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The design of an optimal gradient encoding scheme (GES) is a fundamental problem in diffusionMRI. It is well studied for the case
of second-order tensor imaging (Gaussian diffusion). However, it has not been investigated for the wide range of non-Gaussian
diffusion models. The optimal GES is the one that minimizes the variance of the estimated parameters. Such a GES can be realized
byminimizing the condition number of the designmatrix (K-optimal design). In this paper, we propose a new approach to solve the
K-optimal GES design problem for fourth-order tensor-based diffusion profile imaging. The problem is a nonconvex experiment
design problem. Using convex relaxation, we reformulate it as a tractable semidefinite programming problem. Solving this problem
leads to several theoretical properties ofK-optimal design: (i) the odd moments of the K-optimal design must be zero; (ii) the even
moments of the K-optimal design are proportional to the total number of measurements; (iii) the K-optimal design is not unique,
in general; and (iv) the proposed method can be used to compute the K-optimal design for an arbitrary number of measurements.
Our Monte Carlo simulations support the theoretical results and show that, in comparison with existing designs, the K-optimal
design leads to the minimum signal deviation.

1. Introduction

Diffusion-weighted MRI is a noninvasive imaging tech-
nique to probe microstructures in living tissues, for exam-
ple, the human brain. It involves acquiring a series of
diffusion-weighted images, each corresponding to diffusion
sensitization along a particular gradient direction. Non-
Gaussian diffusionmodels have gained wide attention among
researchers because of their potential ability to resolve
complex multifiber microstructures. Özarslan and Mareci
[1] introduced high order tensors (HOTs) as an alterna-
tive to conventional second-order tensor model. In regions
with complex microstructures, HOTs can model the appar-
ent diffusion coefficient (ADC) with higher accuracy than
the conventional second-order model [2]. Several aspects of

HOT-based ADC profile estimation have been addressed in
the literature [3–5]. HOTs have also been used to represent
orientation distribution functions that are required for trac-
tography [6, 7].

The need for robust estimation of diffusion parameters
in a limited acquisition time has given rise to many studies
on optimal gradient encoding scheme (GES) design. In the
case of the classical second-order model they include [8–
14]. However, there are few studies tackling the problem
of optimal GES design for non-Gaussian diffusion models
[15, 16]. The only study on GES design for HOTs [16] is
limited to comparison of existing GESs mainly devised for
second-order tensor imaging, for example, the minimum
condition number (MCN) scheme [12]. A caveat here is
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that the condition number is computed from the design
matrix associated with the linear least square estimation
of parameters of interest. Thus, by definition, it is model-
dependent.This implies that theminimumcondition number
GES for second-order tensor estimation is not an optimal
GES for fourth-order tensor estimation. An experiment
design that minimizes the condition number of the design
matrix is called 𝐾-optimal design. In this paper we solve
the problem of 𝐾-optimal GES design for HOT-based ADC
profile imaging as follows. First, we reformulate it as a
nonconvex experiment design problem. Then, by convex
relaxation we obtain a tractable semidefinite programming
(SDP) problem. The last step is to extract design points
(the gradient encoding directions) from the optimal design
matrix. Finally, to show the relevance of the proposed design
approach, we evaluate our solutions using the rotational
variance test and Monte Carlo simulations. Throughout the
paper “experiment design” and “gradient encoding scheme
(GES)” are used interchangeably. The former is used in the
optimization context while the latter is used in the diffusion
MRI (dMRI) community.

2. Problem Statement

This section briefly reviews the basics of HOT-based ADC
profile estimation both for the sake of completeness and to
define notation. The reader is referred to [4, 5] for more
details. For definitions of symmetry, positive semidefiniteness
and eigendecomposition of high order tensors (𝑚 ≥ 4)
see [5, 17]. The Stejskal-Tanner equation for dMRI signal
attenuation is [18]

−
1

𝑏
ln(

𝑆 (g
𝑖
)

𝑆
0

) = 𝑑 (g
𝑖
) , (1)

where 𝑑(g
𝑖
) is the diffusivity function, 𝑆(g

𝑖
) is the measured

signal when the diffusion sensitizing gradient is applied in the
direction g

𝑖
= [𝑥𝑖 𝑦𝑖 𝑧𝑖], 𝑆0 is the observed signal in the

absence of such a gradient, and 𝑏 is the diffusion weighting
taken to be constant over all measurements. The diffusivity
function 𝑑(g

𝑖
) is modeled using even order symmetric posi-

tive semidefinite tensors as follows:
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𝑖
) = t𝑇a

𝑖
, (2)

where t ∈ R(𝑛+1)(𝑛+2)/2 contains distinct entries of the 𝑛th-
order tensor. Here we focus on the case of 𝑛 = 4, where
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𝑇. It is worth

mentioning that both vectors t and a
𝑖
are vectors in R15

and 𝑑(g
𝑖
, t) = 𝑑(g

𝑖
) is used for simplification. Given

measurements in 𝑁 > 15 different directions g
𝑖
, the least

squares estimator (LSE) of the HOT is obtained as follows:

min
t∈R15

(s − Gt)𝑇 (s − Gt) , (3)

where G is an 𝑁 × 15 design matrix defined as G =

[a1 a
2
⋅ ⋅ ⋅ a
𝑁]
𝑇 and 𝑠

𝑖
= −𝑏
−1 ln(𝑆(g

𝑖
)/𝑆
0
).The closed-form

solution is t̂ = (G𝑇G)−1G𝑇s.

In the framework described above, the precision of the
estimation problem is dependent on the experiment designs
a
𝑖
, 𝑖 = 1, . . . , 𝑁. For independent and zero mean measure-

ment noise with constant variance 𝜎2 the LSE is unbiased and
has the following covariance matrix [19]:

cov (̂t) = 𝜎2M−1, (4)

where M = G𝑇G = ∑
𝑁

𝑖=1
a
𝑖
a𝑇
𝑖
and is usually called the

“information matrix.” Optimal experiment design entails
making the covariance matrix small in some sense. It is usual
to minimize a scalar function of the covariance matrix. One
design approach is to minimize the condition number of the
information matrix (𝐾-optimal design) [11, 12, 19]. In this
paper, we solve the𝐾-optimal experiment design problem for
HOT-based ADC profile imaging.

Remark 1. For isotropic diffusion, it has been shown that (4)
holds [9, 20]. We investigate the significance of the noise
assumptions in the case of anisotropic diffusion, later in
Section 4. Therein we present Monte Carlo simulations for
a more realistic case (with anisotropic tensor and Rician
distributed noise on 𝑆(g

𝑖
)).

3. Proposed GES Design Approach

In Section 3.1 we present mathematical formulations for the
𝐾-optimal GES design problem. The solutions are given
in Section 3.2. Section 3.3 then considers the problem of
extracting the design points from the optimal information
matrix. Finally, the properties of the obtained solutions and
some theoretical results are discussed in the last subsection.

3.1. Mathematical Formulations of the 𝐾-Optimal Design
Problem. The condition number measures the sensitivity of
the solution to changes in measurements [11]. Hence, it is
desirable tominimize the condition number ofM−1 (denoted
by 𝜅(M−1)) or equivalently to minimize 𝜅(M).The𝐾-optimal
design inHOT-based ADCprofile imaging can be performed
with respect to either the design matrix G or information
matrixM because [11]

𝜅 (G) = √𝜅 (M) = √
𝜆max (M)
𝜆min (M)

, (5)

where 𝜆max(M) and 𝜆min(M) are the maximum and mini-
mum eigenvalues of M, respectively. The 𝐾-optimal experi-
ment design problem in HOT estimation can be written as
follows:

ming
𝑖

𝜅 (M)

s.t.: M ≥ 0,

g𝑖
 = 1, 𝑖 = 1, . . . , 𝑁.

(6)

This problem, in its current form, is not convex. Our aim here
is to reformulate this problem as an SDP problem that can be
efficiently solved. Before describing the approach, it is worth
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mentioning that conventional experiment design problems
(as in [21]) seek to minimize the objective function over a
finite and thus countable set A, that is, ∀𝑖 : a

𝑖
∈ A. In the

present case, however, A is not a countable set but includes
the whole set of feasible solutions. Note that the degree of

freedom in this design problem is 45. In other words,M can
be parameterized in 45 independent variables. For example,
𝑚
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= 36𝑚
1,2
, 𝑚
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1,2
.

To reformulate the problem, we first parameterize M in 45
distinct variables as
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(7)

such that we obtain the affine mapping M : R45 → S15
+
(its

range is the set of symmetric positive semidefinite matrices
of size fifteen). This can equivalently be expressed as

M (q) = 𝑞1M1 + ⋅ ⋅ ⋅ + 𝑞45M45, (8)

where M
𝑗
is a 15 × 15 symmetric matrix and q ∈ R45. To

clarify howM is decomposed intoM
𝑗
s, consider the following

example:
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0 otherwise,

(9)

where [M
10
]
𝑘𝑙
is the element of M

10
placed in the 𝑘th row

and 𝑙th column. Carefully note the relationship between q
and the original design variables (g

𝑖
s) because this is used in

Section 3.3. For example, 𝑞
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It is possible to relax the constraints ‖g
𝑖
‖ = 1, 𝑖 = 1, . . . , 𝑁,

and solve the problem by the algorithm given in [22] to
obtain a lower bound on the optimal value of problem (6).

However, we instead convert the constraints in (6) to a convex
constraint as follows:
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(10)

where u ∈ R45 has only fifteen nonzero elements. We then
have the following relaxed problem:

min
q

𝜅 (M (q))

s.t.: M (q) ≥ 0,

u𝑇q = 𝑁.

(11)

Given that the conversion in (10) is not reversible, the
optimal value of the problem in (11) is a lower bound on the
optimal value of the problem in (6). The objective function
𝜅(⋅) is a quasiconvex function [22]. Thus, an approximate
solution of (11) may be obtained by solving a sequence of
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feasibility problems [21, 22]. Alternatively, this problem can
be formulated as an SDP problem:

min
q,𝑝

𝛼

s.t.: M (q) ≥ 0,

I ≤ 𝑝M (q) ≤ 𝛼I 𝑝 ≥ 0,

u𝑇q = 𝑁,

(12)

where I is the identity matrix, 𝛼 is the condition number,
and 𝑝 equals 1/𝜆min(M). This is a bilinear matrix inequality
problem that can be solved by the line search method. For
a constant 𝑝, it becomes a tractable linear matrix inequality
(LMI) problem.The optimal value 𝛼∗ of (12) can be obtained
by performing a line search on 𝑝. Let the optimal value of
the following problem be 𝛼∗

𝑐
, where 𝑐 is a real nonnegative

constant:

min
q

𝛼

s.t.: M (q) ≥ 0,

I ≤ 𝑐M (q) ≤ 𝛼I,

u𝑇q = 𝑁.

(13)

Then we have 𝛼∗ = min{𝛼∗
𝑐
| 𝑐 ∈ R

+
}. The problem in (13)

can be efficiently solved by LMI solvers.

3.2. Solutions to the 𝐾-Optimal Design Problem. The 𝐾-
optimal design problem in (13) can be solved for different
values of 𝑐 ≥ 0, 𝑁 ≥ 15 using the YALMIP [23] and SDPT3
solvers [24]. By close inspection of the results for different
values of𝑁, one can conclude the following about𝐾-optimal
solutions:

(i) If q∗
𝑁

is a solution to (13) with u𝑇q∗
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𝑁
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𝑁
)

is proportional to𝑁.
(ii) Theminimum condition number is independent of𝑁

and is given by 𝛼∗ = 3.6639.
(iii) The 𝐾-optimal solution is
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𝐾
) = √𝜅(M∗

𝐾
) = 1.9141 (where M∗

𝐾
=

M(q∗)).

3.3. Extracting Design Points. The task of extracting the
design points ([𝑥𝑖 𝑦𝑖 𝑧𝑖], 𝑖 = 1, . . . , 𝑁) from the optimal
information matrix M(q∗) is straight forward, as outlined
in [25]. By expressing the optimal M(q∗) in terms of the
original decision variables, one obtains 45 equations as listed
in (15) and (16). Furthermore, 𝑁 equations of the form 𝑥
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Thus, one obtains a nonlinear system of 45 + 𝑁 equations
in 3𝑁 unknowns. Given that 𝑁 ≥ 15 is required, the
system is usually underdetermined. By numerically solving
the nonlinear system, one can extract the design points. The
odd moments of the optimal design must be zero (M =

M(q∗)). We refer to this fact as symmetry of the optimal
design. This property means that the following holds true:
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𝑦
𝑖
𝑧
5

𝑖
= 0,

∑𝑦
3

𝑖
𝑥
4

𝑖
𝑧
𝑖
= ∑𝑦

4

𝑖
𝑥
3

𝑖
𝑧
𝑖
= ∑𝑧

3

𝑖
𝑥
4

𝑖
𝑦
𝑖
= ∑𝑧

4

𝑖
𝑥
3

𝑖
𝑦
𝑖

= ∑𝑥
3

𝑖
𝑦
4

𝑖
𝑧
𝑖
= ∑𝑥

4

𝑖
𝑦
3

𝑖
𝑧
𝑖
= 0,

∑𝑦
2

𝑖
𝑥
3

𝑖
𝑧
3

𝑖
= ∑𝑧

2

𝑖
𝑥
3

𝑖
𝑦
3

𝑖
= ∑𝑥

2

𝑖
𝑦
3

𝑖
𝑧
3

𝑖
= 0,

∑𝑦
6

𝑖
𝑥
𝑖
𝑧
𝑖
= ∑𝑧

6

𝑖
𝑥
𝑖
𝑦
𝑖
= ∑𝑥

6

𝑖
𝑦
𝑖
𝑧
𝑖
= 0.

(15)

The even moments of the optimal design must satisfy the
following conditions (M = M(q∗)):

∑𝑥
8

𝑖
= ∑𝑦

8

𝑖
= ∑𝑧

8

𝑖
=

𝑁

4.5248
,

∑𝑥
4

𝑖
𝑦
4

𝑖
= ∑𝑥

4

𝑖
𝑧
4

𝑖
= ∑𝑧

4

𝑖
𝑦
4

𝑖
=

𝑁

248.2622
,

∑𝑦
4

𝑖
𝑥
2

𝑖
𝑧
2

𝑖
= ∑𝑧

4

𝑖
𝑥
2

𝑖
𝑦
2

𝑖
= ∑𝑥

4

𝑖
𝑦
2

𝑖
𝑧
2

𝑖
=

𝑁

1245.3300
,

∑𝑥
2

𝑖
𝑦
6

𝑖
= ∑𝑥

6

𝑖
𝑦
2

𝑖
= ∑𝑥

2

𝑖
𝑧
6

𝑖
= ∑𝑥

6

𝑖
𝑧
2

𝑖
= ∑𝑧

2

𝑖
𝑦
6

𝑖

= ∑𝑧
6

𝑖
𝑦
2

𝑖
=

𝑁

101.8849
.

(16)

As an example, Table 1 lists the 𝐾-optimal design points for
𝑁 = 30 derived using our proposed method. We solved
the above-mentioned nonlinear system of equations using
the fsolve command in MATLAB. For a discussion on the
uniqueness of this solution, see the next subsection where we
explain some properties of the𝐾-optimal design.
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Table 1: Optimal gradient encoding scheme (g
𝑖
s) for HOT estimation (𝑁 = 30).

𝑥
𝑖

𝑦
𝑖

𝑧
𝑖

𝑥
𝑖

𝑦
𝑖

𝑧
𝑖

𝑥
𝑖

𝑦
𝑖

𝑧
𝑖

0.1514 −0.9883 −0.0161 0.3527 −0.8791 0.3207 −0.9125 0.2478 −0.3253
0.4840 0.1736 −0.8576 −0.0048 1.0000 −0.0068 −0.0163 0.0245 0.9996
−0.5357 0.0645 −0.8419 0.9960 −0.0292 0.0842 0.0160 0.0349 0.9993
−0.0633 −0.1941 0.9789 0.8959 −0.1044 −0.4317 0.3204 −0.3626 −0.8751
−0.4457 −0.8893 −0.1024 −0.0111 0.0185 0.9998 −0.1819 −0.8503 0.4938
−0.8564 −0.4798 0.1908 −0.1289 0.4227 −0.8970 0.0248 0.9996 −0.0146
0.9998 0.0123 0.0169 0.9988 −0.0129 0.0481 0.1318 0.9903 −0.0441
0.8391 −0.5377 −0.0829 0.0341 0.9994 −0.0089 −0.0149 −0.0427 −0.9990
−0.2315 −0.3334 −0.9139 0.0851 0.8468 0.5251 0.8780 0.3205 0.3556
0.3072 −0.9185 −0.2490 0.9867 0.0077 −0.1623 0.9973 0.0662 −0.0304

3.4. Properties and Theoretical Results

(1) Global Optimality. In summary, our approach to find the
𝐾-optimal experiment design involves the following steps.
We begin with the original formulation of the 𝐾-optimal
experiment design problem as in (6). Next we apply the
relaxation in (10). Finally we solve the relaxed version of the
problem as stated in (13). Any point in the feasible set of the
original minimization problem gives an upper bound (UB)
on the optimal value of its objective function. The optimal
point in the feasible set of the relaxed problem gives a lower
bound (LB) on the optimal value of the original objective
function. Thus, if an optimal solution of the relaxed problem
belongs to the feasible set of the original problem, which
implies that UB = LB, then it is a globally optimal solution
of the original problem. By construction, this is the case for
the proposed solutions in previous subsection.

(2) Relation with Number of Measurements. As mentioned
above, elements of the optimal information matrix are pro-
portional to the number of available measurements𝑁. How-
ever, the optimal value of the objective function (condition
number) is constant.

(3) Symmetry.The presented 𝐾-optimal design is symmetric
in the sense specified in (15).

(4) Nonuniqueness. The 𝐾-optimal design is not unique. Let
M∗
𝑁
𝑚

be the 𝐾-optimal information matrix when a total of
𝑁
𝑚
measurements is permitted. Let 𝜁

𝑁
𝑚

= {g
𝑖
| ‖g
𝑖
‖ = 1, 𝑖 =

1, . . . , 𝑁
𝑚
} be the set of corresponding design points. If𝑁

3
=

𝑁
1
+ 𝑁
2
, then one can easily verify that 𝜁

𝑁
1

∪ 𝜁
𝑁
2

will result
in the same information matrix as 𝜁

𝑁
3

. This is because of the
linear dependency of the elements of the optimalM on𝑁, so
thatM∗

𝑁
3

= M∗
𝑁
1

+M∗
𝑁
2

. As an example, for𝑁
3
= 60 one can

find the following optimal designs: 𝜁
40
∪𝜁
20
, 𝜁
15
∪𝜁
45
, 𝜁
30
∪𝜁
30
,

and even four repetitions of 𝜁
15
.

(5) Consistency with Previous Studies. The 𝐾-optimal design
problem for second-order DTI has been studied in [12].
Therein, the solution is approximated using the downhill

Table 2: 𝐾-optimal GES for second-order DTI using the proposed
method (𝑁 = 6).

𝑥
𝑖

𝑦
𝑖

𝑧
𝑖

0.9096 0.0000 0.4155
0.0000 0.4155 0.9096
0.4155 0.9096 0.0000
0.0000 0.4155 −0.9096
0.4155 −0.9096 0.0000
−0.9096 0.0000 0.4155

simplex method (a stochastic optimization method). Using
the proposed approach for second-order DTI (set a

𝑖
=

[𝑥
2

𝑖
𝑦
2

𝑖
𝑧
2

𝑖
2𝑥
𝑖
𝑦
𝑖
2𝑥
𝑖
𝑧
𝑖
2𝑦
𝑖
𝑧
𝑖
]
𝑇, M = ∑

𝑁

𝑖=1
a
𝑖
a𝑇
𝑖
, and repeat

the whole process in Section 3) one can see that, for an
arbitrary 𝑁, the optimal condition number of the design
matrix is √7/4 = 1.3229. The 𝐾-optimal GES for 𝑁 = 6 is
listed in Table 2. All these findings are in agreement with the
results in [12].

Remark 2. The set of second-order tensors can be seen
as a subset of fourth-order tensors. As an example, the
equality g𝑇Dg = g𝑇Dg(g𝑇g) implies that the second-order
tensor D can be represented by a fourth-order tensor
t = [𝑑

33
0.5𝑑
23
(𝑑
33
+ 𝑑
22
)/6 0.5𝑑

23
𝑑
22
0.5𝑑
13
𝑑
12
/

6 𝑑
13
/6 0.5𝑑

12
(𝑑
33

+ 𝑑
11
)/6 𝑑

23
/6 (𝑑

11
+ 𝑑

22
)/

6 0.5𝑑
13
0.5𝑑
12
𝑑
11
], where 𝑑

𝑖𝑗
denotes the elements

of D. In such cases, the number of free parameters of the
fourth-order tensor is reduced to six, and thus it can be
estimated using the 𝐾-optimal designs for second-order
DTI. See Table 2 for an example with𝑁 = 6.

4. Evaluations and Results

In this section we evaluate the proposed 𝐾-optimal GES
in comparison to several existing methods. The evaluation
framework is adopted from [16]. More specifically we con-
sider two quality measures: condition number and signal
deviation.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 1: Shape of 10 fourth-order tensors used for the evaluation of the proposed method: (a) single-fiber with orientation [1 0 0], (b)
single-fiber with orientation [cos 60∘ sin 60∘ 0], (c) single-fiber with orientation [0 1 0], (d) two fibers with orientations [1 0 0] and
[0 1 0] and with relative weights 1 : 1, (e) two fibers with orientations [1 0 0] and [0 1 0] and with relative weights 2 : 1, (f) two fibers
with orientations [1 0 0] and [0 1 0] and with relative weights 4 : 1, (g) two fibers with orientations [1 0 0] and [cos 75∘ sin 75∘ 0] and
with relative weights 1 : 1, (h) two fibers with orientations [1 0 0] and [cos 75∘ sin 75∘ 0] and with relative weights 2 : 1, (i) two fibers with
orientations [1 0 0] and [cos 60∘ sin 60∘ 0] and with relative weights 1 : 1, and (j) three perpendicular fibers with orientations [1 0 0],
[0 1 0], and [0 0 1]. Tensors (a)–(j) correspond to t1

0
–t10
0
in Table 4.

4.1. Condition Number. Table 3 shows that the proposed 𝐾-
optimalGEShas theminimumconditionnumber. References
for the competing GESs are also provided in this table.

4.2. Signal Deviation. Signal deviation is defined in [16] to
measure the rotational variance of a GES. As the diffusion
tensor is reoriented, the accuracy and precision of the
estimated parameters may vary. Knowledge of the rotational
variance is thus very important in the dMRI community. For
details see chapter 15 in [20]. Signal deviation is defined as
[16]

𝜂 =
1

𝑁

𝑁

∑

𝑖=1


𝑆 (g
𝑖
) − 𝑆 (g

𝑖
)


𝑆
0

, (17)

where 𝑆(g
𝑖
) is the measured signal and 𝑆(g

𝑖
) is the signal

produced by the estimated tensor (̂t). To evaluate the rota-
tional variance of aGESwe select 343 rotationmatrices.These
matrices are obtained by taking equally spaced steps in each
of 𝜃, 𝜙, and 𝜓 and computing R = R

𝑥
(𝜃)R
𝑦
(𝜙)R
𝑧
(𝜓). To

rotate fourth-order tensors, we use the approach in [16]. We
evaluated the signal deviation using Algorithm 1 given in the
Appendix, where we used the following setup for the Monte
Carlo simulations: 𝑁 = 30, 𝑏 = 1500 s/(mm2), 𝑁MC = 200
(number of Monte Carlo trials), SNR = 𝑆

0
/𝜎 = 12.5, 𝑁

𝑅
=

343 (number of rotations), and t
0
= t𝑖
0
× 10
−4, 𝑖 = 1, . . . , 10.

All tensors used in the evaluation are listed in Table 4 and are
plotted in Figure 1.The software in [28] is used to plot fourth-
order tensors. As it can be seen in Figure 1, three tensors
(a)–(c) correspond to single-fiber microstructures while six

Table 3: Comparison of the proposed 𝐾-optimal GES with some
existing methods in terms of condition number of the information
matrix (𝑁 = 30).

GES 𝐾-optimal DISCOBALL Jones MCN Wong
√𝜅(M) 1.9141 3.6392 3.8039 4.9473 4.9849
Reference [Proposed] [26] [20] [12] [27]

tensors (d)–(i) represent two crossing fibers (with different
crossing angle and weights of the lobes) and the tensor in
(j) shows three perpendicular fibers. Crossing angles below
60 degrees are not considered as it is known that fourth-
order tensors cannot resolve such fiber architectures [29]. In
Figure 2, the average signal deviation over Monte Carlo trials
(𝜂) is plotted as a function of tensor orientation for the top
two GESs (based on the condition number). It shows that, for
t1
0
, signal deviation of the 𝐾-optimal GES is consistently less

than that of the DISCOBALL scheme. The mean value and
standard deviation of the 𝜂 (over rotations) for all evaluated
GESs/tensors are given in Table 5. It can be seen that, in all
cases,𝐾-optimal GES has the minimummean value of signal
deviation (corresponding numbers are denoted by bold font).
Considering t1

0
, t8
0
, t9
0
, and t10

0
the standard deviation of 𝜂 is

almost the same for all GESs. For t2
0
to t7
0
, the 𝐾-optimal

GES has the maximum 𝜎(𝜂). However, even in these cases
mean signal deviation of the𝐾-optimal GES is far better than
that of others.Thus, the proposed𝐾-optimal GES is the most
favorable choice in all cases.



BioMed Research International 7

Table 4: Ten-fourth-order tensors used for evaluation of the
proposed method. These tensors correspond to different fiber
architectures as illustrated in Figure 1.

t1
0

t2
0

t3
0

t4
0

t5
0

t6
0

t7
0

t8
0

t9
0

t10
0

2 0.60 0.54 0.73 0.64 0.45 0.69 0.56 0.70 8.50
0 0 0 0 0 0 0 0 0 0
1 0.38 0 0 0.03 0.79 0.29 0.84 0.34 0
0 0 0 0 0 0 0 0 0 0
2 13.31 23.77 12.51 8.66 5.47 10.86 7.48 7.25 8.50
0 0 0 0 0 0 0 0 0 0
0 −1.23 0 0 0 0 0.13 0.38 −0.05 0
0 0 0 0 0 0 0 0 0 0
0 30.02 0 0 0 0 10.37 6.80 15.23 0
3 0.99 2.16 0 0 0 0.02 0.04 0.01 0
0 0 0 0 0 0 0 0 0 0
3 27.03 0 0 0 0 3.93 2.32 12.49 0
0 0 0 0 0 0 0 0 0 0
0 9.70 0 0 0 0 0.69 0.35 4.35 0
17 1.83 0.29 12.27 16.20 19.33 12.32 16.18 13.01 8.50

Table 5: Comparison of the proposed 𝐾-optimal GES with some
existing methods in terms of signal deviation (𝑁 = 30).

Tensor 𝐾-optimal DISCOBALL Jones MCN Wong
Mean(𝜂)[t1

0
] 0.0490 0.0553 0.0552 0.0525 0.0527

𝜎(𝜂)[t1
0
] 0.0010 0.0009 0.0009 0.0012 0.0011

Mean(𝜂)[t2
0
] 0.1410 0.2083 0.2155 0.1524 0.1769

𝜎(𝜂)[t2
0
] 0.0457 0.0311 0.0310 0.0341 0.0281

Mean(𝜂)[t3
0
] 0.0557 0.0648 0.0648 0.0598 0.0607

𝜎(𝜂)[t3
0
] 0.0033 0.0015 0.0017 0.0029 0.0026

Mean(𝜂)[t4
0
] 0.0481 0.0541 0.0538 0.0512 0.0515

𝜎(𝜂)[t4
0
] 0.0016 0.0009 0.0009 0.0015 0.0010

Mean(𝜂)[t5
0
] 0.0491 0.0555 0.0553 0.0525 0.0527

𝜎(𝜂)[t5
0
] 0.0016 0.0009 0.0010 0.0017 0.0012

Mean(𝜂)[t6
0
] 0.0507 0.0579 0.0577 0.0544 0.0546

𝜎(𝜂)[t6
0
] 0.0018 0.0011 0.0011 0.0020 0.0015

Mean(𝜂)[t7
0
] 0.0599 0.0723 0.0725 0.0651 0.0663

𝜎(𝜂)[t7
0
] 0.0032 0.0020 0.0022 0.0031 0.0029

Mean(𝜂)[t8
0
] 0.0546 0.0642 0.0639 0.0594 0.0597

𝜎(𝜂)[t8
0
] 0.0016 0.0011 0.0012 0.0021 0.0015

Mean(𝜂)[t9
0
] 0.0796 0.1096 0.1081 0.0879 0.0930

𝜎(𝜂)[t9
0
] 0.0122 0.0102 0.0091 0.0109 0.0083

Mean(𝜂)[t10
0
] 0.0440 0.0476 0.0474 0.0461 0.0466

𝜎(𝜂)[t10
0
] 0.0008 0.0007 0.0007 0.0008 0.0007

The distribution of gradient encoding directions over the
unit sphere for the evaluated GESs is plotted in Figure 3. The
DISCOBALL and Jones schemes produce an approximately
uniform (equidistance) distribution of points while the 𝐾-
optimal, MCN, and Wong schemes produce a nonuniform
distribution of points. Regarding the effect of uniform distri-
bution of points, an interesting observation is that uniformly
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Figure 2: Results of rotational variance test for t
0
= t1
0
(𝑁 =

30): mean signal deviation 𝜂 (vertical axis) is computed using
Algorithm 1 given in the Appendix. The horizontal axis denotes 343
rotation matrices described in Section 4.2. Signal deviation of the
𝐾-optimal GES is consistently lower than that of the DISCOBALL
scheme [26].

distributed GESs (the Jones and DISCOBALL) have mini-
mum 𝜎(𝜂) except for t2

0
and t9
0
(see Table 5). However, they do

not lead to an overall better performance (as the 𝐾-optimal
GES performs far better in terms of mean 𝜂).

5. Discussions

The proposed approach can be applied in experiment design
for other tensors, although the current work focuses on its
application and results on fourth-order tensor estimation. In
Section 2, the order of the diffusion tensor, 𝑛, can be any
even natural number (to ensure antipodal symmetry). The
extension to higher order tensors is possible using the same
strategy (the dimension of the the information matrix in (13)
will increase to (𝑛 + 1)(𝑛 + 2)/2).

In Section 2, we assumed that the noise (on 𝑠
𝑖
) is zero

mean and independent with constant variance. We acknowl-
edge that, in the dMRI context, these noise assumptions may
not hold, in general. However, our Monte Carlo simulations
in Section 4 show that, for realistic cases (Rician noise on
𝑆(g
𝑖
) and anisotropic tensors), the proposed GES yields

the minimum signal deviation and the minimum rotational
variance. Moreover, minimizing the condition number of the
information matrix is motivated in [11, 12] regardless of the
noise distribution. The condition number describes, without
any assumptions about the noise distribution, how the noise
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Figure 3: Distribution of directions over the unit sphere for different GESs (𝑁 = 30): (a) 𝐾-optimal [Proposed], (b) DISCOBALL [26], (c)
Jones [20], (d) MCN [12], and (e) Wong and Roos [27].

in measurements propagates to the noise in diffusion tensor
[11].

As we mentioned above the 𝐾-optimal design is not
unique.This raises several questions including (i) why should
we favor 60-point 𝐾-optimal design over four repetitions of
15-point 𝐾-optimal designs? and (ii) why should we favor

a 60-point𝐾-optimal design over a union of 40- and 20-point
designs? To answer these types of questions further extensive
studies and experiments with real data (or Monte Carlo
simulations) are required (as in [30–32]) which is beyond the
scope of this paper.
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Data: Initial tensor t
0
,𝑁
𝑅
rotation matrices, number of Monte Carlo trials𝑁MC, SNR = 𝑆

0
/𝜎, GES and 𝑏.

Result: Response surface of 𝜂
for 𝑟 = 1 to 𝑁

𝑅
do

Obtain t (a rotated version of t
0
);

for 𝑛 = 1 to 𝑁MC do
(i) Simulate the diffusion signal at the sampling points defined by the GES under evaluation using the
Stejskal and Tanner [18] equation 𝑆(g

𝑖
) = 𝑆
0
exp(−𝑏a

𝑖
t);

(ii) Add Rician distributed noise to the synthetic signal to obtain given SNR;
(iii) Compute the diffusion tensor t̂ and the corresponding 𝜂;

(iv) Record the mean signal deviation (𝜂);

Algorithm 1: Pseudoalgorithm to compute response surface of 𝜂.

6. Conclusion

We showed that the 𝐾-optimal GES design for HOT estima-
tion can be formulated as a nonconvex experiment design
problem. Next, we solved the problem using convex relax-
ation and semidefinite programming. We also showed that
resulting solutions have the following properties: (i) the
proposed solution is the globally optimal solution; (ii) the
obtained solutions are not unique, in general; (iii) nonzero
entries of the optimal information matrix are proportional to
the total number of measurements; (iv) odd moments of the
𝐾-optimal design must be zero; and (v) union of 𝐾-optimal
solutions with 𝑁

1
and 𝑁

2
measurements leads to the 𝐾-

optimal design for𝑁
1
+𝑁
2
measurements. Another advantage

of this work is that it establishes a theoretical foundation for
the experiment design in even order diffusion tensor imaging.

Appendix

Pseudocode for the Algorithm Used in
Section 4.2

See Algorithm 1.
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