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Abstract

Thalamocortical neurons in the dorsal lateral geniculate nucleus (dLGN) transfer visual

information from retina to primary visual cortex. This information is modulated by inhibitory

input arising from local interneurons and thalamic reticular nucleus (TRN) neurons, leading

to alterations of receptive field properties of thalamocortical neurons. Local GABAergic inter-

neurons provide two distinct synaptic outputs: axonal (F1 terminals) and dendritic (F2 termi-

nals) onto dLGN thalamocortical neurons. By contrast, TRN neurons provide only axonal

output (F1 terminals) onto dLGN thalamocortical neurons. It is unclear if GABAA receptor-

mediated currents originating from F1 and F2 terminals have different characteristics. In the

present study, we examined multiple characteristics (rise time, slope, halfwidth and decay τ)

of GABAA receptor-mediated miniature inhibitory postsynaptic synaptic currents (mIPSCs)

originating from F1 and F2 terminals. The mIPSCs arising from F2 terminals showed slower

kinetics relative to those from F1 terminals. Such differential kinetics of GABAAR-mediated

responses could be an important role in temporal coding of visual signals.

Introduction

In the dorsal lateral geniculate nucleus (dLGN), the primary visual input from retina consti-

tutes a relatively small fraction (~10%) of their synaptic inputs onto thalamocortical neurons

[1, 2]. By contrast, the vast majority of afferent synaptic inputs onto thalamocortical neurons

consist of inhibitory, corticothalamic, and brainstem inputs. Inhibitory inputs to thalamocorti-

cal neurons primarily arise from thalamic reticular nucleus (TRN) neurons and local dLGN

interneurons. The local interneurons are activated by retinogeniculate afferents, providing

feed-forward inhibition to thalamocortical neurons, and these inputs play a significant role in

temporal precision and receptive field properties of thalamocortical neurons [3–6]. TRN neu-

rons are situated to provide feedback inhibition in the thalamocortical pathway and
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feedforward inhibition in the corticothalamic pathway [7, 8]. In addition, the reciprocal con-

nectivity between thalamocortical neurons and TRN neurons serve as the underpinnings for

intrathalamic oscillations that occur during certain sleep states and pathophysiological condi-

tions such as absence epilepsy [9–14].

The dLGN interneurons are unique and interesting in that they give rise to two distinct

types of output onto thalamocortical neurons: classical axonal outputs via F1 terminals and pre-

synaptic dendrites (named F2 terminals) [15–21]. Retinal inputs onto thalamocortical neurons

provide monosynaptic excitation via a glutamatergic retinogeniculate synapse and disynaptic

inhibition via the F2 terminal (presynaptic dendrite of interneuron). These two synapses onto

the thalamocortical neurons are within very close proximity, and form a triadic structure [2,

22]. Our previous studies have shown that the activation of metabotropic glutamate receptors

(mGluRs), which are located on the dendrites of interneurons, leads to GABA release from F2

terminals resulting in lasting inhibition of thalamocortical neurons [19, 23, 24].

Although previous electrophysiological studies have shown the presence of both F1- and

F2-terminal mediated inhibition onto thalamocortical neurons, it is unclear if ISPCs arising

from these different origins have distinct characteristics. Anatomical studies indicated differ-

ential distribution of F1 and F2 terminals on thalamocortical neurons: F2 terminals tend to be

present on proximal dendrites, whereas F1 terminals are found on proximal and distal den-

drites [2, 22, 25]. In the present study, we have systematically examined IPSC kinetics originat-

ing from presumed F1 and F2 terminals. The identified differences in the kinetics of inhibitory

responses arising from F1 and F2 terminals could impact the temporal precision of sensory

information transfer to the neocortex.

Materials and methods

Brain slice preparation

Sprague-Dawley rats (postnatal age: 10–16 days, males and females) were deeply anesthetized

with sodium pentobarbital (55 mg/kg), the brains were quickly removed, and placed into

chilled (4˚C), oxygenated (5% CO2/95% O2) slicing solution containing (in mM): 2.5 KCl, 1.25

NaH2PO4, 10.0 MgSO4, 0.5 CaCl2, 26.0 NaHCO3, 11.0 glucose, and 234.0 sucrose. Slices

(300 μμ thickness) were cut using a vibrating tissue slicer in the coronal plane for dLGN

recordings and in the horizontal plane for ventrobasal nucleus (VB) recordings. Slices were

then transferred to a holding chamber containing oxygenated physiological saline that con-

tained (in mM): 126.0 NaCl, 2.5 KCl, 1.25 NaH2PO4, 2.0 MgCl2, 2.0 CaCl2, 26.0 NaHCO3, and

10.0 glucose. Individual slices were transferred to a recording chamber maintained at 32˚C,

and oxygenated physiological saline was continuously superfused at a rate of 2.0 ml/min. All

procedures performed were approved by the IACUC at the University of Illinois, Urbana-

Champaign.

Whole-cell recording procedures

Recordings were obtained using the whole-cell configuration as previously described [26].

Recording pipettes had tip resistances of 3–7 MO when filled with an intracellular solution

containing (in mM): 117.0 Cs-gluconate, 13.0 CsCl, 1.0 MgCl2, 0.07 CaCl2, 0.1 EGTA, 10.0

HEPES, 2.0 Na2-ATP, 0.4 Na-GTP, and 0.3% biocytin. For paired recordings, the Cs+-based

internal solution was replaced with K+-based internal solution. The pH and osmolarity of

intracellular solution was adjusted to 7.3 and 290 mOsm, respectively. The internal solution

resulted in ~10 mV junction potential that was corrected in the voltage measures. A fixed-stage

microscope (Axioskop2, Carl Zeiss, Inc.) equipped with differential interference contrast optics

and a 63× water-immersion objective was used to view individual neurons within the slice.
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Membrane voltages and currents were recorded using a Multiclamp 700B amplifier (Molecular

Devices, Sunnyvale, CA). Inhibitory postsynaptic currents (IPSCs) were recorded at holding

potential of 0 mV using Cs+-based internal solution. Only neurons with stable access resis-

tances<15 MO were included for analysis in this study. Interneurons and thalamocortical neu-

rons were distinguished by both physiological and morphological criteria. Relay neurons

produced a stereotypical voltage-dependent burst firing response. In contrast, interneurons

had a more pronounced depolarizing sag in response to hyperpolarizing current pulses than

thalamocortical neurons. Interneurons had a bipolar appearance with small, fusiform somata

with dendrites emanating from the opposite poles of the soma, whereas thalamocortical neu-

rons typically had an oval soma with four to seven processes projecting from the soma [24].

Concentrated stock solutions of pharmacological agents were initially prepared and stored

as recommended by manufacturers. The stock solution was diluted in physiological saline to a

final concentration just prior to use. All compounds were purchased from Tocris (Ellisvile,

MO) or Sigma (St. Louis, MO).

Data acquisition and analyses

Spontaneous synaptic events were digitized, stored and analyzed off-line using pCLAMP soft-

ware (Molecular Devices, Sunnyvale, CA) and Mini Analysis (Synaptosoft, Fort Lee, NJ). The

detection of miniature ISPCs (mIPSCs) was accomplished by setting a threshold at two times

greater than the baseline level in presence of the GABAA antagonist, SR95531. mIPSC ampli-

tudes, rise times (10–90% amplitude), rising slopes, half-width, and decay time constant (τ)

were calculated and compared across different experimental groups. Multipeak mIPSCs,

extremely large amplitude (>100 pA), and slow rise time (>5 ms) events were excluded from

analyses. Statistical analyses consisted of a student’s t test and Fishers posthoc test, as noted.

Data are presented as mean ± SD.

Results

As illustrated in Fig 1, thalamocortical neurons in VB only receive F1 terminal inputs from

TRN neurons due to the lack of local circuit interneurons. By contrast, dLGN thalamocortical

neurons receive F1 terminal innervation from local interneurons and TRN neurons, and F2

terminal inputs from local interneurons [18]. mIPSCs were recorded from dLGN (n = 21) and

VB (n = 13) thalamocortical neurons in the presence of tetrodotoxin (TTX, 1μM) (Fig 1B).

The mIPSCs recorded from dLGN neurons had significantly greater rise times (1.7 ± 0.5 ms,

n = 21) and wider halfwidths (11.6 ± 3.5 ms) than those recorded from VB neurons (rise time:

1.4 ± 0.2 ms; n = 13; p< 0.05, t-test; halfwidth: 8.19 ± 1.46; p< 0.01, t-test). Meanwhile, the

mIPSC decay slope was significantly slower in dLGN (14.8 ± 5.2 pA/ms) than VB neurons

(18.6 ± 3.6 pA/ms; p < 0.05, t-test). mIPSC amplitude did not differ between dLGN and VB

neurons (dLGN: 29.4 ± 0.8 pA; VB: 25.9 ± 0.89 pA, p> 0.05, t-test). The rise time of mIPSCs

recorded in dLGN relay neurons had larger coefficient of variation (CV), an index of variabil-

ity (CV: 0.29 ± 0.04), than that in VB neurons (CV: 0.23 ± 0.03). We hypothesized that large

variation in rise times of dLGN mIPSCs could be due to mixture of F1- and F2-mediated

IPSCs in dLGN neurons.

In our earlier studies, in a subset of dLGN thalamocortical neurons the activation of

mGluRs in the presence of TTX led to a selective increase in F2 terminal outputs (F2-positive

neurons), thereby leading to an increase in GABA-mediated IPSCs in thalamocortical neurons

[19, 23, 24, 27, 28]. By contrast, in VB neurons and a subset of dLGN neurons, mGluR agonists

applied in the presence of TTX did not alter mIPSC activity (F2-negative neurons; Fig 2A and

2C). We analyzed various mIPSC kinetics from these three different groups of neurons:
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Fig 1. The kinetics of mIPSCs differs in VB and dLGN thalamocortical neurons. A. Schematic diagram illustrating VB which lacks

interneurons and receives F1 terminal inputs from TRN. By contrast, dLGN thalamocortical neurons receive both F1 and F2 terminal inputs

from interneurons and F1 inputs from TRN. B. Superimposed current traces of 50 consecutive mIPSCs recorded in dLGN (left) and VB

(middle) thalamocortical neurons. Superimpose of the averaged mIPSCs (± SD) from VB and dLGN thalamocortical neurons (right). C.

Population data illustrating amplitude (i), rise time (ii), halfwidth (iii), and slope (iv) from VB and dLGN thalamocortical neurons. * p<0.05, **
p<0.01.

https://doi.org/10.1371/journal.pone.0189690.g001
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Fig 2. Slow mIPSC kinetics of F2 terminals. A. Representative current traces revealing individual mIPSCs: F2-positive dLGN:

subpopulation of dLGN neurons that have a TTX-insensitive increase in mIPSCs by ACPD. F2-negative: dLGN neurons that do not show

TTX-insensitive increase in mIPSC activity to ACPD, and VB: neurons that do not show TTX-insensitive increase in mIPSC activity to

ACPD. The superimpose is the averaged mIPSCs for each of the 3 representative types of neurons. B. Summary plots of the population

data showing amplitude (i), rise time (ii), halfwidth (iii), and slope (iv) of mIPSCs. C. The dLGN F2-positive neurons had the longest decay τ
among three groups. The analysis of event numbers over the degree of decay τ showed the bimodal distribution of mIPSC in dLGN

F2-positive neurons. D. Short-term (15 s) exposure to ACPD increases mIPSC frequency via F2 outputs. The representative current trace

showing the mIPSCs before ACPD (iia), after ACPD (iib) and following wash (iic). iii. ACPD significantly increases the mIPSC rise time

compared to pre-drug condition. Error bars represent mean ± SD. * p<0.05, ** p<0.01.

https://doi.org/10.1371/journal.pone.0189690.g002
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F2-positive dLGN (n = 13), F2-negative dLGN (n = 7), and VB (n = 12) neurons. The mIPSC

amplitude did not statistically differ between these three neuron groups (Fig 2Bi, Table 1). The

mIPSCs of F2-positive dLGN neurons had significantly slower rise times and greater half-

widths in comparison to dLGN F2-negative neurons and VB neurons (Fig 2Bii and 2Biii;

Table 1). In addition, the decay slope of mIPSCs in F2-positive dLGN neurons was signifi-

cantly less than those in dLGN F2-negative neurons and VB neurons (Fig 2Biv, Table 1). In

contrast, there were no significant differences between the rise time, halfwidth, and decay

slope of dLGN F1-negative neurons and VB neurons (Table 1).

Considering the halfwidth of the mIPSCs differed between two different neurons, we subse-

quently calculated the decay time constant (τ) of the mIPSCS. The mIPSCs of F2-positive

dLGN neurons had significantly longer τ compared to those in F2-negative dLGN neurons

and VB neurons (Fig 2Ci, Table 1). As illustrated in Fig 2Cii, τ is bimodally distributed in

dLGN F2-positive neurons, but not in dLGN F2-negative and TRN neurons, suggesting diver-

sity of mIPSCs in dLGN neurons. The bimodal distribution in the F2-positive dLGN neurons

suggests multiple populations that could correspond to F1 and F2 terminal innervation. In

F2-positive dLGN neurons, subsequent exposure to ACPD (25–100 μM) produced a robust

increase in mIPSC activity. We analyzed the kinetics of mIPSCs pre- and post-ACPD in these

neurons. The average rise time in pre-ACPD (2.02 ± 0.33 ms) significantly increased after

ACPD application (Fig 2D, 2.30 ± 0.50 ms, n = 8; p< 0.05, paired t-test). These data were con-

sistent with our early finding that the F2 activation showed slow kinetics of mIPSCs.

We further analyzed IPSC kinetics by selectively stimulating interneurons using dual

recordings between interneurons and dLGN thalamocortical neurons. Somatically generated

action potentials have been shown to propagate throughout interneuron axons (F1 terminals)

and dendrites (F2 terminals), triggering GABA release onto relay neurons [29]. Current-

evoked action potentials of dLGN interneurons triggered unitary evoked IPSCs (ueIPSCs)

with averaged delay time of 0.5 ± 0.2 ms in the postsynaptic thalamocortical neurons (Fig 3A;

n = 7). The ueIPSCs of dLGN neurons were compared with mIPSCs of VB neurons with simi-

lar amplitudes. The ueIPSCs from seven dual recordings (1–7 paired neurons) were compared

with VB mIPSCs in the comparable ranges of amplitudes (Fig 3B; I: 25–35 pA; II: 35–45 pA;

Table 1. The characteristics of mIPSCs from dLGN and VB thalamocortical neurons.

LGN

F2 positive

(n = 13)

LGN

F2 negative

(n = 7)

VB

(n = 12)

Posthoc Fisher LSD

Amplitude

(mV)

26.2 ± 4.4 26.1 ± 3.7 28.9 ± 2.4 F2+ vs. F2-: p = 0.95, ns

F2+ vs. VB: p = 0.25, ns

F2- vs. VB: p = 0.22, ns

Rise Time

(ms)

1.9 ± 0.4 1.4 ± 0.4 1.4 ± 0.2 F2+ vs. F2-: p = 0.0016, *
F2+ vs. VB: p = 0.0009, *
F2- vs. VB: p = 0.75, ns

Halfwidth

(ms)

12.9 ± 3.3 9.2 ± 2.6 8.2 ± 1.5 F2+ vs. F2-: p = 0.0087, *
F2+ vs. VB: p = 0.002, *
F2- vs. VB: p = 0.41, ns

Slope

(pA/ms)

13.1 ± 3.7 18.6 ± 6.2 18.6 ± 3.6 F2+ vs. F2-: p = 0.02, *
F2+ vs. VB: p = 0.0073, *
F2- vs. VB: p = 0.99, ns

Decay τ
(ms)

9.7 ± 0.7 6.6 ± 1.1 6.1 ± 0.8 F2+ vs. F2-: p = 0.0087, *
F2+ vs. VB: p = 0.002, *
F2- vs. VB: p = 0.57, ns

https://doi.org/10.1371/journal.pone.0189690.t001
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Fig 3. Diverse IPSC kinetics originating from local interneurons. A. Schematic diagram illustrating dual whole-cell

recordings from synaptically-coupled dLGN interneurons and thalamocortical neurons (left) and electrophysiological

responses to depolarizing current (right). Current-induced excitation of interneurons elicited two sequential ueIPSCs in dLGN

thalamocortical neurons. B. Population data illustrating rise time (i), halfwidth (ii), and slope (iii) as a function of mIPSC

amplitude obtained from VB neurons (n = 13). Note the number on the top indicating the same amplitude comparison of local

interneuron ueIPSC. C. Population data illustrating rise time (i), halfwidth (ii), and slope (iii) as a function of amplitude obtained

from VB mIPSCs and local interneuron ueIPSC (red). D. The activation of local interneurons induces GABA release in two

modes, fast decay τ (pair #2, #6, #7) and slow decay τ (pair #1,#3, #4, #5). *, p<0.05.

https://doi.org/10.1371/journal.pone.0189690.g003
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III: 45–55 pA; IV: 55–65 pA). The ueIPSCs from pairs 1, 3, 4, and 5 had slower rise times, lon-

ger halfwidths, and lower slopes than the comparable mIPSCs from VB neurons, which would

be consistent with these dLGN neurons being F2-positive neurons (Fig 3C). By contrast, the

mIPSC kinetics of pairs 2, 6, and 7 were similar to those of VB mIPSCs, suggesting those pairs

have only F1 terminals. The characteristics of ueIPSCs were illustrated in Table 2. We next

analyzed the decay τ of each IPSC evoked by presynaptic action potential. The distribution of

the decay τ of ueIPSCs from the two subgroups of pairs (presumed F2-positive: 1,3,4,5; F2-neg-

ative: 2,6,7) had two different distributions (Fig 3D, Table 2). The presumed F-positive pairs

were skewed to the right presumably through the slower kinetics of the F2 terminal outputs.

Discussion

In the present study, we characterized the kinetics of GABAAR-mediated currents originating

from axonal and/or dendritic inputs onto thalamocortical neurons in visual thalamus. The

GABAAR-mediated IPSCs displayed distinct kinetics depending on their origin: IPSCs arising

from dendritic F2 outputs showed slower rise times and longer halfwidths compared to those

arising from axonal F1 outputs. Such a distinct characteristic illustrates functional difference

on visual information processing.

GABAergic inhibition does not only play an role in sensory information processing

through thalamocortical circuits, but also in intrathalamic oscillatory activities associated with

sleep/wake states and certain pathophysiological conditions such as absence epilepsy [9, 10, 12,

30]. Interneurons and TRN neurons provide inhibition to thalamocortical neurons through

two distinct outputs: classical axonal outputs (F1 terminals) and presynaptic dendritic outputs

(F2 terminals). In dLGN, F2 terminals are hypothesized to focally regulate retinogeniculate

transmission [28]. The signaling through F2 terminals is thought to occur independent of

activity at the somatic level of the interneuron and therefore provide focal inhibitory output

[16, 24, 31]. In contrast to F2 terminals, it has been suggested that activation of axonal outputs

(F1 terminals) of either interneurons or TRN neurons produce more of a widespread inhibi-

tion on thalamocortical neurons from their more widespread axonal arbors [28]. Somatically

evoked Na+ dependent action potentials can trigger GABA release of axonal F1 terminals and

back propagate throughout the dendritic arbor of the interneuron potentially activating F2 ter-

minals as well, which would also lead to a global form of inhibition. Therefore, the suprathres-

hold somatic depolarization of interneurons would produce two forms of inhibition with

distinct temporal properties: conventional F1 inhibitory and dendritic F2 inhibitory currents

[29].

While there may be many factors that could impact the differences observed in ISPC kinet-

ics, these differences may also results from different GABAAR subunit composition. Different

combination of GABAAR subunits have been reported in TRN dLGN neurons and VB

Table 2. The characteristics of interneuron ueIPSCs.

Pair # Amplitude(mV) R. Time(ms) Halfwidth(ms) Slope(pA/ms) Decay τ (ms) #

1 26.0 ± 1.6 2.3 ± 0.8 13.2 ± 4.0 9.6 ± 1.9 10.6 ± 0.5 26

2 37.7 ± 3.1 1.9 ± 0.6 10.0 ± 2.7 18.2 ± 7.9 5.8 ± 0.6 32

3 38.28 ± 2.8 2.7 ± 0.7 16.7 ± 4.9 12.1 ± 4.5 12.0 ± 1.5 11

4 35.9 ± 1.4 2.7 ± 0.7 14.1 ± 2.2 12.3 ± 2.3 9.7 ± 0.8 33

5 48.0 ± 2.3 3.0 ± 0.6 14.6 ± 3.1 13.7 ± 4.1 8.8 ± 0.5 45

6 61.9 ± 5.8 1.5 ± 0.4 8.0 ± 1.7 37.0 ± 13.3 5.3 ± 0.3 31

7 58.6 ± 2.1 2.1 ± 0.5 12.9 ± 2.8 24.9 ± 1.7 8.2 ± 0.5 41

https://doi.org/10.1371/journal.pone.0189690.t002
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neurons [32, 33]. VB neurons expressed α1, α3, α5, β1, β3, γ2, γ 3, and δ subunits [32, 34, 35]

while dLGN neurons had abundant expression of γ1, γ2, and δ subunits [36, 37]. It has been

also established that α1 subunit-containing GABAA receptors produce faster kinetics with a

decay of only a few milliseconds [38], than α3 subunit-containing GABAA receptors having

slow responses of tens of milliseconds [39] and α6 subunit-containing GABAA receptors of

about hundred milliseconds [40]. VB neurons expressed a high level of slow δ subunits which

are known to largely present in extrasynaptic GABAA receptors. It is also known that slower

IPSCs are attributed to activation of γ1 subunit-containing GABAA receptors [41], while faster

IPSCs were likely mediated by the γ2 subunit [42–44]. Interestingly, slow γ1-mediated currents

were found in dLGN [36] which is in contrast to the fast γ2-mediated currents in VB neurons.

Considering the difference in F1- and F2-terminal dependent IPSCs, we would predict that γ1

subunits may be associated with dendrodendritic synapses as opposed to axodendritic synap-

ses. Another potential difference is that presynaptic GABA release through the activation of L-

type calcium channels is responsible for slow dendritic outputs but not axonal outputs of local

interneurons [29]. This is consistent with our finding of slower kinetics by F2 synapses. A sim-

ilar mechanism is present at dendrodendritic synaptic transmission in olfactory periglomeru-

lar neurons [45].

GABAergic inhibition can modulate visual signals by enhancing sensitivity of contrast

detection [3–5, 46]. F2 terminals in thalamus are associated with X-type neurons and these

thalamocortical neurons are associated with contrast sensitivity. In this regard, our findings

may delineate inhibitory mechanisms involved in contrast gain control [22, 25]. Distinct out-

put types (F1 and F2) of interneurons found in the present study could give differential func-

tional implication on its target cells. For example, the feed-forward inhibition driven by fast

IPSC kinetics is likely optimized for time-locked temporal coding. On the other hand, slower

F2-mediated PSCs can retain wide integration window, therein simultaneously modulating

massive excitatory inputs especially during high frequency firing of retina ganglion cells. Con-

sistent with this hypothesis, F2 outputs were proposed to provide prolonged inhibition onto

relay neurons in activity-dependent manner [24, 29]. Likewise, the increment of contrast was

mediated by enhanced response of the X-type of LGN target cells [47]. Based on these observa-

tions, we would predict that elongated inhibition of F2 outputs can contribute to heavy inhibi-

tory tone on off-targeted excitatory relay neurons.
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