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Cancer is a genetic disease fueled by somatic evolution. Hier-
archical tissue organization can slow somatic evolution by two
qualitatively different mechanisms: by cell differentiation along
the hierarchy “washing out” harmful mutations and by limiting
the number of cell divisions required to maintain a tissue. Here
we explore the effects of compartment size on somatic evolution
in hierarchical tissues by considering cell number regulation that
acts on cell division rates such that the number of cells in the tis-
sue has the tendency to return to its desired homeostatic value.
Introducing mutants with a proliferative advantage, we demon-
strate the existence of a third fundamental mechanism by which
hierarchically organized tissues are able to slow down somatic
evolution. We show that tissue size regulation leads to the
emergence of a threshold proliferative advantage, below which
mutants cannot persist. We find that the most significant deter-
minant of the threshold selective advantage is compartment size,
with the threshold being higher the smaller the compartment. Our
results demonstrate that, in sufficiently small compartments, even
mutations that confer substantial proliferative advantage cannot
persist, but are expelled from the tissue by differentiation along
the hierarchy. The resulting selective barrier can significantly slow
down somatic evolution and reduce the risk of cancer by limit-
ing the accumulation of mutations that increase the proliferation
of cells.
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Tumors develop as genetic and epigenetic alterations spread
through a population of premalignant cells, and some cells

accumulate changes over time that enable them and their descen-
dants to persist within tissues (1, 2). From an evolutionary per-
spective, each tumor is an independent realization of a common
reproducible evolutionary process involving “adaptive” muta-
tions that are preferentially selected by the tumor environment.
This process is clonal, which means that a subset of mutations
termed “drivers” confer clonal growth advantage, and they are
causally implicated in cancer development.

A large body of work (2–5) has focused on understand-
ing clonal evolution of an initially homogeneous population
of identical cells, a subset of which progress toward cancer
as they accrue driver mutations. Beerenwinkel et al. (6), for
instance, considered the Wright–Fisher process (a homoge-
neous population of initially identical cells) to explore the basic
parameters of this evolutionary process and derive an analyti-
cal approximation for the expected waiting time to the cancer
phenotype and highlighted the relative importance of selec-
tion over both the size of the cell population at risk and the
mutation rate.

Self-renewing tissues, which must generate a large number
of cells during an individual’s lifetime and in which tumors
typically arise, comprise a hierarchy of progressively differen-
tiated cells and, as a result, are not homogeneous populations
of identical cells. There is empirical evidence (7–9) and the-
oretical rationale (10–12) that such hierarchical tissue archi-
tecture has a profound effect on neoplastic progression. The-
oretical work has demonstrated that hierarchically organized

tissues suppress tumor evolution by limiting the accumulation
of somatic mutations in two fundamentally different ways, as
follows.

As described in a seminal paper by Nowak et al. (11), the lin-
ear flow from stem cells to differentiated cells to apoptosis in
a spatially explicit, strictly linear organization has the property
of canceling out selective differences. Nowak et al. considered a
system where only asymmetric cell divisions are allowed, that is,
after each cell division, one of the daughter cells differentiates to
the next level of the hierarchy, pushing all cells at higher levels
farther along the hierarchy (Fig. 1A). In this idealized construc-
tion, mutations, irrespective of how much they increase division
rate, are invariably “washed out” unless they occur in the stem
cell at the root of the hierarchy. In a more general setting, where
symmetric divisions are allowed, the strength of this washing out
effect can be quantified by introducing the self-renewal potential
of cells. The self-renewal potential is defined as the logarithm
of the ratio between the rate of cell divisions that increase the
number of cells at a given level of the hierarchy (division produc-
ing two cells at the same level) and the rate of events that result
in the reduction at that level (division producing two differen-
tiated cells that move higher up in the hierarchy or cell death).
In healthy homeostatic tissues, the self-renewal potential of stem
cells is zero (corresponding to equal rates of differentiation and
self-renewal), while, for differentiated cells, it is always negative,
as these cells have an inherent proliferative disadvantage as a
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Fig. 1. Self-renewing tissue comprising a hierarchy of progressively differentiated cells can suppress somatic evolution. (A) The linear process of somatic
evolution considers a strict linear organization, where, after each cell division, one of the daughter cells differentiates to the next level, pushing all cells
above farther along, and the top-most cell is lost from the system. Such an idealized construction, where self-renewal at individual levels of the hierarchy
is not allowed, has a minimal self-renewal potential φk =−∞, with the exception of the stem cell level at the root of the hierarchy with φ0 = 0. This has
the effect of canceling out selective differences between cells; that is, any non-stem cell, regardless of how large its division rate is, will be washed out of
the tissue by cell differentiating from below. (B) General differentiation hierarchies are characterized by intermediate values of the self-renewal potential,
with the exception of the stem cell. In such systems, in the absence of cell number regulation, any mutant with a proliferative advantage, that is, a positive
self-renewal potential, will spread exponentially if it does not go extinct stochastically. (C) We introduce cell number regulation that changes the rate of
different events such that the strength and direction of the regulation depends on the difference between the number of cells present at a given time Nk(t)
and the homeostatic number N0

k in a manner equivalent to being in a quadratic potential (Eq. 3). As described in the text, this leads to the emergence of a
positive threshold proliferative advantage below which mutants cannot persist.

result of which they are eventually washed out of the tissue from
cells differentiating from lower levels of the hierarchy. In the
following, lower (higher) refers to levels closer to (farther away
from) the stem cell compartment.

More recently, Derényi and Szöllősi (12) showed that, in self-
renewing tissues, hierarchical organization provides a robust
and nearly ideal mechanism to limit the divisional load (the
number of divisions along cell lineages) of tissues and, as a
result, minimize the accumulation of somatic mutations. The
theoretical minimum number of cell divisions can be very
closely approached: As long as a sufficient number of progres-
sively slower dividing cell types toward the root of the hier-
archy are present, optimal self-sustaining differentiation hier-
archies can produce N terminally differentiated cells during
the course of an organism’s lifetime from a single precur-
sor with no more than log2(N ) + 2 cell divisions along any
lineage.

Here, we examine the effect of compartment size by introduc-
ing interaction among cells in the form of cell number regulation,
which acts on the cell division rates such that the number of
cells at each hierarchical level of the tissue has the tendency
to return to its desired homeostatic value. We consider a sin-
gle (non-stem cell) level of the hierarchy that is renewed from
below by cell differentiation. We introduce mutants with a pro-

liferative advantage, that is, mutants with a positive self-renewal
potential. As detailed below, using both simulations and an
approximation adopted from nonequilibrium statistical physics,
we find that, under a wide range of parameters, a third fun-
damental mechanism exists by which hierarchically organized
tissues can slow down somatic evolution and delay the onset
of cancer.

Results
We consider level k > 0 of a general differentiation hierarchy
that is renewed by cell differentiation from level k − 1 below.
The tissue dynamics is described by the rates of asymmet-
ric differentiation (◦↑), symmetric division with differentiation
(↑↑), symmetric division (◦◦), and cell death (×) (Fig. 1 B
and C).

At homeostasis (i.e., when the number of cells, Nk , at each
level coincides with its homeostatic value, N 0

k ), the evolutionary
dynamics of level k is determined by the per cell rate r+

k = r◦◦k
of cell number increase through symmetric cell division (◦◦),
the per cell rate r−k = r↑↑k + r×k of cell number decrease through
either symmetric division with differentiation (↑↑) or cell death
(×), and the per level rate δ+

k = δk−1 = (2r↑↑k−1 + r◦↑k−1)Nk−1 of
cell number increase through differentiation from below. In the
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following, we focus on a single (non-stem cell) level, and drop
index k for brevity. Homeostasis implies that the rates satisfy the
stationarity condition

(
r−− r+)N 0 = δ+. [1]

To model tissue size regulation, we consider a generic cell
number-dependent regulation scheme that acts to return the
number of cells in the compartment to its homeostatic value.
Biologically, such a regulation scheme corresponds to, for exam-
ple, the local concentration of a regulatory signal that conveys
information on the density of cells in a compartment. To formal-
ize cell number regulation, we introduce cell number-dependent
multiplicative rate modifiers ρ+(N ) and ρ−(N ) for, respectively,
events that increase and decrease cell number. Maintaining
homeostasis requires that ρ+(N )> 1 and ρ−(N )< 1 if N <N 0,
and ρ+(N )< 1 and ρ−(N )> 1 if N >N 0. These rate modifiers
define an abstract confining potential U (N ) up to an additive
constant,

U (N + 1)−U (N ) =− log
ρ+(N )

ρ−(N + 1)
, [2]

with a minimum at N =N 0. For mathematical convenience, we
approximate the confining potential with a parabolic (harmonic)
form,

U (N ) =
1

2
β

(
N −N 0

)
2

N 0
, [3]

characterized by a single parameter (potential strength) β. The
role of the confining potential is to limit the variance of the num-
ber of cells to N 0/β. It is this confining potential that plays the
most significant role in slowing down somatic evolution, as shown
below.

The particular choice of how the confining potential is dis-
tributed between the cell number increasing and decreasing rate
modifiers (to satisfy Eq. 2) has only marginal effect on the
dynamics. Here, for simplicity, we make the symmetric choice,

ρ+(N ) = e
− 1

2
β N−N0

N0 and ρ−(N ) = e
1
2
β N−N0

N0 . [4]

We measure time in units of 1/(2r−N 0). Thus, the lifetime of
the tissue T is identical to the expected number of differentiated
cells that would be produced by this level under homeostatic con-
ditions during the individual’s lifetime, if all of the cell number
decreasing events were symmetric cell differentiations. As the
asymmetric differentiations (◦↑) do not have any influence on
the number of cells of this level, we set its rate (r◦↑) to zero for
convenience.

The self-renewal potential of the cells in a healthy homeostatic
tissue is defined as

φ= ln
r+

r−
≤ 0, [5]

which converges to−∞ as the rate of the (◦◦) events approaches
zero.

We introduce mutants with an elevated rate of divisions that
increase cell number, r+

m , such that it exceeds the rate of cell
number decrease: r+

m > r−. This corresponds to a positive self-
renewal potential for mutant cells,

φm = ln
r+
m

r−
> 0. [6]

In the absence of cell number regulation (i.e., β= 0), a sin-
gle such mutant either goes extinct stochastically or spreads
exponentially with probability (13)

Sm = 1− r−

r+
m

= 1− e−φm . [7]

In the following, we use Sm to parametrize the selective advan-
tage of mutants. We note that, in the absence of differentiation
from below (i.e., δ+ = 0), for fixed population size (i.e., β→∞),
for all but extremely small populations or nearly neutral muta-
tions, Sm also corresponds to the probability of fixation of the
mutant (14–16).

Denoting the number of mutant cells by Nm and denoting
wild-type cells by Nw, the dynamics is described by the transition
rates

k+
m (Nm,Nw) = Nmr+

m ρ+(Nm +Nw),

k−m (Nm,Nw) = Nmr− ρ−(Nm +Nw),

k+
w (Nm,Nw) =

(
Nwr

+ + δ+) ρ+(Nm +Nw),

k−w (Nm,Nw) = Nwr
− ρ−(Nm +Nw), [8]

where the lower index (m or w) denotes the type of the cell
(mutant or wild, respectively), and the upper index indicates
whether the number of cells of the given type is increased (+) or
decreased (−). The transition rates can be shown to correspond
to a reversible Markov process in the effective potential

Ψ(Nm,Nw)=−Nmφm + lnNm−Nwφ

+ ln
Γ(Nw + 1)

Γ (N 0(e−φ− 1) +Nw)

+U (Nm +Nw), [9]

where Γ represents the gamma function.
The continuous interpolation of this potential is shown in

Fig. 2, Bottom for different parameters. An effective potential,
such as Eq. 9, can always be defined if the mutant and wild-type
transition rates depend only on the number of cells of the given
type, and if cell number regulation—which acts as a multiplica-
tive modifier of these rates—depends only on the total number
of cells (SI Appendix).

Here we are concerned with cell number regulation that can
be described by a confining potential with a single minimum,
for which Eq. 3 is the parabolic approximation. In this case,
the presence of size regulation (i.e., β > 0) leads to a quasi-
stationary state in which the mean number of mutant N̄m and
wild-type N̄w cells can be determined to good approximation
by solving

k+
m (Nm,Nw)

k−m (Nm,Nw)
=

k+
w (Nm,Nw)

k−w (Nm,Nw)
= 1, [10]

which gives

N̄m≈N 0

(
Sm

1− r+/r+
m

+
φm

β

)
=N 0

(
eφm − 1

eφm − eφ
+
φm

β

)
,

N̄w≈N 0

(
1−Sm

1− r+/r+
m

δ+

N 0r−

)
=N 0

(
1− eφ

eφm − eφ

)
. [11]

As illustrated in Fig. 2, the behavior of this quasi-stationary
state can be divided into two regimes based on the value of
the proliferative advantage Sm of the mutant. Below a thresh-
old proliferative advantage, S∗m mutants, even if they initially
spread (i.e., avoid early stochastic extinction with probability
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Fig. 2. Mutants go extinct under a threshold proliferation advantage. The continuous lines show the size of the mutant (red) and wild-type (green)
populations and their combined number (black) during the simulation. The dashed lines correspond to the theoretical mean population sizes in the quasi-
stationary state. (A, Top) If the proliferation advantage of the mutant is below the threshold, the mutant will rapidly escape from the shallow quasi-
stationary state and go extinct. (A, Bottom) The black× on the continuous approximation of the potential marks the quasi-stationary state. Parameters are

N0 = 100, β= 1, and r+ = 0, and Sm = 0.2 is below the threshold S*
m = 0.34. (B, Top and Bottom) Increasing the compartment size to N0 = 400, the potential

well becomes deeper and the threshold proliferation advantage becomes correspondingly smaller S*
m = 0.17, allowing a mutant with the same advantage

of Sm = 0.2 to persist in the tissue during the individual’s lifetime.

Sm), will nonetheless rapidly go extinct and, as a result, have
vanishing probability to persist in the tissue throughout its life-
time. Above this threshold, however, if a single mutant avoids
early stochastic extinction, with probability Sm, a population
of its descendants will persist with near certainty in the tissue
throughout its lifetime.

The characteristic residence time of a population of mutants
that have initially spread corresponds to the mean exit time τ
of escape from the quasi-stationary state described above. Fol-
lowing the approach described by Gardiner (17) and Derényi
et al. (18), an analytical approximation can be derived for τ of
the general form (for details, see SI Appendix)

τ = τ0e∆Ψ, [12]

where τ0 is the reciprocal of the attempt frequency and ∆Ψ =
Ψ(1,N 0)−Ψ(N̄m, N̄w) is the height of the potential barrier for
the escape from the quasi-stationary state (Fig. 2). ∆Ψ scales
linearly with N 0 (for large N 0), corresponding to an exponential
increase in τ . In contrast, τ0, which depends only on the local
geometries of the potential well and barrier, is proportional to
(N 0)3/2.

Using the mean exit time for escape from the quasi-stationary
state, the probability P that a single mutant persists (i.e., first

spreads, and then avoids escape) for the lifetime of the individual
can be expressed as

P =Sm e−T/τ . [13]

As shown in Fig. 3A Top, the above approximation for the escape
time τ is highly accurate, and it depends very sharply on the
selective advantage of mutants. This results in a well-defined
threshold selective advantage (Fig. 3A, Bottom) below which
mutants, even if they avoid early stochastic extinction, will rapidly
go extinct, that is, will be washed out by cells differentiating from
below. Furthermore, the threshold value depends only weakly on
the value of β for reasonably strong cell number regulation, that
is, for β > 1 corresponding to the variance (in time) of the cell
number being smaller than N 0.

Realistic values for the rates r−, r+, and δ+ can vary greatly
depending on tissue type and differentiation state [e.g., in
humans, long-term stem cells of the hematopoietic system divide
a few times a year, while, in the top layers of epithelial tissues,
cell divisions occur daily (8, 12)]. Under homeostatic conditions,
the three rates, however, cannot be chosen independently but
must satisfy the stationary condition in Eq. 1. Furthermore, in
the context of our model, as is apparent on inspection of Ψ,
the dynamics does not depend on the absolute rates but only on
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A

B

Fig. 3. There is no somatic evolution under the threshold spreading factor.
(A) In the presence of tissue size regulation (β > 0), below a threshold prolif-

eration advantage, S*
m, mutants rapidly go extinct and, as a result, have van-

ishing probability to persist in the tissue through its lifetime, while, above
this threshold, if a single mutant avoids early stochastic extinction, which
occurs with probability Sm, it will persist with near certainty. Top shows the
escape time of mutants, while Bottom displays their persistence probabil-
ity. The diagonal line corresponds to the initial spreading probability, the
colored circles show the results of the simulation, and the black continu-
ous curves show the theoretical approximation, for different compartment
sizes (N0). β= 1, r+ = 0, and T = 109 throughout. (B) The threshold sepa-
rates the plot into two distinct regimes: Below the curve, the persistence
probability is zero, and mutations cannot accumulate; above the curve,
the mutants that avoid early stochastic extinction, which occurs with proba-
bility Sm, will persist in the tissue during the lifetime of the individual, and
mutations can accumulate, leading to neoplastic progression.

the ratio r+/r−, the logarithm of which defines the self-renewal
potential φ (Eq. 5).

Fixing r− specifies the absolute time scale, while changing
the value of, for example, r+ changes the values of the self-
renewal potential φ= ln(r+/r−) and the strength of washing
out, defined as the fraction of cells being produced by dif-
ferentiation from below instead of self-renewal: δ+/(N 0r−) =
1− r+/r−= 1− exp(φ). In particular, r+ = 0, the default
value used in several examples above, corresponds to mini-
mal self-renewal potential (φ=−∞) and maximal washing out
(δ+/(N 0r−) = 1). Increasing values of r+/r−> 0 correspond
to increasing self-renewal potential and weakening washing out.

As shown in SI Appendix, Fig. S4, even for strong self-renewal
and correspondingly weak washing out, the threshold spreading
factor can be large in small compartments.

Discussion
In classical population genetics models of finite populations, a
mutation is either fixed in the population or lost from it within
a finite length of time. A fundamental result of population genet-
ics theory is that, in constant populations, mutations with a given
selective advantage will avoid early stochastic extinction and fix
with a probability independent of population size and propor-
tional to the selective advantage (14–16). As a corollary, in the
context of somatic evolution, Michor et al. (19) demonstrated that
the accumulation of oncogene-activating mutations (i.e., muta-
tions that provide a proliferative advantage) that occur at a con-
stant rate per cell division is faster in large than in small compart-
ments. Consequently, as pointed out by Michor et al., the classical
theory of finite populations of constant size implies that the orga-
nization of self-renewing tissues into many small compartments,
such as the stem cell pools in colonic crypts, from which the tis-
sue is derived, protects against cancer initiation (5). Further work
by Beerenwinkel et al. (6), using qualitatively similar models with
a single compartment without differentiation from below, found
that the average waiting time for the appearance of the tumor is
strongly affected by the selective advantage, with the average wait-
ing time decreasing roughly inversely proportional to the selective
advantage. The mutation rate and the size of the population at
risk, in contrast, were found to contribute only logarithmically to
the waiting time and hence have a weaker impact.

In hierarchically organized tissues with finite compartment size,
the situation is more complicated. A mutant that avoids early
stochastic extinction and achieves a sizable seemingly stable pop-
ulation can go extinct as a result of differentiation from below.
This results in a qualitatively different and more profound ability
of smaller compartment size to limit the accumulation of muta-
tions. Similarly to classical population genetics models, the initial
spreading probability of a mutation in a compartment of a hier-
archical tissue is proportional to the proliferative advantage Sm

and independent of the compartment size. However, as can be
seen in Fig. 3A, the probability of the mutation to persist in the
tissue exhibits a threshold that is strongly dependent on compart-
ment size. For small compartments, even mutants with a very large
selective advantage will only persist for a very short time; for exam-
ple, a mutant with a selective advantage of 10%, that is, Sm≈ 0.1,
the largest value considered by Beerenwinkel et al. (6), will rapidly
go extinct in compartments with up to several hundred cells.

An important exception is constituted by tissue-specific stem
cell compartments residing at the bottom of the hierarchy, such
as the stem cells at the bottom of colonic crypts. As these com-
partments do not receive an influx of cells from lower levels, their
dynamics can be described by the classical population genetics
models discussed above, that is, mutations can accumulate more
easily.

The derivation of the results presented above relies on the
existence of the potential defined in Eq. 9. In our model, this
is ensured by the assumptions that 1) the transition rates for cells
of each type depend only on the number of cells of that type
and 2) cell number regulation acts as a multiplicative rate mod-
ifier and depends only on the total number of cells. There are
several biologically relevant violations that must be considered.
In real tissues, the first assumption, the independence in the
absence regulation, is, in general, violated by mutation of wild-
type cells into mutant cells (and vice versa), as this increases
the number of mutant cells at a rate dependent on the num-
ber of wild-type cells (and vice versa). In the context of most,
if not all, somatic tissues, the rate of mutations that confer
significant selective advantage is sufficiently low that the wait-
ing time between successive mutations is much longer than the
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relevant time scale of the dynamics considered here; thus, it
has a negligible effect on the persistence time, and, as a result,
it does not affect our conclusions. This is even more the case
for back-mutations from mutants to the wild type. The second
assumption, the postulation of a simple form of cell number
regulation that acts as a multiplicative modifier and depends
only on the total number of cells, is clearly a simplification.
It neglects, for instance, explicit spatial organization and any
potential long-term memory, such as hysteresis of the homeo-
static compartment size dependent on either intrinsic or extrin-
sic parameters. Such a simplified form of regulation, however,
is consistent with more detailed models of homeostatic tissue
size regulation, such as recent work on the stability of regula-
tion (20–22) and its optimality in terms of reducing mutation
accumulation (23).

In order to quantitatively discuss the biological relevance of
our results, we must consider relevant values of two parame-
ters: compartment size (N 0) and the strength of the homeostatic
cell number regulation (β). Consider, for instance, the intesti-
nal crypts. Our knowledge of intestinal crypt organization is
most extensive for murine tissues, where crypts are believed to
consist of approximately 250 cells in total, out of which 160
to 180 are proliferative progenitor cells and 4 to 8 are stem
cells residing near the bottom of the crypt (24–27). Methods
using bromodeoxyuridine labeling (28), Ki-67 antibody stain-
ing (20), and analysis of methylation patterns (29) conclude
that the crypts in humans contain around 2,000 cells, with the
number of progenitor cells being between 500 and 700. In the
context of our model, assuming that proliferative cells can be
regarded as belonging to between 1 and 10 discrete levels of
progressively faster dividing cells corresponds to values of N 0≈
170 to 17 cells in mice and N 0≈ 600 to 60 in humans. Exper-
imental evidence on the strength of cell number regulation is
much more limited. Bravo and Axelrod (20), however, have mea-
sured the variation in cell numbers across biopsies in 49 crypts
from human individuals and found a mean of 624 proliferative
cells with an SD of 234. Assuming that 1) all of the proliferative

cells belong to a single compartment and 2) all of the observed
variation across crypts can be attributed to cell number fluc-
tuations around a common homeostatic value, that is, ignor-
ing completely variation in homeostatic size across crypts and
neglecting measurement error, provides a lower bound on the
strength of regulation of β� 624/2342≈ 0.01. The generally
well-defined cylindrically symmetric morphology of crypts, how-
ever, suggests that an SD corresponding to, at most, 10% of
the mean cell number is more realistic. Assuming between
1 and 10 levels, this corresponds to 1/(62.4× 0.12)≈ 1.6>
β> 1/(624× 0.12)≈ 0.16 in human and 1/(17× 0.12)≈ 6>β >
1/(170× 0.12)≈ 0.6 in mouse. This, together with the above val-
ues for N 0, places the threshold selective advantage at between
0.1 and 0.5 in the human colon and between 0.15 and 0.7 in
mouse (Fig. 3B).

At present, systematic data on the selection advantage of
mutations in somatic tissues is not available. Vermeulen et al.
(7), however, measured the fixation probability of several known
drivers of colorectal cancer in the mouse intestine, finding val-
ues between 0.4 (Kras +/−) and 0.75 (Kras G12D), which are
consistent with the above estimates. In the context of a different
epithelial tissue, the human esophagus, a survey by Martincorena
et al. (30) of clones persisting in normal tissue showed genomic
evidence of strong selective advantage of mutations, again con-
sistent with our predictions. Future data on tissue organization
and the selection advantage of mutations that persist in normal
tissue will offer exciting opportunities to confront them with our
results.

Methods
Detailed derivation of the results presented above are provided
in SI Appendix. All data are contained in the manuscript text and
SI Appendix.
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