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Abstract

Background Cachexia is a multifactorial syndrome highly associated with specific tumour types, but the causes of variation in
cachexia prevalence and severity are unknown. While circulating plasma mediators (soluble cachectic factors) derived from
tumours have been implicated with the pathogenesis of the syndrome, these associations were generally based on plasma
concentration rather than tissue-specific gene expression levels. Here, we hypothesized that tumour gene expression profiling
of cachexia-inducing factors (CIFs) in human cancers with different prevalence of cachexia could reveal potential cancer-
specific cachexia mediators and biomarkers of clinical outcome.
Methods First, we combined uniformly processed RNA sequencing data from The Cancer Genome Atlas and Genotype-
Tissue Expression databases to characterize the expression profile of secretome genes in 12 cancer types (4651 samples)
compared with their matched normal tissues (2737 samples). We systematically investigated the transcriptomic data to assess
the tumour expression profile of 25 known CIFs and their predictive values for patient survival. We used the Xena Functional
Genomics tool to analyse the gene expression of CIFs according to neoplastic cellularity in pancreatic adenocarcinoma, which is
known to present the highest prevalence of cachexia.
Results A comprehensive characterization of the expression profiling of secreted genes in different human cancers revealed
pathways and mediators with a potential role in cachexia within the tumour microenvironment. Cytokine-related and
chemokine-related pathways were enriched in tumour types frequently associated with the syndrome. CIFs presented a
tumour-specific expression profile, in which the number of upregulated genes was correlated with the cachexia prevalence
(r2: 0.80; P value: 0.002) and weight loss (r2: 0.81; P value: 0.002). The distinct gene expression profile, according to tumour
type, was significantly associated with prognosis (P value ≤ 1.96 E-06). In pancreatic adenocarcinoma, the upregulated CIF
genes were associated with tumours presenting low neoplastic cellularity and high leucocyte fraction and not with tumour
grade.
Conclusions Our results present a biological dimension of tumour-secreted elements that are potentially useful to explain
why specific cancer types are more likely to develop cachexia. The tumour-specific profile of CIFs may help the future devel-
opment of better targeted therapies to treat cancer types highly associated with the syndrome.
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Introduction

Cancer cachexia is a multifactorial syndrome characterized by
muscle wasting, leading to a significant weight loss that
impacts patient’s quality of life, tolerance to treatment,
response to therapy, and survival.1–5 The syndrome affects
up to 80% of advanced cancer patients, and it represents
the cause of 20% of all cancer deaths.6 Cachexia is highly
associated with specific tumour types such as pancreatic,
oesophageal, gastric, lung, and liver, and similarly, patients
with these malignancies have the highest degree of weight
loss.7–12 The aetiology of cancer cachexia in different tumour
types involves complex and specific tumour–host interactions
that remain to be completely elucidated. The combinatorial
action of soluble secreted mediators (secretome) by cancer
cells and cells within the tumour microenvironment, including
many pro-inflammatory cytokines, contributes to systemic in-
flammation and directly acts on skeletal muscle to induce
wasting.12–15 Consequently, the efforts to identify mediators
and biomarkers have been centred on the levels of cachectic
factors from plasma.16–21 However, it remains unclear
whether these factors circulating in the blood are derived
from the host or tumour secretome. In addition, the extent
to which these secreted factors associated with cachexia
are expressed by different tumour types and which are the
most ubiquitously expressed in different cancer sites have
yet to be determined. A comprehensive characterization of
the gene expression profile of cachexia-inducing factors (CIFs)
has the potential to reveal tumour secretome transcriptional
patterns, which may help to explain the variation on preva-
lence and severity of cachexia within and across human
cancers.

Transcriptomic approaches have been applied to unravel
the secretome of a specific cell or tissue types.22 In a pioneer
genome-wide study based on microarrays, Welsh et al.23 de-
scribed 74 overexpressed genes encoding secreted proteins
in human cancers. Despite the reduced number of genes pre-
dicted as encoding secreted proteins and the relatively low
number of tissue samples surveyed in this study, a significant
fraction of these overexpressed secretome genes in carcino-
mas was found to be dysregulated in cancer or having
demonstrated applications in cancer diagnosis and therapy.
The advent of RNA sequencing (RNA-Seq) has revolutionized
the transcriptomic studies and enabled researchers a better
understanding of the genetic mechanisms underlying human
diseases, especially in cancer.24–26 Therefore, RNA-Seq
followed by newly emerging algorithms for signal peptide
predictions have become useful tools for profiling the
secretome22 and have revealed that a larger fraction of
human tissue-enriched proteins is secreted.27 Based on this
knowledge, Robinson et al.28 conducted a pan-cancer analysis
of secretome gene expression that resulted in ranked lists of
candidate diagnostic biomarkers detectable in biological
fluids. This investigation also revealed the patterns and

biological functions associated with changes in secreted pro-
tein expression in different tumour types, focusing mainly
on a ‘core’ secretome. This strategy reduced the complexity
of the secretome by narrowing the range of secreted mole-
cules necessary to explore fundamental questions underlying
altered secretome expression in different cancer types. How-
ever, the secretome complexity is still far from being
completely understood and selecting different methodologi-
cal strategies or specific tumour types might lead to new
insights into its biological function.

The pan-cancer studies integrate different levels of molec-
ular data to comprehensively identify the similarities and
differences in single or different tumour types.29 Here, we
compared the expression profiles and functions of secreted
proteins in 12 tumour types with different prevalence of ca-
chexia. We hypothesized that tumour gene expression profil-
ing of CIFs could reveal potential cancer-specific mediators
and biomarkers of clinical outcome. To test this, we first com-
bined uniformly processed RNA-Seq data from The Cancer
Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx)
databases to characterize the expression profile of secretome
genes. These data sets allowed us to comprehensively charac-
terize the expression landscape of genes encoding predicted
secreted proteins in human cancers and revealed potential
mediators of cachexia within the tumour microenvironment.
Next, we focused on the transcriptomic data to assess the tu-
mour expression profile of 25 known CIFs and their prognos-
tic value in terms of predicting patient survival. Interestingly,
we detected a tumour-specific expression profile of CIF. The
number of upregulated cachectic factor genes in tumour
compared to normal tissues was strongly correlated with
the prevalence of cachexia and weight loss. We identified
the expression of tumour cachectic factors genes relevant
to cancer biology, which may help to elucidate why specific
cancer types are more prone to develop cachexia.

Methods

The Cancer Genome Atlas and Genotype-Tissue
Expression transcriptomics data sets

Transcriptional profiles from TCGA (https://portal.gdc.cancer.
gov/) of 12 human cancers were compared with matched
normal tissues from TCGA and GTEx30 (http://www.
gtexportal.org/). We used RNA-Seq data uniformly processed
and unified by the Toil Pipeline,31 via the web-based tool
Gene Expression Profiling Analysis32 (http://gepia.cancerpku.
cn/). A similar strategy was previously described in pan-
cancer studies,33,34 and their comparability findings demon-
strated that TCGA and GTEx expression profiles could be
collectively analysed. Differentially expressed genes between
tumour and normal samples were determined by one-way
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ANOVA applying the statistical cutoffs of log2 fold change> 1
and q value < 0.01.

Transcriptome-based secretome analysis

Differentially expressed genes were further filtered for se-
creted protein-coding genes based on the human secretome
list available at The Human Protein Atlas27 (https://www.
proteinatlas.org/humanproteome/secretome), which was
predicted by a whole-proteome scan using at least two of
the three following methods for signal peptide prediction:
SignalP4.0, Phobius, and SPOCTOPUS. Shared upregulated
secretome genes among all tumour types were displayed
using Circos35 (http://circos.ca/). The Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway and Biological Process
(Gene Ontology) analyses of the deregulated secretome
genes were performed with EnrichR links36,37 (http://amp.
pharm.mssm.edu/Enrichr/), and the enrichment result is
represented by P value (Fisher’s exact test) and Z score
(correction to the test) in a combined score computed by
EnrichR.36,37 The KEGG pathway and Biological Process terms
were included in an integrative analysis using the criterion of
over-representation (log2 combined score> 2) in at least one
tumour type. The set of CIFs detected and enriched in the top
10 Biological Process terms are displayed through an alluvial
graph generated using the online tool http://sankeymatic.
com/.

The cachectic soluble factors gene expression
profile in 12 tumour types

For messenger RNA profiling of cachectic soluble factors, we
selected 25 transcripts coding for soluble factors associated
with cachexia. These transcripts were previously selected
for blood screening by a multiplex array platform in pancre-
atic cachectic patients16 (Supporting Information, Table S1).
The number of upregulated transcripts was correlated with
the prevalence of cachexia and average weight loss for each
tumour type obtained from previous studies.8,11 Although
our data set may not represent the entire range of cachexia
variation for all the 12 cancer types analysed, these selected
data provided numbers with potential correspondence in
cachexia studies. We calculated the Pearson’s correlations
coefficient (r) with corresponding P values for the covariation
between the number of differentially expressed CIFs from
TCGA data sets (tumour tissues vs. matched normal TCGA
and GTEx data) with the prevalence of cachexia and percent-
age of weight loss. We considered significant correlation
when P value < 0.01 and r2 value ≥ 0.8. The correlation
analysis was performed using the software GRAPHPAD PRISM

(GRAPHPAD PRISM 6).

Tumour purity analysis

We collected the pancreatic adenocarcinoma (PAAD) clinical
and tumour purity information from TCGA Research Net-
work.38 The expression levels of 25 CIF genes were analysed
using unsupervised clustering approaches, according to the
neoplastic cellularity of PAAD (high-purity vs. low-purity
tumours). The Xena Functional Genomics Explorer tool was
used to collect the gene expression information, using
normalized data by the upper quartile method represented
as log2 norm_count z+ 1 (http://xenabrowser.net/).
Morpheus (https://software.broadinstitute.org/morpheus)39

was used to cluster the expression profile of the 25 CIFs in
PAAD samples according to neoplastic cellularity data (leuco-
cyte methylation percentage, tumour DNA hypermethylation,
and purity class) and tumour grade.

Survival analysis and risk assessment

SurvExpress40 (http://bioinformatica.mty.itesm.mx/
SurvExpress) was used to determine the risk assessment
and perform a survival analysis of 12 TCGA cancer data sets.
This online tool allowed us to assess the tumour gene expres-
sion of all 25 pro-cachectic factors simultaneously and
analysed their association with the survival of cancer patients
by Cox proportional hazard regression in high-risk and
low-risk groups, as determined through the SurvExpress
optimization algorithm. This analysis was performed without
considering other clinical characteristics rather than survival.

Data representation and analysis

Correlation analysis and bar plots were constructed with
GRAPHPAD PRISM (GRAPHPAD Software). Venn diagrams were
plotted using the web server http://bioinformatics.psb.
ugent.be/webtools/Venn/. Heat maps and principal
component analysis plots were created using the web tools
ClustVis41 (http://biit.cs.ut.ee/clustvis/) and Morpheus39

(https://software.broadinstitute.org/morpheus).

Results

The secretome genes show differential expression
profiles across human cancers

Gene expression profiles were obtained from 4743 tumours
comprising 12 cancer types (TCGA) and 2737 corresponding
normal tissues (TCGA and GTEx). These tumours were
selected to allow a comparison between cancer types ranging
from high to low prevalence of cachexia and weight
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loss.8,11,12 The summary of the number of TCGA and GTEx
samples is described in Table S2.

Differentially expressed genes were filtered for those
genes previously predicted to have at least one secreted
protein by the Human Protein Atlas27 (Data S1). This analysis
revealed 2162 out of 2933 Human Protein Atlas differentially
expressed secretome genes in at least one cancer type
compared with normal samples (log2 fold change > 1 and
q value cutoff = 0.01; Data S2). The clustering analyses based
on Euclidian distance revealed that PAAD displays a gene
expression profile that is distinct from other cancers (Figure
1A). Also, this analysis grouped cancer types originating from
the same anatomical sites, such as lung adenocarcinoma
(LUAD) and lung squamous cell carcinoma (LUSC), as well as
colon adenocarcinoma (COAD) and rectum adenocarcinoma
(READ) (Figure 1A). Similarly, oesophageal squamous cell car-
cinoma (ESCA) and head and neck squamous cell carcinoma
(HNSC) also presented similar expression profiles (Figure
1A). To test whether our transcriptome-based secretome
analysis defines tumour types, we performed principal
component analysis that revealed that PAAD, acute myeloid
leukaemia (LAML), LUSC, and the cluster composed by COAD
and READ are distinguished among the 12 cancer types based
on the expression profile of the secretory protein-coding
genes (Figure 1B).

We investigated the diversity and complexity of the cancer
transcriptome-based secretome in these selected 12 cancer
types. We found that tumours differed highly in the number
of dysregulated secretome genes in comparison with normal
tissues. For instance, PAAD presented 1365 dysregulated
genes, while hepatocellular liver carcinoma (LIHC) had 380
(Figure 1C, Table S3). The proportions of upregulated and
downregulated secretome genes also showed wide distribu-
tion among malignant tissues. PAAD, stomach adenocarci-
noma (STAD), ESCA, and HNSC presented 72% to 93% of
upregulated secretome genes, whereas LUSC, LUAD, and
prostate adenocarcinoma (PRAD) showed 24% to 27% (Figure
1C, Tables S3–S5).

Secretome genes reveal potential mediators of
cachexia within and across human cancers

Given that many secreted soluble factors have been associ-
ated with cachexia in different tumour types, significantly up-
regulated gene coding for secreted proteins shared among
these tumours has the potential to reveal key players to-
wards the pathogenesis of the syndrome. PAAD, which is as-
sociated with a severe form of cachexia, shared the highest
number of upregulated genes in all tumour types tested
(Figure 1D, Table S6). Other tumour types highly associated
with cachexia, including STAD, READ, COAD, ESCA, and HNSC,
had in common a high number of upregulated secretome
genes. STAD shared 515 common upregulated genes with

PAAD, while ESCA, COAD, READ, and HNSC presented
305–366. Among the cancer types, PRAD had the lowest
number (n = 69) of overlapping upregulated genes with
PAAD. Figures 1D and S1 are representatives of these find-
ings. Importantly, the shared upregulated genes for secreted
proteins revealed potential mediators of cachexia within the
tumour microenvironment, especially in tumours highly
associated with the syndrome.

Upregulated secretome genes exclusively detected in a
single cancer type, particularly in those highly associated
with cachexia, are tumour-specific candidates (Table S7). In
PAAD, we found exclusive upregulation of 371 genes
encoding mainly for cytokine–cytokine receptor interaction,
complement and coagulation cascades, and Rap1 signalling
pathways (Figure 1E, Tables S7 and S8). Interestingly, many
of these exclusively upregulated genes in PAAD were dysreg-
ulated in opposite directions in tumours originating from
lung and large intestine (Figure S2, Table S9). A total of 103
genes were exclusively upregulated in LAML, and these
genes were related to coagulation cascades and pyruvate
metabolism and downregulated 180 unique secretome genes
involved in arginine and proline metabolism, ribosome, and
metabolic pathways (Tables S10 and S11). Together, these
results show that tumour-specific factors have the potential
to explain the variation in the prevalence and severity of
cancer cachexia.

Secretome pathways with a potential role in cancer
cachexia

Genes significantly deregulated in at least one tumour type
were selected to perform enrichment analysis using the KEGG
pathways and Gene Ontology terms. Overall, we observed
that pathways previously associated with cachexia are
over-represented in highly cachectic tumours (Figure 2A).
The upregulated genes enriched pathways associated with
chemokine and cytokine in PAAD, STAD, ESCA, HNSC, COAD,
and READ (Figures 2 and S3). Terms previously associated
with cachexia, such as lysosome, exocytosis, complement
and coagulation cascade, extracellular matrix–receptor inter-
action, PI3K-Akt signalling, and leucocyte chemotaxis were
strongly enriched for upregulated genes in PAAD, STAD,
ESCA, and HNSC (Figure 2). PAAD, STAD, ESCA, and HNSC pre-
sented a clear pattern of downregulated secretome genes
that were less enriched for many pathways highly over-
represented for the upregulated genes (Figure 2A). The pat-
tern of secretome pathways for LUAD and LUSC was distinct
from tumours highly associated with cachexia, such as PAAD,
STAD, ESCA, and HNSC (Figure 2A). An enrichment for down-
regulated genes associated with extracellular matrix–receptor
interaction, PI3K-Akt pathway, and protein digestion and
absorption was detected in PRAD (Figure 2A).
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Figure 1 Gene expression analysis of the secretome components in 12 tumour types of The Cancer Genome Atlas (TCGA) compared with correspond-
ing matched normal TCGA and Genotype-Tissue Expression (GTEx) tissues. (A) Heat map of the mean expression levels [log2 (TPM + 1)] of secretome
components in 12 tumour types compared with normal tissues. Both rows (secretome genes) and columns (tumour types) were clustered using Eu-
clidian distance. Differential expression levels were calculated using the web-based tool Gene Expression Profiling Analysis (http://gepia.cancerpku.
cn/).32 The resulting numbers of genes encoding predicted that secreted proteins were filtered based on the Human Protein Atlas secretome data
(https://www.proteinatlas.org/humanproteome/secretome).27 The upregulated and downregulated genes with absolute values of fold change >

2.0 and q value < 0.01 (ANOVA) are shown in red and blue, respectively. PAAD shows a clear enrichment of the upregulated secretome genes. (B)
Principal component analysis of the secretome gene expression data in 12 tumour types compared with normal tissues. (C) The total number of dys-
regulated secretome genes in each tumour type (TCGA) compared with corresponding matched normal tissues (TCGA and GTEx). (D) The thickness of
each link in the Circos plot represents the number of shared upregulated secretome genes among tumour types. (E) Exclusive upregulated genes within
tumour types. BRCA, breast invasive carcinoma; COAD, colon adenocarcinoma; ESCA, oesophageal carcinoma; HNSC, head and neck squamous cell car-
cinoma; LAML, acute myeloid leukaemia; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma;
PAAD, pancreatic adenocarcinoma; PRAD, prostate adenocarcinoma; READ, rectum adenocarcinoma; STAD, stomach adenocarcinoma.
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Figure 2 Enriched pathways of the differentially expressed secretome genes. (A) Top-ranked combined scores for The Kyoto Encyclopedia of Genes
and Genomes pathway categories associated with upregulated (right panel) and downregulated (left panel) genes in tumour tissues vs. corresponding
matched normal tissues of The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx), computed by the gene set enrichment analysis
tool EnrichR.36,37 Pathways were included in the analysis when satisfying the criteria of over-representation (log2 combined score > 2) in, at least, one
tumour type (colour intensity codes for combined score). Rows and columns were clustered based on Euclidean distance between log2 combined score
values. (B) Right: Top-ranked combined scores for Gene Ontology categories associated with upregulated genes in tumour tissues vs. corresponding
matched normal TCGA and GTEx tissues, computed by the gene set enrichment analysis tool EnrichR.36,37 Left: alluvial diagram connecting the ca-
chexia-inducing factors predicted into those biological processes terms. BRCA, breast invasive carcinoma; COAD, colon adenocarcinoma; ESCA, oesoph-
ageal carcinoma; HNSC, head and neck squamous cell carcinoma; LAML, acute myeloid leukaemia; LIHC, liver hepatocellular carcinoma; LUAD, lung
adenocarcinoma; LUSC, lung squamous cell carcinoma; PAAD, pancreatic adenocarcinoma; PRAD, prostate adenocarcinoma; READ, rectum adenocar-
cinoma; STAD, stomach adenocarcinoma.
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The tumour-specific expression profile of
cachexia-inducing factors is correlated with the
prevalence of cachexia and weight loss

Considering that cytokine and chemokine pathways—
enriched in tumours associated with cachexia—include
known cachexia mediators (PDGFB, HGF, CCL2, TNFSF11,
LIF, CSF1, CXCL8, CSF2, and IL6) (Figure 2B), we further
filtered the transcriptome data to 25 cytokines and growth
factors. This same set of CIFs was previously used for protein
blood screening in pancreatic cachectic patients.16 The list of
25 factors is described in Table S1.

We found that each tumour type shows a specific gene ex-
pression profile of CIFs (Figures 3A and S4). PAAD presented
the highest number (14) of upregulated CIFs (CXCL8, IL1B,
HGF, TNFSF10, LIF, TGFA, TNFSF11, PDGFB, IL6, CCL2, CSF1,
IL15, CSF2, and FGF2), while PRAD showed no significant
upregulated CIFs. Other tumour types also presented
upregulated pro-cachectic factors, such as breast invasive
carcinoma (IL1B and MMP13), LIHC (PDGFB), ESCA (CXCL8,
IL1B, LIF, PDGFB, IL6, CSF3, and MMP3), HNSC (CXCL8, IL1B,

TNFSF10, PDGFB, CSF2, VEGFA, and MMP3), and STAD
(CXCL8, TNFSF10, LIF, TGFAC, and TNFSF11). LUSC and LUAD
shared six downregulated CIFs (PDGFB, IL6, HGF, FGF2,
CSF3, and CXCL12), whereas only TGFA and MMP13 were up-
regulated in both lung tumours. Although IL1B, CXCL8 (also
known as IL8), TGFA, and LIF were upregulated in at least five
tumour types, five molecules (IL10, CD40LG, IFNA1, IL4, and
IL17A) showed no alterations (Figure 3a). Additionally, classic
cachectic mediators were overexpressed, including IL6 in
PAAD and ESCA and TNF in LAML. The transcripts abundance
for these 25 cachexia mediators in the 12 tumour types re-
vealed that VEGFA, CCL2, and CXCL8 are expressed at high
levels in many tumour tissues, while IL4, IL17A, and CSF2
are expressed at low levels (Figure S5). Our data revealed po-
tential cachexia biomarkers and mediators that are produced
at high levels by the tumour tissues.

Using previously published data,8,11,12 we next investigated
the total number of upregulated CIFs for each tumour type
and their correlation with the prevalence of cachexia and
the percentage of weight loss. This data set included the pan-
creatic, oesophageal/gastric, head and neck, colorectal, lung,

Figure 3 Cachexia-inducing factors (CIFs) tumour-specific expression profiles strongly correlate with the prevalence of cachexia and weight loss in dif-
ferent tumour types. (A) Schematic representation of the expression pattern of 25 CIFs in different tumour types of The Cancer Genome Atlas (TCGA).
Differential expression levels were calculated using the web-based tool Gene Expression Profiling Analysis (http://gepia.cancerpku.cn/)32 from tumour
tissues vs. matched normal TCGA and Genotype-Tissue Expression (GTEx) data. Upregulated and downregulated genes with absolute values of fold
change > 2.0 and q value < 0.01 (ANOVA) are shown in red and blue, respectively. Five molecules (IL10, CD40LG, IFNA1, IL4, and IL17A) showed
no alteration and are not represented in the heat map. (B–C) Pearson’s correlations coefficient (r) with corresponding P values for the covariation be-
tween the number of differentially expressed CIFs (y-axis) from TCGA data sets (tumour tissues vs. matched normal TCGA and GTEx data) and the per-
centage of weight loss (x-axis; B) or the percentage of cachexia prevalence (x-axis; C) for specific tumour types from relevant literature data.8,11,12

Weight loss and prevalence of cachexia are strongly correlated with the number of CIFs (P < 0.01). BRCA, breast invasive carcinoma; COAD, colon ad-
enocarcinoma; ESCA, oesophageal carcinoma; HNSC, head and neck squamous cell carcinoma; LAML, acute myeloid leukaemia; LIHC, liver hepatocel-
lular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; PAAD, pancreatic adenocarcinoma; PRAD, prostate
adenocarcinoma; READ, rectum adenocarcinoma; STAD, stomach adenocarcinoma.
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haematological, breast, and prostate cancers. These data
have the potential to provide relevant correspondence in
different cachexia studies, although they do not represent
the full variation of cachexia for all the 12 cancer types. Re-
markably, the number of upregulated CIF genes in tumour
compared with normal tissues was strongly correlated with
the prevalence of cachexia and weight loss (average percent-
age) in the majority of the tumour types available for this
analysis (Figure 3B). The only exception was lung cancers,
but these results are also in accordance with the gene expres-
sion profiles that were detected for LUSC and LUAD, which
are distinct from tumours more prominently associated with
cachexia. These findings showed specific cachectic tumour
signatures with potential to explain why specific cancer types
are more likely to develop cachexia.

The expression profile of cachexia-inducing factors
is associated with tumour purity

Tumour microenvironment contains non-cancerous cells, in-
cluding a diversity of immune cells that potentially contribute
to the secretion of CIFs. We then investigated the expression
profile of these 25 CIFs according to tumour purity (neoplas-
tic cellularity and leucocyte fraction) in PAAD. This tumour
type—known to present the highest prevalence of cachexia12

and low tumour purity38—showed the highest number of
upregulated secretome genes (Figure 3A). We used
previously published tumour purity data for PAAD,38 which
is constituted by 74 ‘low-purity’ samples (ABSOLUTE purity
< 33%) and 76 ‘high-purity’ samples (ABSOLUTE purity ≥

33%). Using hierarchical clustering analysis, we observed that
the expression profile of these 25 CIFs discriminates high-
purity and low-purity tumours, and most of these genes are
overexpressed in low-purity tumours (Figure 4). The overex-
pression of CIFs in low-purity tumours was further associated
with high leucocytes DNA methylation and low tumour cells
DNA hypermethylation mode purity (Figure 4). These data
show that leucocyte infiltration correlates with high expres-
sion of CIFs in PAAD. Interestingly, no association was
observed between the expression levels of CIFs and tumour
grade (Figure 4).

The expression landscape of cachexia-inducing
factors predicts cancer outcome

Circulating levels of CIFs such as IL6, CXCL8, IL1B, and MCP-1
were previously correlated with cachexia development and
poor prognosis in cancer.16–18,42–45 Based on this evidence,
we compared the tumour expression levels of CIFs with pa-
tient prognosis using the platform SurvExpress.40 Table S12
summarizes the TCGA data sets used in our analysis.
SurvExpress generated a prognostic index (risk score) based
on the gene expression of 25 CIFs and the survival of cancer
patients for each of the 12 tumour types. Patients were di-
vided into two groups, high risk and low risk, maximizing
the number of patients into risk groups by an optimization
algorithm from the ordered prognostic index (Table S12).
More than 50% of CIF genes are overexpressed (P < 0.05)
in high-risk groups in HNSC, READ, COAD, LIHC, and BRCA
(Figure 5A). This analysis also demonstrated the consistent

Figure 4 Landscape of cachexia-inducing factors is associated with low tumour purity. Unsupervised hierarchical clustering of cachexia-inducing factors
is presented in a heat map according to gene expression (log2 norm_count + 1). The integrated epigenomic data for PAAD samples, including DNA
hypermethylation mode purity and DNA methylation leucocyte percent, are shown as tracks at the top together with the tumour grade. The absolute
tumour purity data for each sample are shown as grey bars at the top. The percentage of patients classified as low or high purity is noted as orange and
green tracks, respectively. Rows and columns were clustered based on Euclidean distance between log2 norm_count + 1 values.
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Figure 5 High-risk groups are correlated with high expression of cachexia-inducing factors (CIFs) in tumour tissues. (A) Schematic representation sum-
marizing the expression pattern of 25 CIFs in 12 tumour types of The Cancer Genome Atlas (TCGA). Differential expression levels were calculated in the
web-based tool SurvExpress40 by maximizing two risk groups (high risk and low risk) by prognostic index median and Cox fitting. The statistical differ-
ence for each messenger RNA expression between high-risk and low-risk groups was tested using the t-test. Upregulated and downregulated genes
(high risk vs. low risk) with P value< 0.05 are shown in red and blue, respectively. (B) Representative heat maps are showing the hierarchical clustering
analysis of tumour messenger RNA expression of 25 CIFs generated in SurvExpress,40 using TCGA data sets. This analysis demonstrates the considerable
variation in tumour expression of some CIFs according to risk groups in HNSC, LIHC, BRCA, and PRAD. The cancer patients were stratified into high-risk
and low-risk groups, indicated below each heat map as dark-grey and light-grey bars, respectively. Risk groups were maximized based on the Prognos-
tic Index assessed by gene expression values multiplied by beta coefficients. BRCA, breast invasive carcinoma; COAD, colon adenocarcinoma; ESCA,
oesophageal carcinoma; HNSC, head and neck squamous cell carcinoma; LAML, acute myeloid leukaemia; LIHC, liver hepatocellular carcinoma; LUAD,
lung adenocarcinoma; LUSC, lung squamous cell carcinoma; PAAD, pancreatic adenocarcinoma; PRAD, prostate adenocarcinoma; READ, rectum ade-
nocarcinoma; STAD, stomach adenocarcinoma.
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overexpression of IL4, INF-γ, and IL6 in at least eight different
tumour types (Figure 5A). The heat map generated by cluster-
ing analysis differentiating patients into high risk and low risk
demonstrated the enrichment of specific CIFs in patients with
low survival (high-risk group) in HNSC, LIHC, and BRCA (Figure
5B). Examples of the CIFs clustered in the heat map and
overexpressed in patients with low survival include LIF, IL6,
and CSF3 (in HNSC); TGFA, LIF, HGF, CXCL8, and FGF2 (in
LIHC); and LEP, FGF2, LIF, TGFA (in BRCA) (Figure 5B). It is also
interesting that in PRAD, which is less prone to developing ca-
chexia, only TGFA, IL15, and IL4 presented higher expression
in patients with low survival, while IL6, CSF3, LIF clustered in
the heat map and were expressed at low levels in patients
with high survival (Figure 5B). The heat maps for other
tumour types are presented in Figure S6, and the relative ex-
pression levels of the 25 CIFs in low-risk and high-risk groups

of patients are shown in Figure S7. This variability in the expres-
sion profiles of CIFs in patients with low and high survival may
help to explain the heterogeneity in the clinical manifestation
of cachexia in patients with different tumour types.

Finally, to evaluate whether the CIF genes have prognostic
and predictive value in different cancer types, we used 12
TCGA data sets within SurvExpress to analyse the overall sur-
vival. Altered expression of CIFs is associated with worse
overall survival (Figure 6 and Table S12). The robustness of
these 25 genes in stratifying with high-confidence patients
into two risk groups was consistently demonstrated by high
hazard ratios in the 12 TCGA cohorts (Figure 6). Using this list
of 25 factors, we also detected differentially expressed genes
that have higher relevance in predicting worse survival (Table
S13). Thus, these findings suggest that CIF genes are predic-
tors of cancer survival outcomes.

Figure 6 The expression landscape of cachexia-inducing factors (CIFs) predicts cancer outcome. Survival analysis based on the tumour messenger RNA
expression of 25 CIFs. The data were calculated using the data sets of The Cancer Genome Atlas of 12 tumour types in the web-based tool
SurvExpress,40 which stratified the cancer patients in high-risk or low-risk groups (red and green, respectively). The adjusted hazard ratio (HR) with
corresponding 95% confidence intervals, log-rank P value (P), and the number of patients successfully stratified (N) determined by univariate Cox re-
gression analyses are shown on each survival Kaplan–Meier curve. BRCA, breast invasive carcinoma; COAD, colon adenocarcinoma; ESCA, oesophageal
carcinoma; HNSC, head and neck squamous cell carcinoma; LAML, acute myeloid leukaemia; LIHC, liver hepatocellular carcinoma; LUAD, lung adeno-
carcinoma; LUSC, lung squamous cell carcinoma; PAAD, pancreatic adenocarcinoma; PRAD, prostate adenocarcinoma; READ, rectum adenocarcinoma;
STAD, stomach adenocarcinoma.
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Discussion

Cachexia prevalence and severity vary depending on tumour
types. Pancreatic, oesophageal, gastric, lung, and liver cancers
have the highest prevalence, while breast or prostate cancers
are not commonly associated with the syndrome.12 The
causes of such variations are still mostly unknown, and it is
possible that each cancer type present tumour-specific bio-
markers and mediators. We sought to characterize the molec-
ular landscape of CIFs in human cancers with different
prevalence of cachexia, using the RNA-Seq data set from TCGA
and GTEx. Our results revealed tumour-specific secretome
transcriptional patterns, potential mediators, and pathways
associated with the syndrome. We also showed that a set of
25 CIFs presented a tumour-specific expression profile,
which was significantly associated with poor prognosis and
correlated with the prevalence of cachexia and weight loss
in cancer patients. In PAAD, these upregulated pro-cachectic
factors were also associated with tumours that present low
neoplastic cellularity and high leucocyte fraction. These
correlations are plausible explanations of the variation found
in the prevalence and severity of cachexia in human cancers
and showed that specific therapeutic strategies, according to
tumour types, must be considered to treat these patients.

Our comprehensive characterization of the secretome
based on transcriptome revealed that the number of upregu-
lated secreted protein-coding genes, compared with normal
tissue, correlates with cachexia prevalence. PAAD presented
the highest number of upregulated secretome genes (1267)
across all tumour types. This result is particularly expected
for the pancreatic tissues, which present more than 70% of
the transcripts encoding secreted proteins in the normal
tissues.27 However, a substantial fraction of upregulated
secretome genes in PAAD is also significantly increased in
tumour types commonly associated with cachexia, such as
STAD (515 genes), COAD (308 genes), READ (308 genes),
ESCA (368 genes), and HNSC (305 genes) (Figure S1). The ma-
jority of these shared secretome genes include proteins
associated with a cytokine-mediated signalling pathway, in-
flammatory response, cytokine–cytokine receptor interac-
tion, and positive regulation of leucocyte chemotaxis.
Several of these secreted proteins were previously investi-
gated as potential blood biomarkers of cachexia in cancer pa-
tients.16–21 For example, we found high expression levels of
CXCL8 in six tumour types with a high prevalence of cachexia
(PAAD, STAD, COAD, READ, ESCA, and HNSC). This cytokine
has been reported as an independent predictor of survival
in pancreatic and colorectal cancer patients.42,46 CXCL8 has
also been positively associated with weight loss in pancreatic
and gastric cancers.42,47,48 Interestingly, TNF expression
levels, a cytokine commonly associated with cancer ca-
chexia,18 were not changed in cancer types with a high
prevalence of the syndrome. This result is similar to that
found in resectable pancreatic cancer patients, in which

cachexia was not associated with increased plasma levels of
canonical pro-inflammatory cytokines.16

Subsequently, we focused on the tumour expression pro-
file of 25 potential CIFs in 12 human cancers with different
risks to develop cachexia. These factors have been previously
investigated in pancreatic cancer cachexia16; however, the
synergistic expression profile of these molecules in different
tumour types needed to be clarified. Cancer literature data
describing cachexia prevalence and weight loss8,11 were asso-
ciated with the number of these upregulated CIFs. We found
that CIFs present a tumour-specific expression profile. Also,
the number of CIF genes upregulated in the tumour is
strongly associated with average weight loss and prevalence
of cachexia. This is particularly clear in patients with pancre-
atic cancer, as they have a body weight loss of approximately
13.7 kg,11 which was correlated with the upregulation of 14
CIFs (CXCL8, IL1B, HGF, TNFSF10, LIF, TGFA, TNFSF11, PDGFB,
IL6, CCL2, CSF1, IL15, CSF2, and FGF2) that we found in PAAD.
By contrast, prostate cancer patients have a body weight loss
of around 1.7 kg,11 and PRAD does not upregulate CIF genes
when compared with normal tissues. These findings suggest a
simple explanation for the discrepancy in average weight loss
and cachexia prevalence across cancer patients.

The prognostic value of the expression of these 25 selected
pro-cachectic factors revealed an association with shorter
overall survival for the predicted high-risk groups in the 12
cancer types. The molecular landscape of these CIFs in each
cancer type presented a distinct expression profile between
high-risk and low-risk patients. Our TCGA data reanalysis
showed that patients with shorter survival presented upregu-
lation of a large number of CIF. A previous study showed that
interleukin 6 increases gradually during the early stages of
cachexia but then shows a sudden and steep rise just before
death.49 Thus, it is possible that other CIFs present a
temporal pattern of regulation that influences the course
and severity of the syndrome.

Currently, the source of these cytokines into the tumour
microenvironment (from tumour cells or from infiltrating
immune cells) is unexplored. PAAD, the cancer type with the
highest prevalence of cachexia, often demonstrates only 5–
20% neoplastic cellularity (low-purity tumours) and high leu-
cocyte infiltration.38,50 Thus, we hypothesized that the set of
upregulated CIFs in PAAD is associated with low-purity tu-
mours. Our clustering analysis showed that CIFs are highly
expressed in low-purity tumours. Infiltrating immune cells
have been associated with tumour growth, invasion, and me-
tastasis in several cancer types.51 However, this is the first
study indicating the potential influence of infiltrating immune
cells in a tumour type highly associated with cachexia. Further
investigation of the source of these molecules will contribute
to our understanding of cachexia and will allow us to probe
specific and accurate therapeutic strategies for the syndrome.

Most studies focusing on silico-based methods suffer from
limitations. Tumour gene expression profiling of CIFs for each
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tumour type presented herein should be experimentally vali-
dated in a larger cohort of cancer patients to circumvent
these limitations. Furthermore, we were not able to validate
the diagnostic of cachexia due to the absence of clinical data
in several patients from the 12 TCGA tumour types. Thus, it
remains to be tested whether tumour expression levels of
CIF genes can stratify patients according to the cachectic
status in these tumour types. However, it is challenging to
obtain an independent cohort of individuals as used in our
study, which is consisted not only by a high number of
tumour samples but also by several non-diseased tissues
(from TCGA and GTEx). Our strategy collectively analysed
TCGA and GTEx expression profiles adding higher precision,
sensitivity, and robustness to our transcriptomic analysis.
Further single-cell RNA-Seq investigation is an alternative to
differentiate the specific contributions of different cell types
in the tumour microenvironment to the tumour expression
profile of cachectic patients. Despite such limitations, we
used a systematic investigation to verify the expression of
CIF genes in cancer cells using a large number of human
samples and tumour types, allowing the identification of
new potential biomarkers and mediators of cachexia. Overall,
we provided insights that open new perspectives in cancer
cachexia scenario.

In conclusion, the synergic expression of the CIFs in sev-
eral tumour types highlights the importance of this group
of soluble factors in cancer pathophysiology and presents
a strong case for their targeting in specific anti-cachexia
therapeutic development in different tumour contexts. In
addition, the tumour-specific profile of CIFs will facilitate
the development of better targeted therapies for clinical
decisions.
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Figure S1. Upregulated genes shared among 12 tumor
types. Venn diagrams showing shared upregulated
secretome genes in 12 tumor types. Pancreatic adenocarci-
nomas (PAAD) presented the highest number of upregulated
secretome genes and have the highest prevalence of
cachexia8,11,12. Based on these data, PAAD was included in
all comparisons. PAAD: Pancreatic adenocarcinoma; ESCA:
Esophageal carcinoma; STAD: Stomach adenocarcinoma;
HNSC: Head and neck squamous cell carcinoma; LUAD: Lung
adenocarcinoma; LUSC: Lung squamous cell carcinoma; LIHC:
Liver hepatocellular carcinoma; COAD: Colon adenocarci-
noma; READ: Rectum adenocarcinoma; LAML: Acute myeloid
leukemia; PRAD: Prostate adenocarcinoma; BRCA: Breast in-
vasive carcinoma
Figure S2. Exclusive upregulated genes within tumor types.
Heatmap of the mean expression levels [log2 (TPM+1)] of
specifically upregulated (a) or downregulated (b) secretome
genes in each tumor type compared with corresponding
matched normal TCGA and GTEx tissues. Differential
expression levels were calculated using the web-based tool
Gene Expression Profiling Analysis (GEPIA, http://gepia.
cancerpku.cn/)32. The resulting numbers of genes encoding
predicted secreted proteins were filtered based on the
Human Protein Atlas secretome data27 (https://www.
proteinatlas.org/humanproteome/secretome). Genes that
are specifically upregulated or downregulated genes in one
tumor type (absolute values of fold-change > 2.0 and q-
value < 0.01; ANOVA) are shown in red and blue, respec-
tively. PAAD: Pancreatic adenocarcinoma; ESCA: Esophageal
carcinoma; STAD: Stomach adenocarcinoma; HNSC: Head
and neck squamous cell carcinoma; LUAD: Lung adenocarci-
noma; LUSC: Lung squamous cell carcinoma; LIHC: Liver he-
patocellular carcinoma; COAD: Colon adenocarcinoma;
READ: Rectum adenocarcinoma; LAML: Acute myeloid leuke-
mia; PRAD: Prostate adenocarcinoma; BRCA: Breast invasive
carcinoma
Figure S3. The cytokine-cytokine receptor interaction path-
way is enriched in pancreatic adenocarcinoma. Heatmap of
the mean expression levels [log2 (TPM+1)] of specifically up-
regulated (a) or downregulated (b) genes from the cytokine-
cytokine receptor interaction pathway (The Kyoto Encyclope-
dia of Genes and Genomes, KEGG) in each tumor type
(TCGA) compared with corresponding matched normal tis-
sues (TCGA and GTEx). Differential expression levels were
calculated using the web-based tool Gene Expression Profil-
ing Analysis (GEPIA, http://gepia.cancerpku.cn/)32. Genes
that are specifically upregulated or downregulated genes in
each tumor type (absolute values of fold-change > 2.0 and
q-value < 0.01; ANOVA) are shown in red and blue, respec-
tively. PAAD: Pancreatic adenocarcinoma; ESCA: Esophageal
carcinoma; STAD: Stomach adenocarcinoma; HNSC: Head
and neck squamous cell carcinoma; LUAD: Lung adenocarci-
noma; LUSC: Lung squamous cell carcinoma; LIHC: Liver he-
patocellular carcinoma; COAD: Colon adenocarcinoma;
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READ: Rectum adenocarcinoma; LAML: Acute myeloid leuke-
mia; PRAD: Prostate adenocarcinoma; BRCA: Breast invasive
carcinoma
Figure S4. The expression landscape of cachexia-inducing
factors in 12 tumor types. Heatmap of the mean expression
levels [log2 (TPM+1)] of 25 cachexia-inducing factors (CIF) in
12 TCGA tumor types compared with corresponding matched
normal tissues (TCGA and normal GTEx). Differential expres-
sion levels were calculated using the web-based tool Gene Ex-
pression Profiling Analysis (GEPIA, http://gepia.cancerpku.cn/
)32. Genes that are specifically upregulated or downregulated
genes in each tumor type (absolute values of fold-change >

2.0 and q-value < 0.01; ANOVA) are shown in red and blue,
respectively. PAAD: Pancreatic adenocarcinoma; ESCA:
Esophageal carcinoma; STAD: Stomach adenocarcinoma;
HNSC: Head and neck squamous cell carcinoma; LUAD: Lung
adenocarcinoma; LUSC: Lung squamous cell carcinoma; LIHC:
Liver hepatocellular carcinoma; COAD: Colon adenocarci-
noma; READ: Rectum adenocarcinoma; LAML: Acute myeloid
leukemia; PRAD: Prostate adenocarcinoma; BRCA: Breast in-
vasive carcinoma
Figure S5. Gene expression profile of cachexia-inducing fac-
tors in 12 tumor types. Dot plots of the expression levels
[log2 (TPM+1)] of 25 cachexia-inducing factors (CIF) in differ-
ent 12 TCGA tumor types. Differential expression levels were
calculated using the web-based tool Gene Expression Profil-
ing Analysis (GEPIA, http://gepia.cancerpku.cn/)32 from the
tumor (TCGA; red dots) vs. matched normal (TCGA and GTEx;
green dots) tissues. Upregulated and downregulated genes
with absolute values of fold-change > 2.0 and q-value <

0.01 (ANOVA) are highlighted in red and green for the TCGA
abbreviations, respectively. PAAD: Pancreatic adenocarci-
noma; ESCA: Esophageal carcinoma; STAD: Stomach adeno-
carcinoma; HNSC: Head and neck squamous cell carcinoma;
LUAD: Lung adenocarcinoma; LUSC: Lung squamous cell carci-
noma; LIHC: Liver hepatocellular carcinoma; COAD: Colon ad-
enocarcinoma; READ: Rectum adenocarcinoma; LAML: Acute
myeloid leukemia; PRAD: Prostate adenocarcinoma; BRCA:
Breast invasive carcinoma
Figure S6. Tumor-specific expression profile of cachexia-in-
ducing factors stratified patients into low- and high-risk
groups. Heatmaps are representing non-hierarchical cluster-
ing analysis of tumor mRNA expression of 25 cachexia-induc-
ing factors (CIF) generated in SurvExpress40, using 12 TCGA
tumor types. The cancer patients were stratified into high-
and low-risk groups, indicated below each heat map as
dark-grey and light-grey bars, respectively. Risk groups were
maximized based on the Prognostic Index assessed by gene
expression values multiplied by beta coefficients. PAAD: Pan-
creatic adenocarcinoma; ESCA: Esophageal carcinoma; STAD:
Stomach adenocarcinoma; HNSC: Head and neck squamous
cell carcinoma; LUAD: Lung adenocarcinoma; LUSC: Lung
squamous cell carcinoma; LIHC: Liver hepatocellular carci-
noma; COAD: Colon adenocarcinoma; READ: Rectum

adenocarcinoma; LAML: Acute myeloid leukemia; PRAD: Pros-
tate adenocarcinoma; BRCA: Breast invasive carcinoma
Figure S7. Cachexia-inducing factors tumor-specific expres-
sion profile from patients with low-risk and high-risk groups.
Box plots representing tumor mRNA expression of 25 ca-
chexia-inducing factors (CIF) generated by SurvExpress40,
using 12 TCGA datasets. The cancer patients were stratified
into high- and low -risk groups, and are indicated as red and
green, respectively. The statistical difference for each mRNA
expression between high- and low-risk groups was tested
using a t-test, and the resulting p-value is indicated. PAAD:
Pancreatic adenocarcinoma; ESCA: Esophageal carcinoma;
STAD: Stomach adenocarcinoma; HNSC: Head and neck squa-
mous cell carcinoma; LUAD: Lung adenocarcinoma; LUSC: Lung
squamous cell carcinoma; LIHC: Liver hepatocellular carci-
noma; COAD: Colon adenocarcinoma; READ: Rectum adeno-
carcinoma; LAML: Acute myeloid leukemia; PRAD: Prostate
adenocarcinoma; BRCA: Breast invasive carcinoma
Data S1. Genes enconding a predicted secreted protein ac-
cording to The human Protein Altas (https://www.
proteinatlas.org/)
Data S2. Secretome genes differentially expressed in 12 tu-
mor types
Table S1. Cachectic soluble factors genes selected in tumor
and normal tissues samples.
Table S2. The Cancer Genome Atlas (TCGA) and The Geno-
type-Tissue Expression (GTEx) samples used for gene expres-
sion analyses.
Table S3. Number (n) and porcentage (%) of dysregulated
secretome genes in 12 cancer types.
Table S4. Upregulated secretome genes in each tumor type
(TCGA) matched with the normal tissues (TCGA and GTEx).
Table S5. Downregulated secretome genes in each tumor
type compared with the corresponding matched normal tis-
sues ( TCGA and GTEx ).
Table S6. Upregulated secretome genes (Log2 Fold-Change)
common in pancreatic adenocarcinomas and other tumor
types.
Table S7. Secretome genes exclusively upregulated in a single
cancer type.
Table S8. Top-ranked Kyoto Encyclopedia of Genes and Ge-
nomes pathways associated with upregulated secretome
genes detected exclusively in pancreatic adenocarcinoma
Table S9. Secretome genes downregulated exclusively in a
single cancer type.
Table S10. Top-ranked combined scores for Kyoto Encyclope-
dia of Genes and Genomes pathways categories associated
with upregulated secretome genes specifically in acute mye-
loid leukemia.
Table S11. Top-ranked combined scores for Kyoto Encyclope-
dia of Genes and Genomes pathways categories associated
with exclusive downregulated secretome genes in acute mye-
loid leukemia.
Table S12. The expression of cachectic-inducing factors based
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on The Cancer Genome Atlas (TCGA) tumor samples predicts
poor overall survival.
Table S13. Differentially expressed genes (DEGs) among the
list of 25 factors, which have higher relevance in predicting
worse survival.
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