CS7RIfEN] [RRID: IMSR_CR:027; WT} mice, ages 7 and 3 weaks, were sacrificed by cervical dislocatian. Brains ware
ramoved and the tissue contalning the midbrain WVTA wes dissected from each hemlsphere at room temparature and rapidiy
frozen on dry ice. Frozen tssue was homogenized in 500 micrel 0.1X bysis bautfer (10 mb Tris-HCl, pH 7.4, 10 mM MaCl, 3 mM
MgCI2, 1% BSA, 0.01% Tween-20, 0.01% Monides P40 Substitute 0.001% Digitenin). Chiliad wash buffer (S00mizred, 10 mk
Tris-HCI, pH 7.4, 10 mM Nacl, 2 mi MaCl2, 13 254, 0.1% Tween-20) was added to the lysed cells, and the suspenslion was
passed through 30 micrameter CallTrics strainers {Th Geyer, cat# TBAET7S]. The final ~500 micrel nuchel suspension was
stained with DAPI (final concentration 0.03 microg/mL] for ~5 min.

Instrument BD FACSArla Il Flow Cytometer
Software BD FACSDiva v B.0.2
Cell population abundance ‘Target papulation (intact nuckl} abundance was between 1-5% (see Extended Data Figure 4h-)

Gating strategy & first gete excluded debris in a FSC/55C-plat and 2 cansecutive, secand gate in a DARI-A/DHARI-H-piot was used to exclude
doublets and nuchei with incomplete DNA content.

[5<] Tiek this bax to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Infarmation.
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