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Multivariable mortality risk 
prediction using machine learning 
for COVID‑19 patients at admission 
(AICOVID)
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In Coronavirus disease 2019 (COVID-19), early identification of patients with a high risk of mortality 
can significantly improve triage, bed allocation, timely management, and possibly, outcome. 
The study objective is to develop and validate individualized mortality risk scores based on the 
anonymized clinical and laboratory data at admission and determine the probability of Deaths at 7 
and 28 days. Data of 1393 admitted patients (Expired—8.54%) was collected from six Apollo Hospital 
centers (from April to July 2020) using a standardized template and electronic medical records. 
63 Clinical and Laboratory parameters were studied based on the patient’s initial clinical state at 
admission and laboratory parameters within the first 24 h. The Machine Learning (ML) modelling was 
performed using eXtreme Gradient Boosting (XGB) Algorithm. ‘Time to event’ using Cox Proportional 
Hazard Model was used and combined with XGB Algorithm. The prospective validation cohort was 
selected of 977 patients (Expired—8.3%) from six centers from July to October 2020. The Clinical 
API for the Algorithm is http://​20.​44.​39.​47/​covid​19v2/​page1.​php being used prospectively. Out of 
the 63 clinical and laboratory parameters, Age [adjusted hazard ratio (HR) 2.31; 95% CI 1.52–3.53], 
Male Gender (HR 1.72, 95% CI 1.06–2.85), Respiratory Distress (HR 1.79, 95% CI 1.32–2.53), Diabetes 
Mellitus (HR 1.21, 95% CI 0.83–1.77), Chronic Kidney Disease (HR 3.04, 95% CI 1.72–5.38), Coronary 
Artery Disease (HR 1.56, 95% CI − 0.91 to 2.69), respiratory rate > 24/min (HR 1.54, 95% CI 1.03–2.3), 
oxygen saturation below 90% (HR 2.84, 95% CI 1.87–4.3), Lymphocyte% in DLC (HR 1.99, 95% CI 
1.23–2.32), INR (HR 1.71, 95% CI 1.31–2.13), LDH (HR 4.02, 95% CI 2.66–6.07) and Ferritin (HR 2.48, 
95% CI 1.32–4.74) were found to be significant. The performance parameters of the current model is at 
AUC ROC Score of 0.8685 and Accuracy Score of 96.89. The validation cohort had the AUC of 0.782 and 
Accuracy of 0.93. The model for Mortality Risk Prediction provides insight into the COVID Clinical and 
Laboratory Parameters at admission. It is one of the early studies, reflecting on ‘time to event’ at the 
admission, accurately predicting patient outcomes.

The current COVID-19 pandemic caused by SARS-CoV-2 is associated with high mortality and morbidity1. 
In India, over 10 million individuals have been affected by the virus (till mid January), with over 150 thousand 
people losing their lives, at a mortality rate of 1.44%2. However, the 30 days mortality rates at tertiary care 
hospitals in the US are far higher at 9.06% to 15.65%3. Various studies have been conducted to determine the 
mortality risk factors in COVID 194–6. Understanding the clinical and laboratory predictors at admission can 
lead to appropriate determinants of mortality and improve triaging, bed and resource allocation, and improved 
patient management throughout health systems.

The datasets of COVID-19 patients can be integrated and analysed by Machine Learning (ML) algorithms 
to improve diagnostic speed and accuracy better and potentially identify the most susceptible people based on 
personalized clinical and laboratory characteristics7. These methods activate early insights of patient’s outcome 
with the predictors at the time of admission. Existing studies have used Machine Learning Algorithms (MLA) 
to determine COVID-19 mortality8–10.
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Due to the absence of similar studies in the Indian population, this research work was undertaken to develop 
and validate MLA based on the anonymized clinical and laboratory data to predict the outcome (Expired or 
Recovered) from retrospective evaluation of patients admitted with COVID (Fig. 1). Additionally, the algorithm 
determines the probability (risk) of Events (defined as Death or Expiry of Subjects), predicting mortality at 7 and 
28 days. Secondarily this would provide clinical insights on various clinical and laboratory parameters. These 
are clinically and statistically relevant and help develop a Clinical API (application and programming interface) 
tool used by clinicians taking care of admitted patients even in low-cost settings.

The main contribution of the paper is to identify the risk factors for mortality at admission of COVID-19 
patients and to build a multivariable Machine Learning model which would help in triaging, allocating resources, 
putting patients into an appropriate clinical protocol, and patient and family education at admission.

The remainder of this paper includes Methodology, Study design and modelling in “Methodology” section; 
“Results” in “Results”  section, Interpretation and Limitations in “Limitation”  section, followed by Conclusion 
in “Conclusion” section.

Methodology
This study is designed as a multicenter, retrospective—prospective, observational, non-interventional study.

Source of data.  The retrospective data (for the development cohort) is collected from the anonymized 
clinical and laboratory records at admission from the discharge summaries of the patients and a standardized 
template (Annexure 1) from six Apollo Hospitals in India for the period of April to June 2020. These Hospitals 
are from Bangalore Chennai, Delhi, Hyderabad, Kolkata, and Navi Mumbai. On the prospective validation arm, 
the data elements at admission were provided by the site investigator in the electronic template (API—Fig. 4). 
Additional data were collected from discharge summaries, and the standardized template described. For dis-
charged summaries, we used appropriately coded ICD-10 diagnosis data. The validation cohort was collected 
from the same six hospitals in the period between August to October 2020.

Participants.  The participants were admitted to the hospital with symptoms and history suggestive11,12 of 
Coronavirus Disease (COVID) with subsequent laboratory confirmation through Reverse Transcription Poly-
merase Chain Reaction (RT-PCR tests). The data were collected during admission at Emergency Room and 
following admission (within 24 h). The eligibility criteria for inclusion of the patients included—(a) patients 
presenting with COVID-19 related symptoms (with or without a history of contact/travel to geographical hot 
spots in the community), (b) subjects who comply with category B2/C in the Apollo Hospitals COVID protocol 
(See Annexure 2). The exclusion criteria were (a) patients admitted for other disease conditions and were sub-
sequently found to have COVID during the hospital stay. The study did not include any specific intervention 
or treatment provided to the patient during admission or within its 24 h. The Institutional Ethics Committees 
of the six Apollo Hospitals (specified above) have approved the research and confirmed that all research was 
performed in accordance with relevant guidelines/regulations, and that informed consent was obtained from all 
participants and/or their legal guardians. Research involving human research participants has been performed 
in accordance with the Declaration of Helsinki.

Outcome.  The study’s primary outcome was to develop comparable models with improved accuracy param-
eters, which would yield a risk predictor for mortality (in the next 7 and 28 days) at admission. Each predictor 
(clinical and laboratory variables) are studied for their odds and hazard ratios.

Predictors.  The Clinical Variables included patient’s basic information, including Age and Gender, Exposure 
and Travel history, and the number of days of symptoms before admission. It also included different symptoms 
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Figure 1.   Schematic flow of the development and validation of the AICOVID algorithm to predict the risk of 
mortality at admission.
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like fever, cough, respiratory distress (shortness of breath), etc. The history of associated chronic diseases like 
diabetes, hypertension, heart and kidney disease, cancer, etc., was captured. Vitals at admissions like tempera-
ture, oxygen saturation, rate of respiration (ROR), and pulse rate were noted. Laboratory parameters were cat-
egorized into (a) Complete Hemogram including Red Cell Distribution Width, (b) Basic biochemistry including 
Kidney and Liver Profile Tests, (c) Coagulation Profile including Prothrombin Time, International Randomized 
Ratio (INR), Activated Prothomboplastin Time (APTT) and D-dimer, (d) Inflammatory markers like C-Reac-
tive Protein (CRP), Lactic Acid Dehydrogenase (LDH), Ferritin, Interleukin-6 and Procalcitonin, were evalu-
ated. Out of more than 65 predictors, we selected only 23 predictors based on their odds ratio, p value (Table 1), 
and clinical relevance. D-dimer and Interleukins were not selected in the study due to the smaller sample size 
(< 30%). For Validation data, there were no differences from the development data in setting, eligibility criteria, 
outcome and predictors.

Sample size.  The study included a total population of 2370 patients, including 1393 in the Development 
Cohort and 977 in the Validation cohort. The sample size was determined using an estimated 10 million COVID 
Cases in India (October 2020) at 95% confidence level and confidence interval 2.

Missing data.  The initial development cohort was 1435. Forty-two patient’s data were dropped owing to 
missing fields. No imputations were used in the development or validation cohort. As described earlier, certain 
laboratory predictors were not selected due to the smaller sample size and missing values.

Table 1.   23 key clinical and lab variables for the prediction of mortality at admission with COVID-19.

Development Validation

Clinical 
and lab 
parameters Threshold

Recovered Expired Odds ratio Recovered Expired Odds ratio

Mean CI Mean CI Odds ratio p value Mean CI Mean CI Odds ratio p value

Age 60 47.19 46.28–48.09 61.13 57.98–64.28 4.59 < 0.0001 53.4 52.39–54.4 67.41 64.52–70.3 5.12 < 0.0001

Gender 
(male) N/A 0.68 0.65–0.7 0.78 0.7–0.85 1.67 0.0328 0.72 0.69–0.75 0.85 0.77–0.93 1.19 0.2937

Fever N/A 0.62 0.59–0.65 0.76 0.68–0.84 1.94 0.0043 0.58 0.55–0.62 0.02 0.01–0.06 0.17 < 0.0001

Cough N/A 0.37 0.34–0.39 0.43 0.34–0.52 1.33 0.1641 0.5 0.47–0.53 0.47 0.36–0.58 0.74 0.0389

Respiratory 
distress N/A 0.21 0.18–0.23 0.57 0.48–0.66 5.01 < 0.0001 0.13 0.1–0.15 0.51 0.4–0.62 3.08 < 0.0001

Weakness N/A 0.09 0.08–0.11 0.17 0.1–0.24 1.96 0.0148 0.15 0.12–0.17 0.21 0.12–0.3 0.65 0.038

Diabetes N/A 0.29 0.26–0.31 0.57 0.48–0.66 3.33 < 0.0001 0.39 0.36–0.42 0.52 0.41–0.63 2.15 < 0.0001

Hypertension N/A 0.3 0.27–0.32 0.5 0.4–0.59 2.37 < 0.0001 0.42 0.39–0.45 0.58 0.47–0.69 2.09 < 0.0001

Chronic kid-
ney disease N/A 0.05 0.04–0.07 0.16 0.09–0.23 3.24 < 0.0001 0.05 0.04–0.06 0.19 0.1–0.27 4.1 < 0.0001

Chronic liver 
disease N/A 0.01 0–0.01 0.02 0.01–0.04 3.44 0.1261 0.01 0–0.01 0.01 0.01–0.04 3.85 0.0378

Heart disease N/A 0.06 0.05–0.07 0.24 0.16–0.32 5.04 < 0.0001 0.09 0.07–0.11 0.02 0.01–0.06 2.11 0.0017

Respiration 
rate 24 21.63 21.44–21.83 27.33 26.12–28.55 6.77 < 0.0001 21.56 21.29–21.82 28.49 26.74–30.25 4.56 < 0.0001

Oxygen 
saturation 0.88 0.97 0.96–0.98 0.88 0.86–0.9 22.32 < 0.0001 0.95 0.95–0.96 0.85 0.82–0.88 7.58 < 0.0001

WBC count 8000 6684 6510–6858 9907 8039–11,775 3.64 < 0.0001 7076 6596–7556 12,919 10,747–
15,091 3.29 < 0.0001

Lympho-
cyte% 10 25.37 24.74–26 10.06 8.48–11.64 11.93 < 0.0001 30.63 29.86–31.4 19.64 17.31–21.98 3.92 < 0.0001

INR (PT) 1.3 1.13 1.12–1.15 1.32 1.24–1.39 4.58 < 0.0001 1.41 1.36–1.45 1.98 1.71–2.25 3.49 < 0.0001

Creatinine 1.3 1.19 1.11–1.28 1.79 1.43–2.15 3.26 < 0.0001 9.69 9.08–10.3 3.28 2.77–3.8 14.08 < 0.0001

Albumin 3.5 4.05 4.02–4.08 3.61 3.48–3.74 3.95 < 0.0001 4.08 4.05–4.11 3.62 3.43–3.81 3.1 < 0.0001

AST 
(aspartate 
aminotrans-
ferase)

60 47.66 45.54–49.79 64.54 48.34–80.74 1.58 0.0452 50.18 46.17–54.18 167.16 113.39–
220.93 3.49 < 0.0001

Lactate dehy-
drogenase 450 315.07 307–322 565.79 509.5–622.0 8.6 < 0.0001 334.61 324.21–345 602.49 545.26–

659.73 8.46 < 0.0001

Ferritin 800 518.98 446–591 1566.7 942.9–2190.4 3.76 < 0.0002 536.44 489–583 1772.16 1397.–2147 4.15 < 0.0001

C-reactive 
protein 48 35.72 28.9–42.54 145.92 87.5–204.34 5.35 < 0.0001 36.94 33.55–40.33 135.9 110.33–

161.48 3.44 < 0.0001

Red cell 
distribution 
width

14.5 14.27 14.18–14.37 14.55 14.22–14.87 1.21 0.368 14.5 14.37–14.63 16.44 15.84–17.05 3.06 < 0.0001
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Statistical analysis and modelling approach.  The clinical and laboratory parameters were selected 
based on the odds ratios of the initial cohort. The parameters were subsequently run through the Propensity 
Matching for the binary classification of Event (Death—1) and Non-Events (Survival—0). The population is ran-
domly divided into training (70%) and test (30%) in the development model. The 23 parameters were then put 
through the three models for maximizing the K-fold cross-validation AUC (Area Under Curve) using Python 
(3.7) to determine the performance of logistic regression, random forest models, and eXtreme gradient boosting 
(XGB) algorithm.

However, we considered the XGB (eXtreme Gradient Boosting) model, as the function of this model is an 
approximation of the data distribution considering the errors:

where yi is the predicted value and xi are the input values. F1(xi) is a function, and the relationship between x 
and y is not fully described.

1.	 We initialize the model by solving the following equation for the 23 input parameters:
	   F0(x) = argmin

∑n
i=1L(yi, γ ); then we get

where n is the total number of observation, i.e., 1393. F1(xi) function is a weak learner, and the relationship 
between X and y is not fully described.

2.	 For no of iterations—m = 1 to M
	   Gradient with respect to predicted value,

where i is the index for observations, m represents the number of iterations with m ∈ [1, M]. M is the maxi-
mum number of iterations. L stands for loss functions.

3.	 Fit the weak learner hm(x) to the residuals by:
	   Computing the γm to solve the optimization problem:

	   By solving this equation we can get:

4.	 Update the Fm(x) = Fm−1(x)+ γm · hm(x)
	   squared error is used as the loss function, and the gradient of the loss function can be calculated as follows:

Python language is used to code the program. Python ML packages were used, namely Sklearn, numpy and pan-
das library is used for this work. The code snippet for XGB model = XGB Classifier (n estimators = 1997, learning 
rate = 0.2, max depth = 5, random state = 42). These details are obtained through multiple trial and error methods 
with many hyperparameters derived from the variables. Similarly for Random Forest Model n_estimators were 
selected as 100, with max depth at 5.

After training model and successful testing, the model is pickled and saved. This pickled model is hosted and 
served as the back end for requests from the front end user. The user’s values will act as input for the model, and 
the predicted response would be output.

Risk stratification.  On the input of the individual data to the algorithm, the machine returns the value in 
percentage of the risk of mortality in the next 7 and 28 days. The risk thresholds between 0 and 15% are associ-
ated with low mortality rates (< 1%), while the moderate risk category 15–30% had 1–5% Mortality and high-risk 
category (> 30%) at > 5% Mortality. Further, the Cox Proportional Hazard model’s addition returned the prob-
ability of mortality in 7 and 28 days and has been used to display in the output.

yi = F1(xi)+ error1i

F0(x) =

∑n
i=1yi

n

rim = −

{

∂L
[

yi, Fm−1(xi)
]

∂Fm−1(xi)

}

,

γm = argmin

n
∑

i=1

L[yi, Fm−1(xi)+ .Fm(xi)]

γm =

∑n
i=1hm(xi) · [yi − Fm−1(xi)]

∑n
i=1hm(xi)

2

rim = −

{

∂L
[

yi, Fm−1(xi)
]

∂Fm−1(xi)

}

,

= −
∂{ 12 × [Fm−1(xi)− yi]

2}

∂Fm−1(xi)

= −
∂
{

1
2 ×

[

Fm−1(xi)
2 + y2i − 2× Fm−1(xi) · yi

]}

∂FM−1(xi)

= yi − Fm−1(xi) for i = 1, 2, . . . n.



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:12801  | https://doi.org/10.1038/s41598-021-92146-7

www.nature.com/scientificreports/

Predictors analysis.  Hazard Ratios are calculated for each predictor, based on their accepted clinical and 
laboratory thresholds, as applicable. (see Table 1 for Thresholds) Kaplan Meir curves and Violin plots were used 
to analyze the effect of individual variables on overall mortality.

Performance evaluation.  All models are evaluated based on their ability to discriminate between out-
comes for the development cohort and the XGB Model for the validation cohort with the corresponding con-
fidence intervals (CI). The AUC, accuracy, sensitivity—specificity, precision, predictive value, and likelihood 
ratios are computed for validation cohort with a standard threshold. Thresholds are derived through the mean 
cut off values of different parameters including their clinical and laboratory ranges.

Patient and public involvement.  The study has been conducted with retrospective data from April to 
July 2020, and hence development of the research question and outcome measures were not directly communi-
cated to the patients in the development cohort. However, in the validation cohort, they were informed about 
the study design and outcome.

Results
Clinical and laboratory variables at admission (participants).  The average observed mortality rates 
are 8.54% (N = 1393) in the development cohort and 8.3% in the validation cohort (N = 977) for six different 
hospitals in April to July 2020 and August to October 2020, respectively. The average Length of Stay in the study 
population is 10.04 (9.75–10.3) days for survived patients and 12.32 (11.2–13.5) days for expired patients. In Age 
comparison, expired patients were older (mean age 61.1 vs. 47.2 in the development cohort and 67.4 vs. 53.4 
in the validation cohort). The gender of expired patients was 78% & 85% male in the development and valida-
tion cohort. Further details of the symptoms, comorbidities, vitals at admission, and laboratory parameters are 
provided in Table 1. Significantly, the odds ratios for Respiratory Distress [5.01], Diabetes [3.33], Heart Disease 
[5.04] are high in the development cohort as symptoms and comorbidities. Odds ROR > 24/min, Oxygen satura-
tion < 90% are at 6.77 and 22.32 respectively. In lab parameters, Lymphocytes below 10% [11.93], Lactate Dehy-
drogenase > 250 units [8.6] and C-reactive protein > 48 units [5.35] show high significance. Figure 2—shows the 
different parameters with violin graphs.

Performance indicators (model development and validation).  The performance of the XGB model 
is summarized in Fig. 3 below. The AUC for the developed algorithm is 0.88, Accuracy score at 0.97, and preci-
sion at 0.91. The validation cohort’s performance is AUC at 0.78, Accuracy score at 0.93, and precision at 0.77. 
The positive likelihood ratio is at 15.06, and the negative predictive value is 96.41%. The critical clinical and 
laboratory variables in the ML model depict the important predictors of the overall outcome and interplay 
between each of them.

Figure 2.   Combination of Box Plots and Kernel Density Plots reflect on different clinical and lab variables 
at admission and their representation for Survival (0) vs. Expired Patients (1). The white dot represents the 
median, the thick grey bar in the centre represents the interquartile range, the thin grey line represents the rest 
of the distribution, except for points that are outliers. [Development Cohort].
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Propensity matching scores.  The results of the propensity matching scores for the Survivor and Mortal-
ity Groups in the development dataset using Hosmer and Lemeshow Goodness of Fit (GOF) test are—X-squared 
(1.2341), df (8), p value (0.9963), AIC value (241.148), Log-likelihood (− 94.574), adjusted R square (0.7509801), 
Pseudo-R-squared values at—McFadden (0.750980), Nagelkerke (Cragg and Uhler) (0.799456). We achieved 
following values for the validation set—X-squared (3.2107), df (8), p value (0.9204), AIC value (288.9656), Log-
likelihood (−  118.4828), adjusted R square (0.6598251), Pseudo-R squared values at McFadden (0.659825), 
Nagelkerke (Cragg and Uhler) (0.740693).

Comparison.  When the eXtreme Gradient Boosting (XGB) algorithm is compared with the other models, 
the comparative results are given in Fig. 4. There is an overall improvement in AUC ROC Scores and Sensitivity 
in the Gradient Boosting Model compared to the other two models studied.

Model specification—hazard ratio and survivability plots.  We analysed the Hazard Ratios to deter-
mine each predictor’s effect and contribution in the model and their interplay with other factors. This is done 

Figure 3.   Performance of eXtreme Gradient Boosting (XGB) Algorithm for the Development and Validation 
Cohort.

Figure 4.   Comparing the performance of eXtreme Gradient Boosting (XGB) Algorithm with Logistic 
Regression and Random Forest for the development cohort.
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keeping in mind that the odd’s ratios in Table 1 are for single variables where the Hazard Ratios provide the 
multivariable perspective. The hazard ratios of the 23 variables are provided in Table 2

Further to the Hazard Ratios analysis of individual clinical and laboratory predictors, we looked at the 
predictors’ feature in survivability analysis using Kaplan Meier (KM) Plots. KM Plots were prepared for both 
development and validation cohorts and studied for Comorbidities like Diabetes, Hypertension, and existing 
Heart Diseases (Coronary Artery Diseases). Heart disease has a seemingly better outcome in the validation 
cohort, probably due to early intervention and education among patients. In the validation cohort, we can see a 
considerable change in—Respiratory Distress, Respiratory Rates > 24/min, and Oxygen Saturation below < 90%, 
which reflects that despite best efforts, patients with significant respiratory failure at admission continue to have 
a poorer prognosis in 28 days. In Laboratory parameters, LDH, INR, Ferritin, and Red cell Distribution Width 
show almost similar trends, while low Lymphocyte% contributes higher mortality predominantly in Develop-
ment Cohort (Fig. 5).

Discussion
Interpretation.  The AICOVID Risk Prediction Model uses the data from different Indian Hospitals and 
populations and predicts the outcome (Mortality or Survival) of the patient at the time of admission with 23 
Predictors (Clinical and Laboratory) data. This Model, with its existing accuracy, is a comprehensive AI-enabled 
tool to assist the physician in (a) making triage decision, (b) provide guidance for resource allocation for High 
and Moderate Risk patients, (c) put them in appropriate Clinical Algorithm (Protocol) Annexure 2 and finally 
(d) provides a systemic approach of patient and family education related to disease severity during admission. 
This tool uses basic clinical and laboratory predictors that can be easily accessed in low-cost Indian populations 
and can be implemented as a secured application programming interface (API).

The model considers Patient’s Age above 60 years as an important predictor and High Risk of Mortality, 
significantly shown here with higher hazard ratio in the validation cohort (2.31; CI 1.52–3.53)13. Interestingly, 
CDC (Dec 2020) finds similar range of mortality comparison between patients below and above 65 years in US 
population14. Further, male gender has hazard ratios (1.72, 95% CI 1.06–2.85) signifying higher risk of mortality 
in male population, which is congruent to other international studies15 where odds of death has been (1.39; 95% 
CI 1.31–1.47) comparable. Respiratory Symptoms like distress, higher rate of respiration (> 24/min) or silent 
hypoxemia detected through lower oxygen level (< 90%) have shown higher risk of mortality (see Table 2) and 
find their due weightage in the eXtreme Gradient Boosting (XGB) algorithm. The reason to include seemingly 
similar attributes as they represent different aspects of symptoms and vital physiological parameters at admission. 
This has also been studied extensively in US patients16. The study does not include the High and Moderate Risk 

Table 2.   Adjusted hazard ratios (multivariate) of the 23 Predictors, calculated based on 28 days Mortality in 
validation Cohorts.

Hazard ratio Confidence interval z p value

Age > 60 years 2.31 1.52–3.53 3.9 < 0.005

Gender (male) 1.72 1.06–2.85 − 2.2 0.03

Fever 0.28 0.16–0.46 − 4.85 < 0.005

Cough 1.02 0.7–1.47 0.09 0.82

Respiratory distress 1.01 0.62–1.53 0.02 0.84

Weakness 1.69 0.91–2.94 − 1.91 0.05

Diabetes 1.21 0.83–1.77 1 0.14

Hypertension 1.04 0.7–1.55 − 0.16 0.83

Chronic kidney disease 3.04 1.72–5.38 3.88 < 0.005

Chronic liver disease 3.95 1.16–13.42 2.2 0.02

Heart disease 1.56 0.91–2.69 1.61 0.11

ROR 1.54 1.03–2.3 2.03 0.04

Oxygen saturation (SpO2) 2.84 1.87–4.3 2.11 < 0.005

WBC count 1 1 4.9 0.91

Lymphocytes % 1.99 1.23–3.2 − 1.95 < 0.005

INR (prothrombin time) 0.96 0.82–1.13 2.83 0.64

Creatinine 0.82 0.78–0.87 − 0.47 < 0.005

Albumin 1.36 1.03–1.78 − 7.46 0.03

AST (liver enzyme) 1.11 0.89–1.33 1.86 0.01

Lactate dehydrogenase 4.02 2.66–6.07 2.54 < 0.005

Ferritin 2.48 1.32–4.74 6.61 < 0.005

C-reactive protein 1.65 1.11–2.46 − 2.95 0.01

Red cell distribution width 1.03 0.95–1.12 2.45 0.53
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patients’ subsequent mechanical ventilation and their overall outcome. However, the Kaplan Meir plots (Fig. 5) 
show outcomes for patients with severe respiratory symptoms at both development and validation cohorts.

The pooled prevalence of Diabetes and Hypertension are 26% and 31.22%, respectively, in the development 
cohort. The odds of mortality in these comorbid conditions are provided in Table 1, comparable with the meta-
analysis conducted by Kumar et al.17. Hazard ratios associated with Chronic Kidney Disease (3.04, CI 1.72–5.38) 
(Prevalence 6.2%) shows the higher associated risk with comparable results from ERA-EDTA Council and the 
ERACODA Working Group18. The prevalence of Chronic Liver Disease (3.95, CI 1.16–13.42) was comparatively 
lower than other comorbidities, and hence hazard ratio is higher than other studies19. Hazard associated Pre-
existing Coronary Artery Disease (1.56, CI 0.91–2.69) (Prevalence 7.3%) showed a lesser hazard ratio probably 
due to timely intervention and management, compared to studies by Cheng Y et al. and China CDC20,21.

In lab features conducted during admission, lymphopenia (Lymphocyte < 12%) had a hazard ratio (1.99, CI 
1.23–3.2), which is consistent with the systemic review and meta-analysis22. Other significant factors included 
pro-inflammatory markers like LDH (cut off—> 250 U/L), Ferritin (cut off—> 450 µg/L), and CRP (cut 
off—> 48 mg/L) (See Hazard Ratio—Table 2). This is consistent with various international studies with slightly 
modified cut-off values23–25. Though the study did not attribute different features like Neutrophil—Lymphocyte 
Ratio or CRP / Albumin Ratio, it did look into the Hazard Ratios separately25.

As discussed above, the model takes all the above features, reasonably congruent with the published inter-
national studies, and provides the prediction using an eXtreme Gradient Boosting (XGB) method. The eXtreme 
Gradient Boosting (XGB) method is a popular technique that recursively fits multiple predictors and a weak 
learning system with the residual to increase the model’s accuracy using various iterations26. The model inherently 
identifies the complex data structure—including their interaction and nonlinearity in the context of multiple 
predictors. For further use, the model would be calibrated with the data provided in the API in Fig. 6 (seen here 
with dummy data for quality assurance purpose) and continuously improve over a period of time. The Risk Model 
is available for clinicians at http://​20.​44.​39.​47/​covid​19v2/​page1.​php.

Implication.  All measures have been taken to reduce bias, including socio-economic aspects, as Apollo Hos-
pitals admitted patients from all society sections with moderate to severe diseases. Potential clinical use of the 
Clinical API developed from the AICOVID Algorithm is currently being used in Apollo Hospitals. It can be 
used in the Indian Subcontinent hospitals with the current accuracy and precision. In the prospective validation 
study, patient written consents were obtained through an appropriately designed consent form (Annexure 4), 
paving the way for further research of using written consent in Clinical AI-enabled tools and their appropriate 
patient information.

The developed model—AICOVID and its corresponding Application—is being utilized for triaging, allo-
cating resources, putting patients into an appropriate clinical protocol, and patient and family education at 
admission. This has reduced time to appropriate bed allocation and Isolation ER holding times. Further, it has 
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Figure 5.   The Graphs compare the KM Plots with the Model (N = 1393) [ABOVE] vs. the Validation (N = 977) 
[BELOW] Cohorts. The Comorbidities, Respiratory condition at admission, and the significant lab parameters 
are studied over five weeks for survival from the time of admission. The cut off values for Respiratory 
Rate—> 24/min; SpO2—< 90%, Lymphocytes—< 10%, LDH > 250 U/L, INR > 1.3, Ferritin > 450 microgm/L and 
RDW > 14.5% are studied here.

http://20.44.39.47/covid19v2/page1.php
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helped in reducing cost in ordering necessary tests at admission, thereby using patient’s and hospitals’ resources 
at optimum.

Similar models have been created at MIT Sloan School10 and Tencent AI Lab27 using 7 and 10 clinical fea-
tures and similar accuracy and precision. However, these tools are more specific and accurate to the population 
whose data is being used to build the models. The steps of the research is conducted in accordance with TRIPOD 
Checklist28.

Limitation
The model is prepared with Clinical and Laboratory features that are available at the time of admission in 
Emergency Room or other clinical settings. One of the study’s limitations is that it does not include imaging 
tests done at the time of admission, as many of the critical patients couldn’t undergo imaging tests within first 
6 h of admission. Due to logistical issues, certain clinical parameters like Body Mass Index (BMI) and follow-up 
information on patient’s ventilation details were not obtained. Furthermore, due to the unavailability of adequate 
data—certain laboratory markers like D-dimer and Interleukins were excluded. The research team is currently 
undertaking the analysis of the follow-up care of these patients (survivors).

Geographical and Ethnic acceptance—The Apollo Hospitals included in the study are from Bangalore Chen-
nai, Delhi, Hyderabad, Kolkata, and Navi Mumbai. This provides comprehensive coverage of the Indian popula-
tion, looking at possible zones. However, further studies are required for validation and calibration purposes in 
Western and Eastern (including North Eastern) zones. Beyond India, further research is needed to calibrate the 
model when used in other population like the US, Europe, Middle East, and South East Asia.

Conclusion
This study and model on mortality risk prediction provides insight into the COVID Clinical and Laboratory 
Parameters at admission with an accuracy of 97% at Development and 93% at Validation Cohort respectively. The 
model is built to ensure that it can be used in low cost settings to improve triage and resource allocation. This is 
one of the initial studies reflecting on ‘time to event’ at admission, accurately predicting patient outcomes, done 
on the Indian population. Future studies should include a global approach with inclusion of Imaging parameters.

Data availability
Data cannot be shared with any 3rd party.
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