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Gout is a common inflammatory arthritis caused by the deposition of sodium urate crystals
in the joints. Hyperuricemia is the fundamental factor of gout. The onset of hyperuricemia
is related to purine metabolism disorders or uric acid excretion disorders. Current studies
have shown that the intestine is an important potential organ for the excretion of uric acid
outside the kidneys. The excretion of uric acid of gut is mainly achieved through the action
of uric acid transporters and the catabolism of intestinal flora, which plays an important
role in the body’s uric acid balance. Here we reviewed the effects of intestinal uric acid
transporters and intestinal flora on uric acid excretion, and provide new ideas for the
treatment of hyperuricemia and gout.

Keywords: gout, hyperuricemia, ABCG2, SLC2A9, intestinal flora
INTRODUCTION

Gouty arthritis is an inflammatory disease caused by the deposition of sodium urate crystals in and
around the joints caused by long-term hyperuricemia (1). Uric acid is the final product of human
purine metabolism. Uric acid in the human body maintains a dynamic balance under the action of
the liver, kidneys and intestines. When the balance is lost, the serum uric acid level will increase (2).
Hyperuricemia (>6.8mg/dL) is the main cause of gout and a risk factor for cardiovascular disease,
kidney disease, metabolic syndrome and other diseases (3–6). Under physiological conditions, two
thirds of uric acid is excreted from the kidneys and one third is excreted through the intestines (7).
Hyperuricemia was divided into overproduction of uric acid and insufficient excretion (8, 9). In
recent years, the hypothesis of “kidney overload” is increasingly recognized, suggesting that the
types of hyperuricemia should be changed to renal excretion disorders and renal overload types,
which including insufficient extrarenal excretion and excessive uric acid production (10). The
extrarenal excretion of uric acid is mainly achieved through the intestinal tract. The current uric acid
lowering drugs mainly include three categories: inhibiting the production of uric acid, promoting
the dissolution of uric acid, and promoting the excretion of uric acid in the kidneys (11). Several
drugs can inhibit the production of uric acid, such as allopurinol, febuxostat, and topiroxostat.
Allopurinol reduces the synthesis of uric acid by inhibiting xanthine oxidase. However, allopurinol
hypersensitivity syndrome (AHS), in which allopurinol has a fatal risk, warrants attention, and the
incidence of AHS is higher in Asians, especially Han people (12). As a non-purine xanthine oxidase
inhibitor, febuxostat is better than allopurinol in inhibiting the production of uric acid. However, it
has been reported that febuxostat can increase the mortality of cardiovascular events in patients
with gout. Other adverse reactions include muscle pain, elevated liver enzymes, etc. (11, 13).
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Recombinant uricase that promote the dissolution of uric acid,
such as rasburicase, pegloticase, and pegloticase have a higher
probability of infusion-related reactions such as rash, headache,
and dyspnea (14, 15). Benzbromarone, probenecid, and
lesinurad can promote the excretion of uric acid in the kidney.
Benzbromarone inhibits the reabsorption of uric acid in the renal
tubules to achieve the purpose of lowering uric acid, which can
lead to the formation of uric acid kidney stones and liver toxicity
(16). Probenecid and lesinurad reduces uric acid reabsorption by
inhibiting the activity of renal uric acid transporter, but adverse
reactions may occur in various systems (17). A clinical trial has
shown that lesinurad monotherapy treats increased serum
creatinine and the occurrence of renal-related adverse events
(18). At present, the target of drugs for promoting uric acid
excretion is mainly concentrated in the kidneys, which will
increase the burden on the kidneys, especially for patients with
chronic kidney disease. As the largest organ of the human body,
the intestine has a huge potential for uric acid excretion, and it is
hoped that it will become a safer and more effective target organ
for lowering uric acid drugs. This article reviews the metabolic
pathways of uric acid in the intestines and the possible
therapeutic targets derived therefrom.
METABOLIC PATHWAY OF URIC ACID

Uric acid is mainly synthesized in the liver, and a small amount is
produced in the small intestine. It is the final product of human
purine metabolism. Purine nucleotides generate adenosine,
inosine and guanosine under the action of adenosine
deaminase, adenosine is deaminated to form inosine, and
inosine and guanosine are further converted into hypoxanthine
and guanine, hypoxanthine Purine forms xanthine under the
action of xanthine oxidase, and guanine deaminates to form
xanthine. Xanthine is oxidized again by xanthine oxidase and
finally produces uric acid (Figure 1) (19, 20). In most mammals,
uricase can oxidatively degrade uric acid into the soluble
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compound allantoin. In the process of human evolution, the
gene encoding uricase has undergone inactivation mutations,
resulting in a lack of uricase (21). It has been shown that two-
thirds of the uric acid in the human body is excreted from the
kidneys, one-third is excreted from the intestines and bile, and
the proportion of uric acid excreted by bile is very small. The
kidney regulates the excretion of uric acid through the
reabsorption and secretion of proximal tubules, and this
process is mainly achieved through uric acid transporters (22,
23). Uric acid transporter dysfunction plays an important role in
the pathogenesis of hyperuricemia. Genome-wide association
studies (GWAS) found that many genes related to hyperuricemia
and gout. The genes encoding proteins referred to as uric acid
transporter (24, 25), including URAT1, OAT4 and SLC2A9 that
mediate the reabsorption of uric acid, and transporters such as
ABCG2, OAT1, OAT2, OAT3, and MRP4 that mediate the
secretion of uric acid (Figure 2) (26).
THE EFFECT OF INTESTINAL URIC
ACID TRANSPORTERS ON LEVEL
OF URIC ACID

The blood uric acid concentration is related to a variety of
transporter-encoding genes. Among them, the uric acid
transporter in intestinal epithelial cells transports uric acid
from the blood to the intestinal lumen, which involves the
participation of multiple transporters, mainly ABCG2 and
SLC2A9 (27).

ABCG2
ABCG2, also known as breast cancer resistance protein (BCRP),
containing 1 transmembrane domain and 1 ATP binding
domain. ABCG2 gene is located at the gout susceptibility site
of chromosome 4q (28), and expressed on the apical membrane
of cells in various tissues such as the intestine, liver and kidneys
FIGURE 1 | Metabolism of uric acid.
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(29, 30). ABCG2 is a high-volume uric acid transporter. More
and more studies have found that ABCG2 plays an important
role in intestinal uric acid excretion and the pathogenesis of
hyperuricemia. The dysfunction of ABCG2 reduces the excretion
of uric acid in the intestinal tract, resulting in increased blood
uric acid levels.

Dehghan et al. first proposed the correlation between the
ABCG2 gene and uric acid level and gout (31). It has been found
that the uric acid content was significantly reduced by 75.5% in
ABCG2 expressed oocytes when compared with the control (32).
Consistently, the serum uric acid level is increased in ABCG2
gene knockout mice in a established a hyperuricemia mouse
model by using the urinase inhibitor potassium oxonate.
Interestingly, the intestinal uric acid clearance rate is
significantly reduced, while the renal uric acid excretion
compensatoryly increases (10). To explore the distribution of
uric acid in the body, a mouse model of hyperuricemia with 14
C-labeled uric acid was established. The results showed that the
expression of uric acid in the intestine was second only to that in
the kidney, and ABCG2 transporter inhibitor elacridar can
significantly reduce the clearance rate of uric acid in the
intestine (33). The above data show that inhibiting ABCG2
expression can reduce the excretion of uric acid in the
intestine, confirming that intestinal ABCG2 dysfunction is one
of the pathogenesis of hyperuricemia.

The expression of ABCG2 is regulated by a variety of
transcription factors and hormones, and the mechanism is still
unclear. Previous study has shown that toll-like recepter 4
(TLR4)-NLRP3(NOD-,LRRand pyrin domain-containing 3)
inflammasome and phosphatidylinositol 3-kinase protein
kinase B (PI3K/Akt) signaling pathway up-regulates the
expression of ABCG2 through PDZK1 on the HT-29 and
Caco-2 cells membrane (34, 35). Consistently, ABCG2 gene
mutation has the greatest impact on human serum uric acid
levels through affecting its protein expression level and uric acid
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transport efficiency. Q141K and Q126K are the two variants of
ABCG2 that cause hyperuricemia (36). The Q141K variant
causes a 54% reduction in ABCG2 uric acid excretion, and the
latter almost loses its transport function (37). Targeted drugs for
ABCG2 mutations have been reported, Woodward et al. found
histone deacetylase (HDAC) inhibitor, namely 4-phenylbutyric
acid, can correct the conformation of 141K ABCG2 mutant
protein and restore its function (38). Uric acid-lowering drugs
for ABCG2 dysfunction are expected to become a new
treatment direction.

SLC2A9
The SLC2A9 gene is located on human chromosome 4p and
encodes glucose transporter 9 (GULT9), which is expressed in the
liver, kidney, small intestine and chondrocytes. A large number of
studies have found that SLC2A9 has a strong correlation with uric
acid levels (39). SLC2A9 is a voltage-dependent high-volume uric
acid transporter, which is involved in the reabsorption of uric acid
(40, 41). The genetic variation of the SLC2A9 locus is quite
complex. Many other SNPs that are closely related to gout, such
as rs4447863, rs737267, rs13129697, rs6449213, rs1014290,
rs6449213, rs737267, and rs16890979 (31, 39). A meta-analysis
showed that rs3733591 may be a protective SNP in the Caucasian
population, while it is a cause for the Asian population (42).
Therefore, SLC2A9 mutations may mediate the onset of gout and
can become a target for the treatment of gout.

It has shown that SLC2A9 is abundantly expressed in intestinal
epithelial cells, especially jejunum and ileum, and is mainly located
on the top and basolateral membrane of intestinal epithelial cells,
which suggests that SLC2A9 may also mediate the excretion of
uric acid from the intestine. Actually, the intestinal cell-specific
SLC2A9 gene knock-out mice had elevated serum urate levels, and
the mice lacking the SLC2A9 gene were prone to metabolic
syndrome (high uric acid, hypertension, hyperglycemia,
hyperlipidemia), indicating that SLC2A9 mediates the excretion
FIGURE 2 | Urate transporters in the kidneys and intestine in humans. GLUT9 and URAT1 on the proximal tubule cells mediate renal urate reabsorption, while
GLUT9 on the enterocytes mediate urate excretion in the intestine. ABCG2 is involved in urate export in both the intestine and the kidney. OAT1, OAT2 and OAT3
are present on the basolateral membrane of renal proximal tubule cells and mediates urate secretion.
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of uric acid from the intestine (43). However, the mechanism of
uric acid metabolism mediated by SLC2A9 in the intestinal tract
needs to be further studied.

Studies have shown that the expression of nuclear factor
receptor HNF4a can up-regulate the expression of SLC2A9 (44).
Peroxisome proliferator-activated receptor PPARg is a ligand-
regulated transcription factor that participates in various
pathophysiological processes, including metabolism,
inflammation, and tumorigenesis (45). It was also found that
the activation of PPARg can induce the expression of SLC2A9 in
the ileum and jejunum. However, the specific regulation
mechanism of SLC2A9 in intestinal uric acid excretion needs
further study.

Other Intestinal Uric Acid Transporters
In addition, other intestinal uric acid transporters are also
involved in the regulation of serum uric acid levels. A Meta-
analysis pointed out that SLC16A9 is related to human serum
uric acid concentration (46). It was found that the common
rs2242206 mutation of SLC16A9 increased the risk of renal non-
low excretion overload hyperuricemia, suggesting that SLC16A9
plays a role in intestinal uric acid excretion (47). Besides,
SLC17A4 protein exists in the apical membrane of small
intestinal epithelial cells and transports various organic anions
including urate, confirming that SLC17A4 is related to serum
uric acid levels (48).
THE INFLUENCE OF INTESTINAL FLORA
ON URIC ACID AND GOUT

Intestinal microbes are composed of various microorganisms
such as bacteria, fungi and viruses in the intestine. At least 100
trillion bacteria in the intestinal microecosystem live in the
human intestines. They participate in host metabolism,
immune regulation, and maintenance of internal environment
homeostasis, etc. (49–51). Increasing evidences show that there
are differences in the distribution of intestinal flora between gout
patients and healthy people (52, 53). Studies have found that
Frontiers in Immunology | www.frontiersin.org 4
supplementing probiotics can improve uric acid levels. It is
promising that probiotics may become a new direction for the
treatment of gout and hyperuricemia (54–57). Current research
suggests that the impact of intestinal flora on gout is mainly
achieved through the following three aspects: participation in
purine metabolism and decomposition of uric acid to reduce uric
acid levels; metabolites produced by intestinal flora promote the
excretion of uric acid (Figure 3); participation in immune-
inflammatory regulation of gout.

Intestinal Flora Is Involved in the
Catabolism of Uric Acid
It has been shown that intestinal bacteria can decompose uric
acid (58). In addition to the intestinal flora participating in the
biosynthesis of various substances including essential amino
acids, some symbiotic bacteria in the intestine, such as
lactobacillus and pseudomonas, which can express uricase,
allantoicase, and allantoinase participating in the breakdown of
uric acid (59, 60). Under the action of the flora, the uric acid in
the intestines eventually produces oxalate and glycine, which
provide carbon and nitrogen to the body (61, 62). Lactic acid
bacteria isolated from sauerkraut exert the ability to degrade
inosine and guanosine, the two key intermediates of purine
metabolism. In addition, gavage of specific strains could
effectively reduce the serum uric acid level in hyperuricemia
rats (63).

Metabolites of the Intestinal Flora Promote
the Excretion of Uric Acid
The intestinal flora can produce some small molecular
metabolites that affect host metabolisms, such as short-chain
fatty acids (SCFAs), taurine, succinic acid, lipopolysaccharide,
acetic acid, butyric acid, and propionic acid (64, 65). It has shown
that the types and numbers of the intestinal flora of gout patients
and healthy people are significantly different through the 16S
rRNA sequencing (66). Further study showed that butyrate-
producing bacteria in gout patients decreased by metagenomic
analysis, indicating that butyrate may promote intestinal uric
acid excretion (67). Besides, a study also showed that the content
FIGURE 3 | The role of the intestinal tract in uric acid excretion. The intestinal flora decomposes the uric acid directly. Intestinal flora metabolites upregulate the
expression of uric acid transporters. Metabolites produced by intestinal flora promote the excretion of uric acid by providing energy for intestinal epithelial cells.
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of glucose, acetic acid, butyric acid in the stool of patients with
gout is different from that of the control group (53), and these
metabolites are involved in energy metabolism (68, 69), which
can provide energy for intestinal epithelial cells and participate in
the excretion of uric acid.

Regulation of Gut Microbiota Metabolites
in the Gout Inflammation
As a metabolite of intestinal flora, SCFAs can regulate the
function of intestinal epithelial cells, alleviate inflammation
and maintain intestinal mucosa homeostasis (70). Previous
study showed that the intake of dietary fiber will increase SCFAs
and regulate related immune responses (71). Interestingly, high-
fiber dietary feeding alleviates the inflammatory response induced
by monosodium urate (MSU) through SCFAs production (72).
Consistently, a clinical research observation also found that
increasing intake of dietary fiber can reduce the symptoms of
gout (73). It is currently believed that SCFAs mainly exert their
biological effects through the activation of G-protein-coupled
receptors (GPCRs) GPR41, GPR43, and GPR109a in intestinal
epithelial cells (74, 75). Another intestinal metabolite butyrate also
exerts anti-inflammatory effect through GPR43 and GPR109a on
macrophages (76, 77). In addition, as an HDAC inhibitor, butyrate
can inhibit the acetylation of a variety of proteins in the NF-kB
signaling pathway family, thereby reducing IL-1b, IL-2, IL-6,
TNFa, and other pro-inflammatory factor releases (78, 79).
Furthermore, Angélica et al. found that acetic acid induces
caspase-dependent neutrophil apoptosis by inhibiting the NF-kB
pathway and promotes the production of IL-10, TGF-b, and
annexin A1 to alleviate the inflammatory response (72). These
studies suggest that intestinal products also play an important role
in the regulation of gout inflammation resulted from the
macrophage and neutrophil activation.
CROSSTALK BETWEEN INTESTINE
FLORA AND URIC ACID TRANSPORTERS

It has shown that intestinal flora has a regulatory effect on
expression of uric acid transporters. Anserine, a natural
carnosine derivative, shows an anti-hyperuricaemic effect,
which was closely associated with an increasing abundance of
clostridium and lactobacillus in the gut. Importantly, anserine-
mediated regulation of uric acid transporters ABCG2, URAT1,
and GLUT9 is dependent on intestinal flora (80). In addition,
intestinal ABCG2 expression was significantly suppressed by
gingko biloba leaf extract (GLE) administration, which is
closely related to decreased populations of proteobacteria and
deferribacteres at the phylum level. It is worth noting that GLE
treatment did not affect ABCG2 expression, but treatment with
the lysates of GLE-treated mouse stool significantly suppressed
ABCG2 expression. These findings reveal a role for intestinal
flora in regulating ABCG2 expression (81). Not only does the
intestinal flora plays an important role in intestinal immune
homeostasis, studies have also shown it can regulate uric acid
transporters through its metabolites. In SCFAs treated rats, the
Frontiers in Immunology | www.frontiersin.org 5
expression and function of intestinal ABCG2 were increased.
Similar results were also observed in mouse primary enterocytes
and Caco-2 cells treated with SCFAs (82). These findings showed
that microbiota has a regulatory effect on expression of uric
acid transporters.

In keeping with in vitro and animal studies, data from large-scale
metagenome genome-wide association studies (mgGWAS) for the
oral microbiome revealed unequivocal human genetic loci associated
with the oral microbiome, including uric acid transporter SLC2A9.
SLC2A9 showed a strong correlation with species-level clusters
belonging to oribacterium and lanchnoanaerobaculum in tongue
dorsum samples (83). A previous study reported that oral cavity and
stool bacteria overlapped in more than 45% of subjects (84).
Interestingly, the tongue dorsum microbiota related gene SLC2A9
was correlated with the abundance of Bifidobacterium animalis in
the gut (83). These results demonstrated that gut microbial diversity
also has an impact on uric acid transporters.
SUMMARY

Currently uric acid lowering drugs are mainly achieved through
the kidneys, while the intestine is the second largest uric acid
excretion organ. The decrease in intestinal uric acid excretion
will increase the burden on the kidneys. At present, the intestinal
excretion of uric acid has been used as a new direction for the
treatment of gout and hyperuricemia, which can avoid side
effects such as aggravating kidney damage and urinary tract
stone formation. In summary, there is a bright prospect for drug
and gut microbiota research targeting intestinal uric acid
transporters to treat hyperuricemia and gout (Figure 3).
However, there are scarce studies about the association
between intestinal flora and uric acid transporters, and the
specific mechanism of the interaction between these need to be
further elucidated.
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