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Abstract: The present paper outlines characteristics of thoron and its progeny in the indoor
environment. Since the half-life of thoron (220Rn) is very short (55.6 s), its behavior is quite
different from the isotope radon (222Rn, half-life 3.8 days) in the environment. Analyses of radon and
lung cancer risk have revealed a clearly positive relationship in epidemiological studies among miners
and residents. However, there is no epidemiological evidence for thoron exposure causing lung cancer
risk. In contrast to this, a dosimetric approach has been approved in the International Commission
on Radiological Protection (ICRP) Publication 137, from which new dose conversion factors for radon
and thoron progenies can be obtained. They are given as 16.8 and 107 nSv (Bq m−3 h)−1, respectively.
It implies that even a small quantity of thoron progeny will induce higher radiation exposure
compared to radon. Thus, an interest in thoron exposure is increasing among the relevant scientific
communities. As measurement technologies for thoron and its progeny have been developed, they are
now readily available. This paper reviews measurement technologies, activity levels, dosimetry and
resulting doses. Although thoron has been underestimated in the past, recent findings have revealed
that reassessment of risks due to radon exposure may need to take the presence of thoron and its
progeny into account.

Keywords: thoron; thoron progeny; indoor environment; measurement technique; radioactivity;
dose assessment

1. Introduction

Radon (222Rn), thoron (220Rn) and their progeny can be regarded as the largest contributor
annually to an effective dose for the public globally [1,2]. According to the United Nations Scientific
Committee on the Effects of Atomic Radiation (UNSCEAR) 2008 report, an annual effective dose from
natural radiation sources is calculated to be 2.4 mSv as the worldwide average, whereas radon and
thoron contribute 1.2 and 0.1 mSv, respectively. When they are inhaled, although radon and thoron
gases are not significant, their progeny particularly affect the lung tissue due to alpha particles emitted
in their decay chains deposited in the airways. In the past, lung cancer incidence had been found only
among miners as shown in many epidemiological studies, whereas recent investigations have revealed
that even indoor radon resulted in lung cancer among residents [3]. These surveys were carried
out in Europe, North America and China. Therefore, the World Health Organization (WHO) issued
a handbook where special attention was paid to indoor radon [3]. Subsequently, the International
Commission on Radiological Protection (ICRP) has recently published two publications and one
statement related to radon. In these documents, the upper value of the reference level for radon gas
in homes was revised downward from the value in the 2007 Recommendations of 600 Bq m−3 to
300 Bq m−3 [4,5]. The International Atomic Energy Agency (IAEA) revised the previous Basic Safety
Standard (BSS) in the same manner as the ICRP and a related guide was issued [6,7]. The WHO further
advised a reference level of 100 Bq m−3 though it may be impossible to achieve such a low radon gas
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concentration in many countries. Such recommendations depend on results of an indoor radon survey.
In most cases, these surveys were carried out using passive radon monitors so as to obtain an annual
indoor radon concentration. Even in epidemiological surveys, the same type of radon monitor was
used, because lung cancer incidence was closely related to long-term exposure to radon. Previous
recommendations were given based on not the dosimetric, but on the epidemiological approach. It had
been previously believed that the epidemiological approach was more reliable than the dosimetric.
In ICRP Publication 65, the risk estimate was given based on the epidemiological approach [8]. As was
concluded according to studies of miners, however, the conversion convention, though scientifically
vague, needed to be used when applied to indoor radon studies. There was a large difference between
the two approaches by a factor of more than three and many technical issues to be solved. After the
data analyses on the indoor radon and lung cancer study were vigorously carried out, the risk estimates
in residential radon studies were eventually concluded without using the conversion convention and
came close to those given by the dosimetric approach. This is why many authoritative publications
were issued and revised. However, they still state that the effect of thoron is negligible compared to
that of radon, though the amount of related data is limited. It should be noted that measurement
techniques for thoron are not so easy as those for radon. As the half-life of thoron atoms is much
shorter than that of radon, they immediately decay, followed by 216Po with a half-life much shorter
than thoron. A question arises here. Many passive radon monitors have been used in both national
and epidemiological surveys. If thoron is present together with radon, are these well designed so as to
effectively detect radon only? If high diffusion barriers are used, they depress the detection of thoron.
Otherwise they may mislead and lead to wrong calculation of radon concentrations. In epidemiological
surveys, this will result in incorrect lung cancer risk estimates. Most passive radon monitors have
never been examined from the viewpoint of thoron interference on radon measurements. Limited data
on thoron is given in UNSCEAR reports and indoor thoron surveys have never been systematically
conducted. It is well known that there is no epidemiological evidence for thoron risk related to lung
cancer. The risk can be estimated based only on the dosimetric approach. Under the current situation
in which the dosimetric approach has become more reliable, it is important to know how large the
total lung cancer risk is when influenced by thoron and its progeny. This paper comprehensively
describes characteristics of thoron and its progeny in the indoor environment from the viewpoint of
measurements, dose assessment and health risk.

2. Physical Property and Behavior

Figure 1 illustrates the radioactive decay series for thorium-232 [9] where the half-life and emitted
energies are given. After Ra-224 decays, Rn-220 is formed. It is commonly called thoron, an inert gas.
In the uranium-238 decay series, on the other hand, radon-222 is formed as an inert gas. There is a great
deal of difference in the half-life between radon-220 and radon-222. Although Po-216 is formed with
alpha decay of Rn-220, it can almost be regarded as a gas because its half-life is very short. Subsequently
Pb-212 and Bi-212 are formed, which need mainly to be considered for dose assessment when they are
inhaled. These concentrations are collectively expressed in the equilibrium equivalent concentration
(EEC). The EEC for thoron progeny (Equilibrium Equivalent Thoron Concentration: EETC [Bq m−3])
can be approximately calculated by the Equation (1) after considering the contribution of Po-216:

EETC = 0.913×CB + 0.087×CC (1)

where CB: Pb-212 is activity concentration [Bq m−3]; CC: Bi-212 is activity concentration [Bq m−3].
If the equilibrium factor for thoron (FTn) is defined in the same manner for radon, it can be expressed
as the Equation (2):

wFTn =
EETC
CTn

(2)
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where CTn is thoron concentration [Bq m−3]. The significance of the equilibrium factor for thoron is
discussed in this paper from the viewpoint of dose assessment.
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Figure 1. Radioactive decay series for thorium-232.

Figure 2 exemplifies the exhalation process of thoron from macro surfaces such as walls containing
its parent nuclide 224Ra. The exhalation and diffusion of thoron is approximately described as a
one-dimensional phenomenon. When the exhalation rate of thoron from the wall is considered,
for instance, the indoor thoron concentration (CTn(x) [Bq m−3]) at distance x from the wall can be
expressed by the Equation (3) [10,11]:

CTn(x) =
ETn
√
λTnD

e(−
√
λTn/Dx) (3)

where ETn is surface exhalation rate of thoron from the wall [Bq m−2 s−1]; λTn is decay constant of
thoron [s−1]; and D is diffusion coefficient of thoron [m2 s−1]. If the thoron concentrations are measured
at two different locations, respectively, the exhalation rate of thoron can be estimated. As the half-life
of Po-216 is much shorter than that of the parent nuclide thoron, there is a radioactive equilibrium
between the two isotopes.
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Figure 3 illustrates the behavior of radon/thoron and their progeny in indoor air. After radon
and thoron decay, their progenies are formed. Most of these are positively charged and they rapidly
capture water molecules, thus forming clusters. They move so quickly in air that some of them attach
to ambient aerosols and the others deposit on the wall, ceiling, floor and macro-surfaces. Therefore
radon/thoron progeny are generally classified into two fractions: unattached and attached fractions.
As unattached progenies have a high diffusive velocity, they deposit on available surfaces very quickly.
Even progeny attached to ambient aerosols may eventually deposit on the surface. Before Po-216
atoms are captured by ambient aerosols, they decay to Pb-212 atoms. After considering the half-life of
Pb-212, the negligible outdoor Pb-212 activity concentration, and the attachment process to aerosols,
Pb-212 activity concentration (CB [Bq m−3]) in a room can be obtained by the Equation (4):

CB =
λaλBETn

λTn

(
λB + λv + λa

d

){
λB + λa +

√
λTn(λB + λa)

} · S
V

(4)

where λB is decay constant of Pb-212 [s−1]; λa is attachment rate of unattached thoron progeny onto
ambient aerosols [s−1]; λv is ventilation rate of the room [s−1]; λa

d is deposition rate of attached thoron
progeny [s−1]; S is surface area where thoron atoms are emitted [m2]; and V is inner volume of the
room [m3]. Based on the same manner, Bi-212 activity concentration (CC) is subsequently given by the
Equation (5):

CC =
λCCB

λC + λv + λa
d

(5)

where λC is decay constant of Bi-212 [s−1]. When the typical parameters are given in Table 1 [10,12,13],
EETC can be estimated with the exhalation rate of thoron as shown in Figure 4. De With et al. [14]
reported the thoron exhalation rate from the wall against the EETC value in the room. As the physical
parameters except Surface-to-Volume (S-V) ratio are not expected to be much different in any indoor
environment, EETC can be simply expressed along with the exhalation rate of thoron and S-V ratio as
the Equation (6):

EETC = 3.36ETn
S
V

(6)

Note that the EETC may change if another value of each parameter is adopted from the range.
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Table 1. Physical parameters for indoor model [10,12,13].

Parameter 1 Range Typical

Decay constant of thoron [h−1] - 44.74
Decay constant of Pb-212 [h−1] - 0.065

Attachment rate of unattached thoron progeny
onto ambient aerosols [h−1]

3–110 50

Ventilation rate of the room [h−1] 0.1–1 0.5
Deposition rate of attached thoron progeny [h−1] 0.015–0.35 0.2

Surface-to-Volume ratio [m−1] - 0.36
1 Unit is expressed in h−1 so as to easily compare with previous studies.
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3. Measurement Techniques

3.1. Spot Measurement

3.1.1. Thoron

As the half-life of thoron is shorter than 1 min, thoron gas measurement needs to start immediately
after sampling. In this section, the measurement method using one scintillation cell is briefly
introduced. Tokonami et al. [15] developed a discriminative measurement technique for radon and
thoron concentrations with time-sequential counting. Prior to the measurement, alpha counting
efficiencies for radon, 218Po, 214Po, thoron and 216Po were estimated by a Monte Carlo Calculation
after taking their range into account based on their emitted energies as well as the size of the cell.
In their study, Pylon scintillation cells of 300A and 110A were used. Their inner volumes are 270 [mL]
and 151 [mL], respectively. As this technique can be completed within 15 min, contribution from
any other alpha emitters of the remaining thoron progeny, such as 212Bi and 212Po, can be ignored
for the determination of thoron concentration. In order to validate justification of the alpha counting
efficiencies by the Monte Carlo simulation, the conversion factor theoretically drawn was compared
with that experimentally given by the manufacturer. The large cell conversion factor (300A) provided
by the manufacturer is the value at radioactive equilibrium, which is given as 27.9 [Bq m−3 cpm−1].
After radon gas is drawn into the cell, it takes 3.5 h to reach the equilibrium between radon and its
progeny. With the latest nuclear data, the theoretical conversion factor is eventually estimated to be
28.3 [Bq m−3 cpm−1], where there is only a small difference between the two approaches. Zhang et al.
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made a similar approach in the conversion factor of the same scintillation cell [16]. The alpha counting
efficiencies for thoron and its progeny are close to those given by Tokonami et al. [17]. As the theoretical
approach has been justified, it can be also applicable to the determination of thoron concentration with
the alpha counting efficiencies of thoron and 216Po. Furthermore, it can be regarded that 216Po atoms
behave like a gas in the cell and that thoron and 216Po are at equilibrium because its half-life is very
short. The thoron concentration (CTn [Bq m−3]) is given by the Equation (7):

CTn =
NTn

Vc × (ηTn + ηThA)
∫ t0+tm

t0
e−λTntdt

(7)

where NTn is counts during the period; Vc is inner volume of the cell [m−3]; ηTn is counting efficiency
of thoron; ηThA is counting efficiency of 216Po; t0 is beginning of the measurement [s]; and tm is
measurement period [s]. If radon is present together with thoron, however, counts derived from radon
and its progeny need to be subtracted from NTn. In order to obtain net counts derived from thoron and
its progeny, another measurement is therefore necessary after thoron and 216Po completely decay. NTn

can be expressed as the Equation (8):
NTn = N1 − kN2 (8)

where N1 is counts during the first period; N2 is counts during the second period. The constant k
depends on the existing ratio of radon and its progeny in the cell and the measurement timetable.
In the previous study, an optimal timetable with a 15 min time interval was discussed. The following
timetable was proposed: twenty seconds after sampling, the first measurement is made over 100 s.
Ten minutes after sampling, a 5 min counting, as the second measurement, is made.

3.1.2. Thoron Progeny

The measurement technique for thoron progeny is similar to that for radon progeny. In general,
an alpha counting method is preferable. As 212Pb and 212Bi concentrations are assigned to the subject
of dose assessment in thoron progeny measurement, the counting method is simpler than that for
radon progeny. Two time-sequential counts are necessary to measure two kinds of thoron progeny
concentration in both gross alpha counting and alpha spectroscopic methods. As the half-life of 212Pb is
as long as 10 h, however, it takes a significant amount of time to measure thoron progeny concentrations
precisely. In the gross counting method, a ZnS(Ag) (siliver-activated zinc sulfide) scintillation counting
system is commonly used. As this technique has no alpha energy discrimination, however, it will be
impossible to complete the determination of thoron progeny concentration in a natural environment
because radon will also be present together with thoron. Therefore, the measurement timetable needs to
be optimized so as to determine thoron progeny concentrations. Unless radon progeny concentrations
are the subject of measurement, the measurement can begin after radon progeny completely decay
(practically after 6 h). Note that accuracy of 212Bi activity concentration will be diminished when
considering the half-life of 212Bi (60 min). In order to overcome such practical problems, the least-square
method will be suitable. This can give any activity concentrations regardless of the number of unknown
concentrations. In contrast, the alpha spectroscopic method can quickly terminate the measurement for
both radon and thoron progeny, because the alpha particles emitted from them can be identified due to
the high resolution of the alpha spectrum. Information on the highest alpha particle energy emitted from
212Po is available via this technique without any interference from any other alpha emitters. When the
dose assessment is referred, determination of 212Pb will be emphasized because the contribution from
212Bi is much smaller than that from 212Pb as shown in the Equation (1). Tokonami et al. [17] developed
a simple measurement technique for the equilibrium equivalent thoron concentration with a solid-state
nuclear track detector. A poly allyl diglycol carbonate (PADC), commercially named CR-39, is used as
the detecting material [17]. This passive technique is applicable to determine the radioactivity level
anywhere without electricity supply. The following procedure, before chemical etching and track
reading, can be introduced for the determination of thoron progeny:
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1. Air samples are taken over several hours with a membrane filter (Millipore AA) or glass microfiber
filter (Whatman GF/F) installed in an open-faced filter holder and a DC powered air pump;

2. The filter is left until radon progeny completely decay (more than 6 h);
3. An aluminum foil (4.0 mg cm−2) as the energy absorber is directly placed on the filter so as to

detect alpha energy emitted from thoron progeny, and then a CR-39 plate is attached for alpha
track registration;

4. The time is recorded when the CR-39 plate is removed. This is the end of the measurement process.

3.2. Continuous Measurement

3.2.1. Thoron

There are two main ways to continuously identify thoron even though radon is present as well.
Falk et al. [18] developed a delayed coincidence method. The method separates the fraction of alpha
counts emitted from 216Po from all the other alpha counts. This method is based on the short half-life of
150 ms of 216Po. Bigu and Elliot [19] developed a continuous monitor based on their concept. Although
similar monitors were also developed, a flow-through scintillation cell is used in any measurement
system. Alternatively, alpha spectrometry is used. A RAD7 monitor, commercially available, is based
on an electrostatic collection method (for instance, Takeuchi et al., 1999) [20]. In this monitor, air is
drawn into the decay chamber through the drying column. As radon and thoron progeny are positively
charged, they will be neutralized by vapor and subsequently will not be collected on the surface of the
silicon semiconductor detector as the electrode unless air is dried. In addition, the half-life of 216Po is
so short that a large mobility will be required by high voltage to obtain a sufficient sensitivity to thoron.
The voltage cannot be changed in the above monitor. Therefore, a sampling flow rate is one of the
important parameters for thoron sensitivity due to its short half-life. Special attention must be paid to
the flow rate when determining thoron concentrations with this monitor.

3.2.2. Thoron Progeny

There are several commercial products for continuous working level monitoring. Note that any
signals derived from thoron progeny cannot be separated from those of radon progeny unless alpha
spectroscopy is used. In principle, the alpha spectroscopic method can specify information regarding
thoron progeny though it cannot determine the concentration. In a specific continuous monitor,
the EETC can be simply determined using the count rate (CPM) and an experimentally obtained
conversion factor (CF) as in the Equation (9):

EETC =
CPM
CF

(9)

As the conversion factor is obtained under the condition where the EETC is constant, however, the EETC
does not always correspond to an actual variation. On the contrary, a special algorithm for potential
alpha energy concentrations (PAEC) developed by Tokonami et al. [21] would be applicable in this case.

3.3. Time-Integrated Measurement

3.3.1. Thoron

Passive monitors are available for long-term measurement for both radon and thoron.
This technique is commonly used in nation-wide or regional surveys. Solid state nuclear track
detectors and electrets are installed in such a passive system. As they cannot separate radon and
thoron signals, however, a dual measurement system needs to be chosen. This dual system is derived
from the large difference of the half-life between two radioisotopes. For this purpose, the system
accommodates two different diffusion chambers where detectors are installed and in each the entry
rate of gas is well controlled by a gap or filter. In this section, two types of monitor are introduced.
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Eappen and Mayya developed a twin cup radon-thoron dosimeter [22] (Figure 5). Three pieces of
LR-115 Type II detector are fixed in the twin chamber radon dosimeter having three different mode
holders. The exposure of the detector is termed as the cup mode whereas the one exposed as open is
termed the bare mode. The right chamber is covered with a glass fiber filter and therefore both radon
and thoron gases can easily enter the chamber. The left chamber is covered with a membrane filter so
as to reduce the entry of thoron. Thus, there is less sensitivity for thoron in the left chamber than the
right chamber. The third detector film exposed in the bare mode registers alpha tracks contributed
by concentrations of radon, thoron and their progeny. Thereafter another type of passive monitor
(Figure 6) was developed by Sahoo et al. [23]. A pin-hole based 222Rn/220Rn discriminator was installed
in the monitor. For discriminative measurement of two radon isotopes, a pin-hole diffusion barrier
was used [24,25]. This is because different entry rates of 222Rn were pointed out through two entrances
of the dosimeter which might arise from turbulence or air flow in one direction. The new device was
designed to overcome the limitation of the conventional twin cup dosimeter. Currently this pin-hope
monitor has been widely used in India.
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Tokonami et al. [26] also developed a passive 222Rn and 220Rn discriminative monitor for a
large-scale survey (Figure 7). The measurement principle is almost the same as the Indian monitor
except for their bare mode. PADC, commercially CR-39, is used as the detecting material. This monitor
and its prototype have been widely used in various countries [27–30]. The above two monitors can be
calibrated in the calibration chamber at Hirosaki University Institute of Radiation Emergency Medicine,
Japan [31]. For determination of radon and thoron activity concentrations with passive solid-state
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nuclear track detectors, ISO 16,641 [32] is currently available. The detection threshold, detection limit and
confidence lower/upper limits in this technique are calculated based on ISO 11,929 [33]. A comparative
performance test of Indian and Japanese-Hungarian monitors was carried out in the environment [34].
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3.3.2. Thoron Progeny

A prototype of the passive type thoron progeny monitor was developed by Zhuo and Iida based
on diffusive deposition on the surface [35]. Among thoron progeny, 212Po atoms emit alpha energy of
8.8 MeV, which is the highest alpha energy of all the natural radionuclides. It is, hence, obvious that it
will be easy to detect this high energy by separating different energies emitted from other radionuclides
if an alpha energy absorber with a proper thickness is prepared. Figure 8 shows an overview of a
thoron progeny monitor. For radiation detection, CR-39, one of the solid-state nuclear track detectors,
is mounted in the monitor. The body is made of stainless steel. As shown in Figure 8, four pieces are
installed in the monitor and they are covered with an aluminized Mylar film and a polypropylene film
in this order (thickness: 7.1 mg cm−2; air-equivalent thickness: 71 mm). By adjusting the thickness
properly, only alpha energy of 8.8 MeV can be detected. Figure 9 exemplifies the detecting principle of
alpha energy emitted from 212Po [36].

The monitor is hung on the wall for a certain period. In a usual survey, it is exposed for a
few months. Radon and thoron progeny in indoor air deposit on the wall over the time period.
After they are deposited, tracks of alpha particles are recorded in the CR-39. After retrieving the
monitors, they are chemically etched to identify alpha tracks with a track reading system. The etching
condition for CR-39 (Baryotrak; Nagase Landauer Ltd., Japan) is as follows: solution: 6.0 M NaOH;
temperature: 60 ◦C; time: 24 h. Using a track reading system such as a microscope, track density
is determined. The relationship between track density (D) and thoron progeny concentration,
i.e., equilibrium equivalent thoron concentration, is expressed as the Equation (10):

EETC =
D

C× T
(10)

where D is track density (tracks mm−2); C is conversion factor experimentally obtained (0.017 tracks mm−2

(Bq m−3 day)−1 in our monitor); T is exposure period (day); and EETC: equilibrium equivalent thoron
concentration (Bq m−3).
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The conversion factor was experimentally obtained by the comparison between the monitor
and intermittent thoron progeny measurement. The experiment was carried out in actual dwellings.
Using the proposed technique, the lowest detection limit of the EETC is estimated to be 0.005 Bq m−3

with 90-day exposure.
Similar techniques were found in Indian studies [37–43]. Instead of CR-39, LR-115 nuclear track

detectors are used in their monitors. Not only thoron progeny sensors but also radon progeny sensors
are installed by differentiating the thickness of energy absorbers. Furthermore, metal wire screens are
introduced to detect fine and coarse progeny aerosols separately [44].

4. Dosimetry

When assessing the annual effective dose due to radon/thoron progeny inhalation, dose conversion
factors are used. International bodies such as UNSCEAR and ICRP have their own values.
The dose conversion factors (DCF) for radon are derived from both epidemiological evidence and
dosimetric models, whereas the DCF for thoron is given only by the dosimetric model because
there is no epidemiological evidence of lung cancer incidence due to thoron progeny inhalation.
Table 2 summarizes effective dose conversion factors (mSv WLM−1) (WLM: Working Level Month)
for thoron. The DCF for thoron is about two–three times smaller than that for radon [1,45–51].
When rewriting the DCF, expressed in dose per unit equilibrium equivalent activity concentration
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of thoron/radon exposures, however, the DCF for thoron is more than two times larger than that for
radon. According to the latest DCF for thoron and radon in ICRP Publ. 137 [51], they can be given as
107 nSv (Bq h m−3)−1 and 16.8 nSv (Bq h m−3)−1, respectively. On the contrary, UNSCEAR has recently
decided to use the conventional values of 40 nSv (Bq h m−3)−1 and 9 nSv (Bq h m−3)−1, respectively,
despite the inconsistency. This needs more consideration in order for them to correspond each other.

Table 2. Summary of effective dose conversion factors for thoron.

References Effective Dose Conversion Factors
(mSv WLM−1) 1

Marsh and Birchall [45,46] 3.8
UNSCEAR [1] 1.9

Porstendoerfer [47] 2.4
Ishikawa et al. [48] 5.4

Kendall and Phipps [49] 5.7
Hofmann et al. [50] 4.6

International Commission on Radiological
Protection (ICRP) Publ. 137 [51]

5.6 (Indoor workplace)
4.8 (Mine)

1 Working Level Month (WLM) is a historical unit of alpha potential energy exposure. 1 WLM = 3.45 mJ h m−3.

5. Radioactivity and Resulting Dose

As mentioned above, thoron activity concentration is not uniformly distributed in the environment,
which is far from the case for radon. It is considered that thoron concentration in air exponentially
decreases with distance from the source. This behavior is derived from the very short half-life of
thoron (55.6 s). The exponential change of thoron concentration is defined via the diffusion coefficient,
strongly affected by the air turbulence condition.

Table 3 summarizes thoron and thoron progeny concentrations (EETC) in various countries. As can
be seen from the presented data, their number is more restricted than that of radon [27,39,41,42,52–67].

In Cameroon, radon, thoron and its progeny concentrations were measured in residential areas in
uranium and thorium bearing regions [52]. UNSCEAR presents the typical value of the equilibrium
factor of thoron as 0.02 and this equilibrium factor of thoron is often used to estimate the annual effective
dose due to thoron, in the same manner as in the case of radon. In the present study, the authors
estimated a total annual effective dose derived from radon and thoron using actual measurement
data on thoron progeny and compared it with that given by the UNSCEAR method. Consequently,
the result based on the direct measurement was 1.5 times larger than the indirect one. They concluded
that the direct measurement of thoron progeny is important for dose assessment.

The results of two surveys in Canada were tabulated. In one survey, long-term thoron and progeny
measurements were simultaneously carried out for three months in two cities [53]. The simultaneous
measurement of thoron and thoron progeny concentrations yielded a thoron equilibrium factor of
0.002 and therefore the authors concluded that the typical value given by UNSCEAR is reasonable for
dose assessment. In contrast to a Cameroonian study, the Canadian study justified the consistency of
the thoron equilibrium factor via the UNSCEAR method. In the other survey, results of simultaneous
radon and thoron measurements were shown in 33 metropolitan areas [54]. The study demonstrates
that thoron contributes around 3% of the effective dose due to indoor radon and thoron exposure
in Canada.



Int. J. Environ. Res. Public Health 2020, 17, 8769 12 of 19

Table 3. Thoron and thoron progeny concentration (EETC) in various countries.

Country Thoron
(Bq m−3)

EETC
(Bq m−3)

Remarks Reference

Cameroon
AM 1 173 (13) 10.7 (0.9)

[52]GM 2 118 (6) 7.4 (4.8)
Range 23–724 0.4–37.6

Canada
AM 1 114 (303) 1.23 (1.51)

Halifax and
Fredericton

[53]GM 2 51 (2.93) 0.75 (2.64)
Range 6–1977 0.11–7.45

Canada (33
metropolitans)

AM 1 9 (11) - [54]
Range ND–164 -

China
(Yangjiang)

AM 1 1247 (1189) 7.8 (9.1)
[55]Median 859 4.2

Range 65–3957 0.6–36.2

China
(Gansu)

AM 1 433 (210) -
[56]GM 2 347 (2.29) -

Range 19–820 -

China
(Shanxi)

AM 1 160 1.4 [57]
GM 2 130 (2.0) 1.2 (1.8)

China
(Shaanxi)

AM 1 202 2.3 [57]
GM 2 181 (1.6) 2.1 (1.6)

Hungary GM 2 341 (2.59) -
Bauxite mine [58]

Range 40–2514 -

India (Kerala) GM 2 41 1.81 (1.9) [59]
Range 11–212 0.36–8.00

India
(Odisha)

AM 1 123 (105) 3.19 (2.75)
[27]GM 2 95 (1.95) 2.37 (2.15)

Range 15–585 0.44–15.40

Ireland
AM 1 22 0.47 [60]
Range <1–174 <0.05–3.8

Kenya AM 1 195 (36) 11.5 (2.1) [61]
Range BDL–973 0.8–29.1

Korea
AM 1 40 (56) 0.89 (0.70)

[62]GM 2 11 (2.9) 0.6 (0.41–0.78)
Max 731 -

Macedonia
AM 1 37 (36) -

[63]GM 2 28 (2.12) -
Range 3–272 -

Mexico
AM 1 82 (75)

[64]GM 2 55
Range 8–234

Netherlands
AM 1 - 0.64

[65]95-Percentile - 1.37
Max - 13.3

Slovenia
AM 1 87 - Elementary

School
[66]

Range 21–368 -

Srpska
AM 1 63 (40) 0.52–0.34

[41]GM 2 51 (2.07) 0.40 (2.20)
Range 7–198 0.09–1.16

Kosovo
AM 1 136 2.06 [39]
GM 2

Range
90

18–1313
1.90

0.87–4.38

Serbia
AM 1 116 1.1

[42]GM 2 89 0.86
Range 10–412 0.1–3.4

Indonesia

AM 1 152 (indoor) 13 (indoor) West Sulawesi
(HNBR)

[67]

139 (outdoor) 15 (outdoor)

GM 2 141 (indoor) 13 (indoor) Number of
dwellings121 (outdoor) 15 (outdoor)

Range 20–618 (indoor) 4–40 (indoor) Indoor: 45
23–457 (outdoor) 4–37 (outdoor) Outdoor: 18

1 AM: Arithmetic mean, 2 GM: Geometric mean.
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The US National Cancer Institute and the China Ministry of Health conducted an epidemiological
survey for residential radon and lung cancer in Gansu Province, China [68]. This study can be
recognized as one of the main studies of residential radon by pooling the analyses of European [69,70],
North American [71,72] and Chinese [73] residential case-control studies. They used alpha track
detectors, but the monitors were proved to be influenced by thoron and overestimated radon
concentrations [74]. Thereafter radon measurements were made with the above mentioned improved
detectors, discriminating two radon isotopes [56]. Remarkably high thoron levels were observed in
these areas. This finding suggests two key points, as follows: (1) their previous radon data and the
lung cancer risk were incorrect; (2) the thoron contribution to radiation exposure will be important
in those areas. Another Gansu survey was conducted with simultaneous measurements of radon,
thoron and thoron progeny [75]. Correlation analyses were made among three activity concentrations.
There was no correlation whenever any two concentrations were chosen. This means that these
three concentrations are so independent that it is difficult to estimate one concentration from the
other. If the thoron dose needs to be considered, direct measurement of thoron progeny is required.
This further implies that thoron progeny concentration cannot be accurately obtained with a fixed
thoron equilibrium factor.

Simultaneous measurements of radon, thoron and thoron progeny were made in other provinces
close to Gansu province, namely Shanxi and Shaanxi provinces [57]. From the topographical and
geological points of view, the same radiological features were obtained. Compared to thoron
concentrations, thoron progeny concentrations were so low that it resulted in small thoron equilibrium
factors (arithmetic mean = 0.01). Tokonami [36] evaluated the influence on the risk estimate of
misleading radon data. Annual effective doses due to radon and thoron were estimated in the UNSCEAR
manner. Comparison of the annual effective dose was made between misleading radon concentrations
and modified, i.e., to achieve correct radon concentrations. Misleading radon concentrations resulted
in an arithmetic mean of 6.4 mSv, whereas correct ones gave 1.7 mSv. When the contribution of thoron
was included, the total dose was calculated to be 2.4 mSv. A series of these findings revealed that the
Gansu study gave incorrect or misleading lung cancer risk estimates.

Yangjiang, Guangdong province, is famous for being one of the areas with the highest background
radiation in the world. Kudo et al. [55] demonstrated how residents there are being exposed to natural
radiation. As monazite sands are widely distributed in this area, high gamma dose rates are often
observed. However, there is less information on internal exposure, particularly due to radon and
thoron. Based on collected data on these activity concentrations using the UNSCEAR method, annual
effective doses due to radon and thoron progenies were estimated to be 3.1 (SD = 2.0) mSv and
2.2 (SD = 2.5) mSv, respectively. This revealed that indoor thoron and its progeny levels were fairly
high and even thoron exposures are not negligible compared to radon exposures.

Kovacs [58] summarized radon and thoron surveys in Hungary. Dwellings and workplaces were
surveyed with passive radon-thoron discriminative monitors. The monitors were placed 15–30 cm
from the wall. Table 2 gives examples of thoron concentrations observed in underground bauxite
mines. It was concluded that the dose contribution from thoron progeny was not negligible considering
all the data and consequently further surveys of thoron progeny would be required for accurate
dose assessment.

Omori et al. [59] presented radon, thoron and progeny concentrations for dwellings in Kerala,
India. Their study area was classified into high (3–5 mGy y−1) and low (1 mGy y−1) background
radiation areas, respectively. In a six-month measurement, it was found that there was no major
difference between the two areas. The geometric mean of the annual effective dose due to radon and
thoron was estimated to be 0.10 and 0.44 mSv, respectively. The internal dose derived from thoron
progeny is more significant than that from radon. However, the doses were quite small and the external
dose can be regarded as the major contributor in Kerala.

Omori et al. [27] also conducted long-term measurements of indoor radon, thoron and thoron
progeny concentrations in Odisha, India. They revealed that radon and thoron concentrations differ by
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one order of magnitude whereas thoron progeny concentrations were nearly constant throughout the
whole year. Thoron and its progeny concentrations were higher than those in Kerala. Exposure to
thoron is equal to or exceeds exposure to radon in internal doses. The internal dose from radon and
thoron was comparable to the external dose.

In Ireland, indoor concentrations of radon, thoron and its progeny were measured in 205 dwellings
during the period 2007–2009 [60]. Radon activity concentration ranged from 4 to 767 Bq m−3 with
an arithmetic mean of 75 Bq m−3. Based on these concentrations and the UNSCEAR approach,
the corresponding estimated annual effective doses are 0.1 (min), 19.2 (max) and 1.9 (mean) mSv. On the
other hand, the estimated annual effective doses corresponding to thoron progeny concentrations
are 2.9 (max) and 0.35 (mean) mSv with the dose conversion factor based on the two dosimetric
models [39,40]. Although the dose from thoron tends to be negligible in most cases worldwide,
it should be noted that in some dwellings in this study the annual dose from thoron progeny exceeded
that from radon. This result is the first case where two annual effective doses from radon and thoron
were measured on a nationwide scale in Europe.

Nyambura et al. [61] carried out indoor radon, thoron and thoron progeny surveys in several
different types of houses in Kilimambogo, Kenya, and thereafter assessed the annual effective dose
attributed to inhalation of their progeny. Housing structure was classified into three categories,
i.e., mud, metal and stone-walled houses. The highest mean thoron and its progeny concentrations
were observed in mud-walled houses with 195 and 11.5 Bq m−3, respectively, whereas the highest radon
concentration was found in stone-walled ones with 75 Bq m−3. Assessing the annual effective dose,
the highest was given by mud-walled houses with 0.9 (min), 8.5 (max) and 3.7 (mean) mSv, respectively.

Activity concentrations of thoron and its progeny were measured in 450 houses from 2002 to
2004 in Korea [62]. The annual arithmetic and geometric means of thoron concentration were 40.4
and 10.7 Bq m−3, respectively. The annual arithmetic and geometric mean were 0.89 and 0.60 Bq m−3,
respectively. High thoron concentrations were observed in Korean-style houses built with mud block.
The average annual effective dose due to inhalation exposure to thoron and its progeny was estimated
to be 0.25 mSv.

Indoor thoron concentrations were measured in 300 houses for one year, from December 2008 to
December 2009 in Macedonia. using passive radon-thoron discriminative monitors [63]. They were
deployed at a distance of more than 50 cm from walls. The geometric means of indoor thoron
concentration in winter, spring, summer and autumn were obtained as 39 (3.4), 32 (2.8), 18 (2.8) and
31 Bq m−3 (2.9), respectively. Seasonal variations of thoron appear to be smaller than those of radon.

Indoor thoron concentrations in 50 houses were measured in the Metropolitan Zone of Mexico
City using a passive electret system [64]. The annual arithmetic and geometric means of indoor thoron
concentration were estimated to be 82 and 55 Bq m−3, respectively, ranging from 8 to 234 Bq m−3. As to
the seasonal variation, the lowest value was found in summer.

Thoron progeny concentrations, namely equilibrium equivalent thoron concentrations (EETCs),
were measured in 2900 houses, Netherlands [65]. The arithmetic mean of EETC was 0.64 Bq m−3.
Thoron progeny concentrations show correlations with year of construction and smoking behavior.
A pilot study was also conducted to determine the relationship between the exhalation of thoron and
the concentration of thoron progeny in the room. The authors pointed out that thoron might be a more
important contributor to the population dose in other regions with low radon levels.

A limited number of measurements were carried out about 1 m away from any wall and 1.5 m
above the floor in various environments in Slovenia using passive radon-thoron discriminative
monitors [66]. Thoron and radon concentrations in 35 elementary schools ranged from 21 to 368 and
40 to 4609 Bq m−3, respectively. The authors pointed out that there was a weak correlation between the
two activity concentrations though both of them followed a lognormal distribution.

Results of the first investigation on indoor radon, thoron and their progeny concentrations were
given in 25 primary schools of Republic Srpska [41]. For their measurements, Japanese and Indian
techniques were introduced in the survey. The monitors were deployed at 10 cm distance from the
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wall. A weak correlation was found between radon and thoron concentrations as well as thoron and
thoron progeny concentrations.

Gulan et al. [39] carried out indoor radon, thoron and their progeny survey in scattered locations
around Kosovo. Estimated arithmetic mean values of concentrations in 48 houses are 122 Bq m−3 for
radon and 136 Bq m−3 for thoron. This might be attributed to building materials involving bricks,
sand and stones from the local area where 232Th concentration in soil is higher than that of 226Ra.

Simultaneous long-term measurements of radon, thoron and their progeny were conducted in 40
rural houses in Serbia [42]. The EETC was found to be relatively higher than the worldwide average
value. Significant positive correlation between thoron and EETC was found, whereas there was no
significant correlation between radon and EERC.

Recently, a high natural background radiation area (HNBR) due to terrestrial radiation has been
reported in West Sulawesi, Indonesia [76]. EETC was measured using the thoron progeny monitor
shown in Figure 4 in a total of 45 dwellings [67]. The EETC ranged from 4 to 40 Bq m−3 and the annual
effective dose due to thoron inhalation was reported to be 5.1–17.7 mSv.

Future authors should discuss these results and how they can be interpreted from the perspective
of previous studies and working hypotheses. The findings and their implications should be discussed
in the broadest context possible. Future research directions may also be highlighted.

6. Conclusions

As thoron is a very short half-lived radionuclide, though it is an isotope of radon, it is not easy to
measure its activity in air and consequently to assess the resulting dose in the same manner as for radon.
Nationwide indoor radon surveys have been conducted in many countries. The annual effective dose
for the public is calculated using the indoor radon concentration and an equilibrium factor for radon.
The equilibrium factor of radon is typically 0.4 but such an approach is not applicable or meaningful
in the case of thoron. The spatial distribution of thoron is so unique that a single value of thoron
concentration cannot be given even in a room, due to the short half-life of less than 1 min. Thus, thoron
concentrations should not be used for radiation protection purposes because the thoron concentration
varies widely with space. Therefore, a direct measurement of thoron progeny concentration will be
more effective and useful whereas several assumptions are required in the measurement techniques
presented in this paper. As another approach, the surface exhalation rate of thoron may be an index
for thoron dose assessment. Although thoron was underestimated in the past, recent findings have
revealed that reassessment of risks due to radon exposure may need to take the presence of thoron
into account.
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