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The experience of inner speech is a common one. Such a dialogue accompanies

the introspection of mental life and fulfills essential roles in human behavior, such as

self-restructuring, self-regulation, and re-focusing on attentional resources. Although the

underpinning of inner speech is mostly investigated in psychological and philosophical

fields, the research in robotics generally does not address such a form of self-aware

behavior. Existing models of inner speech inspire computational tools to provide a robot

with this form of self-awareness. Here, the widespread psychological models of inner

speech are reviewed, and a cognitive architecture for a robot implementing such a

capability is outlined in a simplified setup.
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INTRODUCTION

The idea of implementing self-awareness in robots has been popular in science-fiction literature
andmovies for a long time. This quest is also becoming increasingly prevalent in scientific research,
with articles, special topics, books, workshops, and conferences dedicated to it.

It is widely assumed that there are two dimensions of awareness (see Dehaene et al., 2017),
and namely, awareness as experience and awareness as self-monitoring, i.e., self-awareness. In
essence, awareness as experience occurs when an agent perceives the environment and experiences
it from within in the form of images, sensations, thoughts, and so on (see Block et al., 2019); as
such, awareness (or consciousness) exists when an organism can focus attention outward toward
the environment (Duval and Wicklund, 1972). Instead, self-awareness takes place when the agent
focuses attention inward and apprehends the self in its diverse manifestations, like emotions,
thoughts, attitudes, sensations, motives, physical attributes, which frequently involves a verbal
narration of inner experiences (Morin, 2011).

Models of awareness and self-awareness are being proposed, each with idiosyncratic views of
what the aforementioned concepts constitute, as well as different suggestions on how to implement
them in artificial agents (see among others, Tononi and Edelman, 1998; Gray et al., 2007; Seth, 2010;
Edlund et al., 2011; Oizumi et al., 2014; Tononi et al., 2016; Juel et al., 2019). For reviews, see Reggia
(2013) and Chella et al. (2019).

The proposed approach focuses on implementing a form of robot self-awareness by developing
inner speech in the robot. Inner speech is known to importantly participate in the development
and maintenance of human self-awareness (Morin, 2018); thus, self-talk in robots is an essential
behavioral capability of robot self-awareness.

More in detail, the paper discusses a computational model of inner speech. The proposed model
is based on the cognitive architecture described by Laird et al. (2017). Therefore, the approach
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is based on the complex interplay of different blocks as a shape
classifier, a speech recognition, and a speech production system,
a Short-Term memory, a procedural, a declarative Long-Term
Memory, and more. Preliminary versions of the architecture are
presented in Chella and Pipitone (2019, 2020).

To the best of the authors’ knowledge, inner speech has
not been taken into account in studies concerning human-
robot interactions. According to the triadic model of trust in
human-robot interactions (Hancock et al., 2011), inner speech
(and/or out loud self-directed speech—private speech) would
enhance trust in human-robot cooperation by strengthening
the anthropomorphism of the robot itself. A robot aimed with
inner speech would be more able to perform self-disclosure,
and to establish social interactions (Cassell and Bickmore, 2003).
Transparency in the interactions with human teammates would
be enhanced too (Lee and See, 2004; Hoff and Bashir, 2015).

The need for explorations in the relationships between robot
self-awareness, and human-robot trust has been claimed byMittu
et al. (2016). On the same line, Abbass et al. (2018) discuss
the definition of trusted autonomy in robots to include the
“awareness of self.”

In what follows, we outline a definition of human self-
awareness and various self-related phenomena from a
psychological standpoint, and offer explanations as to why
implementing these attributes in robots would be beneficial. In
short, a robot with forms of self-awareness should be able to
increase the social competencies of the robot itself by making
the robot more acceptable and trustworthy in the social context.
The robot’s inner speech may be audible, and thus the cognitive
cycle may be transparent to the user, in the sense that the user
may easily follow the cognitive cycle of the robot and assign the
correct level of trust in the robot operations.

We present existing approaches to self-awareness deployment
in robots, observing that the crucial potential role of inner speech
is only marginally addressed. This motivates our proposal, which,
to be fully appreciated, requires a general survey oriented to
the robotics and AI community, of existing information about
inner speech in humans, with an emphasis on how it relates to
self-awareness. This section is followed by the presentation of
a novel and detailed cognitive architecture model designed to
instigate inner speech in robots. The cognitive architecturemodel
heavily rests on an interactive cycle between perception (e.g.,
proprioception), action (e.g., covert articulation), and memory
(short-term and long-term memory). We also discuss additional
components of self-awareness (Morin and Racy, in press)—
beyond inner speech—that should eventually be developed
in robots to reach full-blown self-awareness, such as social
comparison and future-oriented thinking. We conclude with
some proposals regarding possible ways of testing self-awareness
in humanoid robots.

SELF-AWARENESS

What Self-Awareness Entails
From a psychological point of view, “self-awareness” represents
the ability to become the object of one’s attention (Duval and
Wicklund, 1972). It constitutes the active state of individuating,

processing, storing, retrieving information about the self (Morin,
2011). Synonyms include “self-observation,” “introspection,”
and “self-focused attention.” Self-aspects comprise private
(unobservable) components such as thoughts, emotions, and
motives, as well as public (visible) components as appearance,
mannerisms, and others’ opinion of self (Davies, 2005; for a
detailed list see Morin, 2006, Figure 2).

Critical individual differences exist in terms of self-awareness,
the natural disposition to focus more or less frequently on the self
(Fenigstein et al., 1975). To illustrate, some people more often
focus on private self-aspects than public ones, predisposing them
to introversion and social awkwardness.

Trapnell and Campbell (1999) introduced an essential
difference between “self-reflection” and “self-rumination.” The
former entails a non-anxious, healthy type of self-attention
generally linked to positive outcomes (e.g., self-regulation and
self-knowledge; also see Silvia and O’Brien, 2004), while the
latter, an anxious, unhealthy, repetitive form of self-focus about
negative aspects of self, associated with dysfunctional outcomes
(e.g., anxiety, depression; Mor and Winquist, 2002). Joireman
et al. (2002) used the term “self-absorption” to designate the state
of self-rumination. It is unclear why self-focused attention can
often take a wrong turn and become self-rumination. The type
of self-awareness one wants to implement in robots ought to
be reflective—not ruminative. Thus, it is crucial to ensure that
potential rumination gets disabled as soon as it starts occurring if
it does.

The forms mentioned above of self-awareness are measured
with self-report questionnaires, frequency of first-person
pronouns use, and self-description tasks; they can also be
induced by the exposition of participants to self-focusing stimuli
as cameras, mirrors, and audiences (Carver and Scheier, 1978).
(For measurements and manipulations of self-awareness see also
Morin, 2011 Table 2).

The above arguments are essential for a cognitive architecture
for a social robot because any artificial intelligence that
successfully interacts with humans should need to be able to
use first-person pronouns, self-describe, and be responsive to
self-focusing stimuli in its surrounding environment.

The term “metacognition,” a specific case of self-reflection, is
used to designate an awareness of one’s thoughts (Smith, 2009).
The term “insight” concerns the ability to identify and express
one’s emotions (Grant et al., 2002), while the term “agency” refers
to a feeling that one is causally responsible for one’s actions
(Kelso, 2016). The terms “self-distancing,” and “self-immersion”
represent different opposite forms of self-reflection, where the
former consists in examining the self from some distance, and the
latter, with no distance (Kross and Ayduk, 2017). Self-immersion
and self-distancing can be experimentally manipulated by asking
participants to talk to themselves by using first-person pronouns
(e.g., “me”; self-immersion), or by using their name (“John”; self-
distancing; Zell et al., 2012). Robots that humans can relate to
should ultimately be able to demonstrate at least some simple
form of the above self-reflective processes.

The use of personal pronouns, self-conscious emotions,
mirror self-recognition, and pretend play, all emerge between the
ages of 15 and 24 months in humans, probably because of the
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parallel development of self-reflection (Lewis and Ramsay, 2004).
Self-aware emotions like pride, shame, envy, embarrassment,
and guilt begin during the second year of life (Buss, 1980).
Rochat (2003) proposed five developmental stages of self-
awareness: (1) Differentiation (from birth) takes place when the
infants physically differentiate self from non-self; (2) Situation (2
months) occurs when the infants situate themselves in relation to
other persons; (3) Identification (2 years) emerges when children,
become capable of self-recognition when they are in front of a
mirror; (4) Permanence (3 years) is when children know that
their feeling of self is persevering across space and time; (5)
ultimately, self-consciousness (meta self-awareness; 4–5 years) is
considered to be present when children perceive themselves as
seen by others. A self-aware AI agent should be able to apprehend
itself across time and space, as well as say things like “Hi, my
name is Adam, my birthday is next week, and I am 5 years old.”

Multiple brain areas typically increase in activation during
self-reflection tasks such as autobiography (past-oriented
thoughts), prospection (future-oriented thoughts), emotions,
agency, Theory-of-Mind (thinking about others’ mental states),
and preferences (see Morin and Hamper, 2012). Increased
activation occurs during these tasks in the medial prefrontal
cortex, inferior parietal lobules, posterior cingulate/precuneus,
and regions of the medial and lateral temporal lobes (Denny
et al., 2012), more so on the left part of the brain (Morin, 2010).
Increased activation of these regions is also associated with the
‘resting state’ when participants are invited to close their eyes and
do nothing (Buckner et al., 2008). This suggests that the people
in a resting state are really not resting but instead thinking about
an array of self-related topics such as remembering a past event
and imagining some future one; simply put, they are in a state of
self-awareness (Davey et al., 2016).

Why Would Self-Awareness Benefit
Robots?
From the above review of the psychological literature, it appears
that self-awareness represents a part of an adaptation strategy
for navigating the environment, social world, and self, increasing
the likelihood of survival. Carruthers et al. (2012) note that “. . .
organisms evolve a capacity for self-knowledge in order better to
manage and control their own mental lives. By being aware of
some of their mental states and processes, organisms can become
more efficient and reliable cognizers and can make better and
more adaptive decisions as a result” (pp. 14–15).

From the AI perspective, a robot with some form of self-
awareness will better self-adapt to unforeseen environmental
changes by engaging in the form of self-regulation (e.g., Lewis
et al., 2012). Furthermore, since self-awareness may lead to
the development of a theory of mind (see the last section), a
self-aware and “mentalizing” robot could better cooperate with
humans and other AI agents. Bigman and Gray (2018) suggest
that increasing elements of robot self-awareness as the theory
of mind, situation awareness, intention, free will, could serve
as a foundation for increasing human trust in robot autonomy
because humans tend to judge the role of these and other
perceived mental faculties as necessary in autonomy.

EXISTING APPROACHES TO
SELF-AWARENESS IN ROBOTS

McCarthy introduced the problem of robot self-awareness in a
seminal paper (McCarthy, 2002), where he proposed a version of
the Situation Calculus dealing with self-reflection, to make robot
aware of their mental states.

The book by McDermott (2001) on “Mind and Mechanisms”
is devoted to discussion of the computational theory of
awareness, with similarities with the previous proposal by
McCarthy. Chella and Manzotti (2007) and Holland (2003)
collected the initial attempts at computational models of robot
awareness and self-awareness. Reggia (2013) compiled an almost
up to date review of the literature in the field. Scheutz
(2014) reviewed, and discussed the relationships between robot
awareness and artificial emotions.

Among the essential works concerning robot awareness,
we consider the cognitive architectures based on the
global workspace theory (Baars, 1997) as the LIDA
architecture proposed by (Franklin, 2003; Franklin et al.,
2014) and the architecture introduced by Shanahan (2005,
2006). Kuipers (2008) discussed a model of awareness
based on learning and sensorimotor interaction in an
autonomous robot.

Novianto and Williams (2009) put forth an attentive self-
modifying framework (ASMO), arguing that some robot systems:
(1) employ some aspects of self-awareness (e.g., recognition,
perception), (2) ignore the role of attention, and (3) are too
resource-intensive. Novianto (2014) updated ASMO, adding
that a self-aware system attends to its internal states using
a “black-box design” where each process is separate: (1) an
attention mechanism mediates competition, (2) an emotion
mechanism biases the amount of attention demanded by
resources, and (3) a learningmechanism adapts attention to focus
on improving performance.

Lewis et al. (2012) note that the involvement of collective
(not singular) processes in self-awareness is potentially crucial for
developing autonomous, adaptive AI that can balance tradeoffs
between resources and goals. On the other hand, Habib et al.
(2019) provide evidence that public, and private self-awareness
processes (as one self-awareness node) can be used to balance
trade-offs such as environment variation and system goals
(corresponding transmission losses), respectively, via channel-
hopping, in a self-aware self-redesign framework for wireless
sensor networks.

Gorbenko et al. (2012) used a genetic algorithm (exons
and introns) on their Robot Kuzma-II, defining robot internal
states as non-humanoid states (i.e., robot control system,
computing resources). Exons directly configure the system, and
introns contain a meta-account of ongoing systems evolution.
Monitoring these states triggers autonomous adaptation based on
how well the robot’s module recognizes incoming information.
If the robot’s modules provide low-quality recognition, then
neural networks are used to generate a new module to improve
identification and detection. The neural networks are also
used to create simpler modules if incoming information is
too dense.
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Floridi (2005) proposed the knowledge game, a test for self-
consciousness in agents based on the puzzle of three wise-man.
There are three agents, and each agent receives one pill from a
group of file pills, made by three innocuous and two dangerous
pills. Now, according to Floridi, an agent may know its pill if
the agent satisfies structural requirements for self-consciousness.
Bringsjord et al. (2015) proposed a set of theoretical axioms
for self-consciousness based on higher-order logics and a robot
implementation of the axioms. They presented a robot effectively
able to satisfy the Floridi test by interacting online with a
human tester.

Design for robots involving self-awareness is, however, at
the early stages (Chella et al., 2019). Many of these designs are
based on working memory, reasoning, a theory of mind, socio-
emotional intelligence, goals, experiences over development, and
more (Chella et al., 2019). Cognitive architectures continue
to integrate these ideas into a workable whole. For example,
recently, Balkenius et al. (2018) architecture includes object
permanence (remembering that a non-visible object still exists)
and episodic memory (memories of one’s life episodes), with
mechanisms of sensation and perception running independently
of sensory input to make room for planning and “daydreaming.”

Kinouchi and Mackin (2018) suggest a two-level architectural
design: (1) awareness and habitual behavior, and (2) general
goal-directed behavior, while Van Der Velde (2018) proposes
that continuous cognitive access is controlled by “in situ”
representations (e.g., open-ended questions/answers). Ye et al.
(2018) offer a thorough review of AI cognitive architectures
over 20 years, highlighting the need to bridge the gap between
architectures based on problem-solving (engineering influence)
and cognition (psychology) by theorizing and testing a varying
range of functions across levels or phases of cognition, leading to
hybrid designs.

Further theoretical work is being done to investigate how
attention to the self may be vital in integrating other self-
awareness processes (see, e.g., Graziano, 2017), and architectures
continue to play a crucial role (Chella et al., 2018, 2019) in
this respect. We agree that architecturally, attention to the self
is essential for self-awareness, but we add that inner speech,
at least in humans, is a primary tool for facilitating higher-
order self-awareness and the many processes involved, such as
memory, attention, reflection, social feedback, evaluation, and
others presented earlier.

OUR APPROACH: INNER SPEECH

Overview
When people talk to themselves in silence, they are engaging in
“inner speech” (Alderson-Day and Fernyhough, 2015). Talking to
oneself out loud (as well as in silence) is called “self-talk” (Hardy,
2006). Some synonyms of inner speech are “self-statements,”
“phonological loop,” “internal dialogue,” “self-directed,” and
“verbal thought” “inner speaking,” “subvocal,” “acommunicative,”
or “covert speech” (Hurlburt et al., 2013). “Private speech” refers
explicitly to self-directed speech emitted out loud by young
children in social situations (Winsler et al., 2009).

Inner speech, seen as an instrument of thought, is compatible
with the Language of Thought Hypothesis (LOTH) introduced
by Fodor more than 40 years ago (Rescorla, 2019). LOTH
suggests that thoughts possess a “language-like” or compositional
structure (“mentalese”) with a syntax. Simple concepts combine
in organized ways according to rules of grammar (like in
natural language) to create thoughts; thinking takes place in a
language of thought where thoughts are expressed as a system of
representations embedded in a linguistic or semantic structure.
In our view, inner speech represents a critical dimension of
LOTH because of its inherent syntactic quality.

It is important not to confuse inner speech with other known
inner experiences (Morin et al., 2019). Any non-verbal mental
experiences, such as physical sensations, pure emotions, mental
images, and unsymbolized thinking (“pure” thinking without
the support of symbols), are not inner speech instances. Inner
speech can take many forms, such as condensed (few words) or
expanded (full sentences), and monolog (using “I”) or dialogue
(asking questions and answering them using both “I” and “you”).

Inner speech is measured or manipulated with self-report
scales, thought sampling and listing techniques, articulatory
suppression, private speech recordings, electromyographic
recordings of tongue movements (Morin, 2012; for a complete
list of measures see Morin, 2018). Using these techniques
has led to the identification of crucial functions served by
inner speech, such as self-regulation (e.g., planning and
problem-solving), language functions like writing and reading,
remembering the goals of action, task-switching performances,
the Theory-of-Mind, rehearsing person-to-person encounters,
and self-awareness (Morin, 2018).

The inner speech represents an important cognitive tool
beneficial to daily human functioning. However, it can lead to
or maintain psychological disorders (Beazley et al., 2001), such
as insomnia, boulimia/anorexia, agoraphobia, social anxiety,
compulsive gambling, male sexual dysfunction, and more.
Furthermore, inner speech use correlates with rumination
discussed earlier (Nalborczyk et al., 2017). Although it remains
unclear how to do so in humans exactly, dysfunctional inner
speech in robots will most likely be kept in check through the
cognitive architecture discussed later in this paper.

Inner speech emerges out of one’s social environment, where
first comes social speech, followed by private speech, and finally,
inner speech (Vygotsky, 1962). In other words, inner speech
represents the outcome of a developmental process during which
linguistic interactions, such as between a caregiver and a child,
are internalized. The linguistically mediated explanation to solve
a task becomes an internalized conversation with the self. During
the interview, the child is engaged in the same or similar
cognitive tasks. The frequency of children’s private speech peaks
at 3–4 years, diminishes at 6–7 years, and gradually disappears
and becomes mostly internalized by age 10 (Alderson-Day and
Fernyhough, 2015). Nevertheless, many adults do occasionally
engage in external speech when they are alone, for self-regulatory
purposes, search and spatial navigation, for concentration, and
emotional expression, and control (Duncan and Cheyne, 1999).
Therefore, it is even more conceivable that a humanoid robot can
relate to others by talking out loud.

Frontiers in Robotics and AI | www.frontiersin.org 4 February 2020 | Volume 7 | Article 16

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Chella et al. Inner Speech in Robots

Baddeley (1992) discusses the roles of rehearsal and working
memory, where different modules in the working memory are
responsible for the rehearsal of inner speech. The “central
executive” controls the whole process; the “phonological loop”
deals with spoken data, and the “visuospatial sketchpad”
manipulates information in a visual or spatial form. The
phonological loop is composed of the “phonological store” for
speech perception, which keeps data in a speech-based way for
a short time (1–2 s), and of the “articulatory control process” for
speech production, that rehearses and stores information in the
verbal form from the phonological store.

Neuropsychological reports of the brain-damaged patients
and data gathered using the brain imaging techniques suggest
that the left inferior frontal gyrus (LIFG) constitutes a critical
cortical area involved in inner speech production (Geva et al.,
2011). Additional brain areas associated with inner speech use are
the supplementary motor area, the Wernicke’s area, the insula,
the right posterior cerebellar cortex, and the left superior parietal
lobe (Perrone-Bertolotti et al., 2014).

To summarize: inner speech plays a central role in our
daily lives. A person thinks over her perspectives, mental states,
external events, emotions by producing thoughts in the form of
sentences. Talking to herself allows the person to pay attention
to the internal, and external resources, to retrieve learned facts,
to learn and store new information, to control, and regulate her
behavior, and, usually, to simplify otherwise demanding cognitive
processes (Alderson-Day and Fernyhough, 2015). Inner speech
allows the creation of the structure of the perception of the
external world, and the self, by enabling high-level cognition,
self-attention, self-control, and self-regulation.

Inner Speech in Robots
Inner speech can be conceived as the back-propagation of
produced sentences to an inner ear. A person then rehears the
internal voice she delivers. Mirolli and Parisi (2006) report that
talking to oneself to re-present information could have been the
result of a pressure for the emergence of language, as shown by
a simple neural network model of language acquisition where
the linguistic module and sensory module are independent and
feed-forward (imitation, mimicry), until a synaptic connection
between the two modules occurs. Running this model results
in the improved categorization of the world by agents in
the simulation.

Steels (2003) argues that language re-entrance, defined as
feeding output from a speech production system back as input to
the subsystem that understands that speech, allows the refining
of the syntax during linguistic interactions within populations
of agents. Through computer simulations with grounded robots,
Steels shows that the syntax becomes complete and more
complex by processing the previously produced utterances by the
same agent.

In the same line, Clowes andMorse (2005) discuss an artificial
agent implemented employing a recurrent neural network where
the output nodes correspond to words related to possible actions
(e.g., “up,” “left,” “right,” “grab”). When the words are “re-used”
by back-propagation of output to input nodes, then the agent
achieves the task in a minor number of generations than in

the control condition, where the words are not re-used. Clowes
(2007) proposed a self-regulation model that links the inner
speech to the role of attention and compared this model to
Steels’ (2003) re-entrancemodel. Clowes (2007) argues for amore
activity-structuring, behavioral role of inner speech in modeling,
claiming that checking grammatical correctness of prospective
utterances alone is not sufficient to account for the role of
inner speech.

Continuing with the argument that inner speech can
potentially serve self-awareness processes (e.g., attention,
regulation, reflection, etc.) efficiently, Arrabales (2012) proposes
that inner speech may be considered as a “meta-management
system” regulating or modulating other cognitive processes, as
in the CERA-CRANIUM cognitive architecture. Recently, Oktar
et al. (2020) proposed a textual and conceptual version of the
mirror self-recognition task for chatbots that is comparable to
the ideas already presented (language re-entry, re-use), where
the chatbot’s output is re-directed to its input. Of note (although
only briefly discussed) is that (1) the authors do not equate self-
recognition with self-awareness per se, (2) kinesthetic and visual
matching (recognition) does not involve social understanding
in this case, and (3) following self-recognition mechanisms, an
inner speech mechanism should serve self-awareness, autonomy,
and potentially theory of mind mechanisms (similar to
self-awareness, sense of self, and society of mind in Steels, 2003).

Inner Speech and Self-Awareness
Inner speech is crucially associated with self-awareness (Morin
and Everett, 1990; Morin, 2005, 2018); thus, inner speech
implementation in AI agents represents a promising avenue
toward establishing some form of artificial self-awareness. The
main argument is that the verbal cataloging of self-dimensions
via inner speech makes it possible for a person to be fully
cognizant of them and to integrate these characteristics into a
self-concept gradually (Morin and Joshi, 1990).

The empirical evidence supporting a link between inner
speech and self-referential activities is summarized inTable 1 (for
a detailed presentation, see Morin, 2018).

Specific mechanisms have been put forward to explain the
nature of the link between inner speech and self-awareness
(Morin, 1993, 1995, 2005, 2018). We present four possible
mechanisms here.

(1) Inner speech reproduces social mechanisms leading to
self-awareness. For example, people frequently comment on
personal characteristics, and behaviors of others (e.g., “you are
good looking,” “you are always late”); this, in essence, constitutes
Cooley (1902) Looking-Glass Self Theory, where (mostly verbal)
reflected appraisals allow people to learn about themselves from
others’ feedback. The self may re-address to itself appraisals from
others by means of inner speech (e.g., “Indeed, I am good-
looking”), thus cementing social feedback, as well as critically
evaluate such appraisals (e.g., “I am not always late, for instance
I was on time for my dental appointment last Wednesday”),
thus correcting potentially biased feedback. Such an internalized
process (via inner speech) is postulated to activate self-reflection
and deepen self-knowledge (Morin and Joshi, 1990). Thus, an
AI agent could catalog social feedback and correlate it with its
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TABLE 1 | Summary of some evidence supporting the connection between inner

speech and self-awareness.

Evidence Author(s)

Several studies report significant positive

correlations between measures of self-related

constructs (including self-awareness) and inner

speech.

E.g., (Brinthaupt et al.,

2009)

Inner speech loss following brain injury leads to

self-awareness deficits.

(Morin, 2009)

There is an increased activation of the LIFG

observed during completion of many

self-reflection tasks such as endorsement of

personality traits, autobiography, and

prospection.

(Morin and Hamper, 2012)

Inner speech facilitates awareness of

mind-wandering episodes, cognitive

performance, and other self-monitoring

processes.

(Perrone-Bertolotti et al.,

2014; Bastian et al., 2017)

Studies using thought-listing procedures report

frequent inner speech about the self.

(Morin et al., 2018; Racy

et al., 2019)

database of self-knowledge, and then use speech to represent
logical conclusions about itself.

(2) Self-awareness can be conceived as a problem-solving
process where focusing on and learning about the self is the
“problem” (e.g., “Who am I?” “How do I feel?” “What did I just
do?”). The inner speech, then, is the cognitive tool used to solve
that problem. Inner speech has been shown to facilitate problem-
solving in general (Kendall and Hollon, 1981). This process can
be applied to the self-as-a-problem, where inner speech helps the
person to (i) define what the problem is (for example, “What did
I do?”); (ii) determine the optimal approach to the problem (for
example, “I will remember what happened and everything I did
in detail”); (iii) generate problem-solving self-verbalizations (for
example, “The first thing I did was X. Then Y happened, and
I then said Z”); (iv) evaluative comments (for example, “Good!
I’m getting somewhere!”); (v) directive notes (for example, “I
don’t need to take this into consideration as it is not pertinent”).
All the above processes, by definition, represent self-awareness
processes guided by the use of inner speech. In theory, a robot
could represent itself to itself using the process described above,
problem-solving about itself more effectively.

(3) An undeniable principle is that observation is possible
only if there is a distance between the observer and the observed
thing (Johnstone, 1970). Thus, following this principle, self -
observation is possible only if there is a distance between the
person and observable self-aspects. Expressing to oneself “I feel
sad” produces a redundancy, because what was an emotion of
sadness is now re-presented in words to the self. In place of only
one thing, i.e., the pure emotion, now there are two elements: the
emotion and its linguistic re-presentation. When a person just
experiences the emotion (or anything else for that matter), she is
too immersed in the experience to really perceive it. The verbal
representation by the inner speech creates redundancy, which
leads to a higher ’psychological’ distance between that specific
self-element (sadness), and the self. This distance, instigated

by inner speech, facilitates self-observation and the acquisition
of self-information. A robot agent could thus potentially use
language to externalize self-observations and add these to its
database of self-information.

(4) Verbal labeling of self-features, mental episodes, and
behaviors makes it possible for the self to recruit a vast vocabulary
about oneself to better perceive complex self-related information
(Morin, 2005, 2018; St. Clair Gibson and Foster, 2007). One can
verbalize to oneself, “I feel angry,” in which case all that one learns
about oneself is that one. . . is angry. However, if one additionally
says to oneself in inner speech, “I feel angry. . . actually, I also
feel disappointed and possibly sad,” this likely will lead to a
deeper understanding of what one is emotionally going through
because of the use of supplementary adjectives. Therefore, people
can tag their mental states using a large number of nuanced
labels via inner speech—thus increasing self-knowledge. We
argue that the same could be done in AI agents. BY cognitive
architecture, robots could label their mental experiences and
behaviors to represent and expand their self-knowledge database.
In conclusion, the above analysis justifies the importance of
implementing inner speech in robots to implant some form of
self-awareness in their architecture.

A COGNITIVE ARCHITECTURE FOR INNER
SPEECH IMPLEMENTATION IN ROBOTS

In this section, we describe a model of a cognitive architecture
for robot self-awareness by considering cognitive processes and
components of inner speech. It should be remarked that such
operations are taken into account independently from the origin
of linguistics abilities, which are supposedly acquired by a robot.
In particular, we consider an implementation of the architecture
mentioned above on a Pepper robot working in a laboratory setup
(Figure 1).

Figure 2 shows the proposed cognitive architecture for inner
speech. The architecture is based on the Standard Model of Mind
proposed by Laird et al. (2017). The structure and processing
are elaborated to integrate the components and the processes
described in the inner speech theories previously discussed. A
preliminary version of the architecture is reviewed in Chella and
Pipitone (2020).

Perception and Action
The perception module of the architecture receives perceptive
input signals from the robot camera and proprioceptive signals
from the inner robot sensors. The perception model of the
proposed architecture includes the proprioceptionmodule related
to the self-perception of emotions (Emo), belief, desires and
intentions (BDI), and the robot body (Body), as well as the
exteroception module which is related to the perception of the
outside environment.

The proprioception module, according to Morin (2004), is
also stimulated by the social milieu which, in the considered
perspective, includes social interactions of the robot with others
entities in the environment, as well as physical objects like
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FIGURE 1 | The Pepper robot employed for the experiments reported in the

paper.

FIGURE 2 | The cognitive architecture for inner and private speech.

mirrors and cameras and other robots or humans, by means of
face-to-face interaction that fosters self-world differentiation.

The actuator module is decomposed into two sub-
components: the Covert Articulation module (CA), and the
Motor module (Motor). The Motor module is related to the
actions the agent performs in the outside world. The Covert
Articulation (CA) module rehearses the information from the
Phonological Store (PS), which is the perceptual buffer for
speech-based data and it is a sub-component of short-term
memory (see below). Such a module acts as the inner speech
heard by the phonological store by rounding information in a
loop. In this way, inner speech links the covert articulation to the
phonological store in a round loop.

Memory System
The memory structure is divided into three types of memory:
short-term memory (STM), procedural and declarative long-
term memory (LTM), and working memory system (WMS).
The short-term memory holds the sensory information from
the environment in which the robot is immersed that was
previously coded and integrated with information coming
through perception. The information flow from perception to
STM allows the storing the coded signals previously considered.

The information flow from the working memory to the
perception module provides the ground for the generation
of expectations on possible hypotheses. The flow from the
phonological store to the proprioception module enables the self-
focusmodality, i.e., the generation of expectations concerning the
robot itself.

The long-term memory holds the learned behaviors, the
semantic knowledge, and in general the previous experience.
Declarative LTM contains linguistic information in terms of
lexicon and grammatical structures, i.e., the Language LTM
memory. The declarative linguistic information is assumed
acquired and represents the grammar of the robot. Moreover,
Episodic Long-Term Memory (EBLTM) is the declarative long-
term memory component that communicates with the Episodic
Buffer (EB) within the working memory system, which acts as a
“backup” store of long-term memory data.

Figure 3 reports a fragment of the Declarative LTM where a
spoon and a knife are represented as pieces of cutlery, and an
apple is represented as food. A bitter apple and a red apple are
kinds of apple, A bitter apple has a bitter taste, and a red apple
has a red color. Examples of Language LTM expressed in terms of
the Fluid Construction Grammar formalism (Steels, 2003) may
be found in Micelli et al. (2009).

The Procedural LTM contains, among others, the composition
rules related to the linguistic structures for the production of
sentences at different levels of complexity.

Finally, the working memory system contains task-specific
information “chunks” and it streamlines them to cognitive
processes during task execution step by step of the cognitive
cycle. The working memory system deals with cognitive tasks
such as mental arithmetic and problem-solving. The Central
Executive (CE) sub-component manages and controls linguistic
information in the rehearsal loop by integrating (i.e., combining)
data from the phonological loop and also drawing on data held in
long-term memory.

The Cognitive Cycle at Work
The cognitive cycle of the architecture starts with the perception
module that converts external signals in linguistic data and
holds them into the phonological store. Thus, the symbolic form
of the perceived object is produced by the covert articulator
module of the robot. The cycle continues with the generation of
new emerging symbolic forms from long-term and short-term
memories. The sequence ends with the rehearsing of these new
symbolic forms, which are further perceived by the robot. Then,
the cognitive cycle restarts again.

Let us consider a scenario with some fruits and pieces of
cutlery on a table. In the beginning, the robot perceives an
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FIGURE 3 | A fragment of the declarative LTM implemented by a semantic network.

FIGURE 4 | The operation of the perception module. It classifies the input

signals by generating suitable symbolic labels that are sent to the phonological

store (PS).

apple. Thus, the perception system generates the labels <apple>,
<round>, <green> that are sent to the phonological store. The
phonological store processes one of the words generated by the
perception system; in our case, the word <apple> (Figure 4).

In the current system, the processing of words happens in a
first-in-first-out queue: the <apple> is the first word generated

by the perception system, and it is the first one to be processed by
the phonological store.

It is to be remarked that the label arriving at the phonological
store is the same as if someone from outside would pronounce
the word “apple.” In this sense, the phonological store works as
an inner ear. This is the entry point of the phonological loop.

The central executive CE enters in action to process the input
<apple> by querying the STM, the Procedural and Declarative
LTM. As a result, the phrase <apple is a fruit> is generated
thanks to the linguistic rules stored in the LTM and sent to the
covert articulation module (Figure 5).

Now, the generated phrase reenters the phonological store
as a new input of the phonological loop. Two ways are
available for the reentering: the inner speech mode, where the
phrase internally reenters the phonological store, without being
externally audible (Figure 6), and the private speechmode, where
the phrase is effectively generated by the covert articulation
module so that it is a new input to the exteroception module
(Figure 7).

The reentered phrase elicits again the central executive, which
queries the procedural and declarative LTM. Now, oranges
and apples belong to the same category of fruits, and then
the central executive generates an expectation for orange in
the scene. The result is the generated phrase <orange is a
fruit> (Figure 8) as a result of behavioral rules stored in the
Procedural LTM.

The central executive then starts a search for oranges in
the scene by controlling the motor module of the robot. The
search is confirmed by the perception system, and the word
<orange> is generated (Figure 9). Again, the phonological loop
enters in action, this time generating the word <knife>, which is
confirmed by the perception system.

The generation of language in the current system is based
on the semantic network reported in Figure 3. The system
generates and processes trigrams based on the predicates listed
in the upright corner of the figure. For example: <apple isA
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FIGURE 5 | The phonological store receives in input the label <apple>

generated by the perception module. Then, the central executive (CE) looks for

information from the LTM and the phrase <apple is a fruit> is generated by

the phonological loop (PL).

FIGURE 6 | The robot internally rehearses the phrase <apple is a fruit> by the

covert articulation module, thus generating the robot inner speech.

food>, <red_apple isAKindOf apple>, <red_apple hasColor
red>, <bitter_apple hasTaste bitter>.

The computational model takes into account two kinds of
rules to generate expectations (Chella et al., 1997). On the
one side, a rule makes expectations based on the structural
information stored in the symbolic knowledge base of the LTM.
An apple is a fruit, and then other fruits may be present in the
scene. As soon as an object is recognized, then other objects
belonging to the same class may be present, and so an expectation
is generated. We call these expectations linguistic.

The linguistic expectations are hard coded in the current
system. For example, if <object_x1> and <object_x2> are
subclasses of <object_X> and there is an <object_x1>, then
generate an expectation of <object_X>.

FIGURE 7 | The robot externally rehearses the phrase <apple is a fruit> by

the covert articulation module. The phrase is in turn perceived by the

perception module, thus generating the robot private speech.

FIGURE 8 | The robot associates the apple with the orange as they are both

fruits and it generates the phrase <orange is a fruit> which in turn generates

the expectation of an orange in the scene by the motor module.

On the other side, expectations are also generated by purely
associative mechanisms between objects. Suppose that the system
learned that when there is fruit in the scene, then there is also
usually some cutlery. The robot thus will learn to associate these
two objects and to perform the related search when finding one
of the two objects. Then, a <fruit>, generated by the speech
recognition system or by the vision system, will be associated with
the word <knife>. We call these expectations associative.

During a training phase, the system stores lists of diverse
entities that are present at the same time in the scenario, as
(<apple>, <knife>); (<pear, fork>); (<orange>, <spoon>),
and so on. Then, each word is coded by a string of bits according
to a sparse random code, and the previously listed training set
is learned by an attractor neural network (see, e.g., Amit, 1988).
This framework suited well in the described simplified scenario.
Similar associative schemas are defined by Kosko (1988), Pollack
(1990), Plate (1995). Thomson and Lebiere (2013) proposed
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FIGURE 9 | The expectation of an orange in the scene is satisfied by the

perception module which generates the label <orange>.

a complex associative learning mechanism integrated into the
ACT-R cognitive architecture.

Finally, in the described example, the inner/private speech of
the robot is composed by the phrases: <apple>, <apple is a
fruit>,<orange is a fruit>,<orange>,<knife>. It is an example
of inner/private speech concerning an explorative task: the robot
explores a scene employing linguistic and associative inferences.
The expectations of the robot are made explicit through private
robot speech. Again, it should be noticed that inner/private
speech reenters the information generated by the architecture as
a new input of the architecture itself.

Let us now consider a dynamic scene, for example, a person
moving her arm toward the apple. In this case, when the robot
recognizes the motion of the forearm, then it infers the presence
of a moving upper arm. In this case, the system recognizes a
situation of a moving arm as made up of the synchronous motion
of the forearm and the upper arm. The resulting inner speech
is: <forearm is moving>, <upper arm is moving>, <arm is
moving>. We call this type of expectation synchronic because
they refer to the synchronous situation of two moving entities at
the same time.

The recognition of a specific situation in the scene could elicit
the inference of change in the arrangement of entities in the
scene.We call this kind of expectation diachronic in the sense that
it involves a sequence of situations. Diachronic inferences can be
related to the link existing between a situation perceived as the
precondition of action, and the corresponding situation expected
as the effect of the action itself. In this way, diachronic inferences

prefigure the situation resulting in the outcome of an action (see
also Chella et al., 2000).

Let us consider the case of the moving arm grasping an apple:
in this case, the previous situation of the moving arm and the
apple on the table evolves in a new situation where the arm
now holds the apple. The grasp action will be then recognized.
The generated inner/private speech is the following: <forearm is
moving>, <upper arm is moving>, <arm is moving>, <arm
holds apple>, <grasp apple>.

On the one side, expectations are related to the structural
information stored in the symbolic knowledge base, as in the
previous example of the action of grasping. We call these
expectations linguistic, as in the static case. As soon as a situation
is recognized, and the situation is the precondition of action, the
symbolic description elicits the expectation of the effect situation,
and then the system recognizes the action itself.

On the other side, expectations are also related to purely
associative mechanisms between situations. Suppose that the
system learned that when there is a grasp action, then the action
is typically followed by a move action. The system could learn to
associate these two subsequent actions. We call these inferences
associative, as in the static case.

The robot will thus explore a dynamic scene driven by
linguistic and associative expectations. Even in this case, the
sequence of robot expectations is made explicit employing the
robot’s inner/private speech, which has the role of reentering the
emerging expectations and eliciting new ones.

In the two previous scenarios, the robot passively observes
and describes static and dynamic scenes. The third scenario is
a natural extension of the previous one, where the robot is able
to observe itself and explain its actions (see also Chella et al.,
2008). Let us consider the case where a robot recognizes the apple,
and it moves its arm to grasp the apple. The movements of the
robot arm are planned and controlled by low-level robot control
routines. Then, the robot monitors the movements of its arm by
its camera, and its motion sensors to describe its actions. In this
case, the inner/private speech generated is similar to the previous
one: <my forearm is moving>, <my upper arm is moving>,
<my arm is moving>,<my arm holds apple>,<I grasp apple>.
The difference concerns the fact that the robot recognizes that the
moving arm is its arm by the examination of the proprioceptive
and perceptive sensors, i.e., by the motor sensors of the arm
and the camera. Then, the robot is able to generate expectations
about itself by putting into action the self-focus modality. As a
result, the robot performs a simple form of self-awareness: the
inner/private speech concerns its actions.

In summary, the robot, thanks to the reentering of its
inner/private speech, is able to describe static and dynamic scenes
in front of it to empower the robot situational awareness. The
robot is also able to represent itself by observing and describing
its actions to enable a simple form of self-awareness.

DISCUSSION

The focus of research is investigating the role of inner and private
speech in the robot task of the exploration of a scene. To the
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knowledge of the authors, no other robot system employed inner
or private speech, as described in the previous sections. The
implemented framework is based on a simplified setup to focus
the study on robot inner speech by avoiding the well-known
problems related to vision, action, and language.

The current implemented system is tailored to the described
simplified scenario of fruits, and cutlery on a table. The employed
vision system is not able to deal with ambiguities. An extended
robot vision system able to deal with static scenes and dynamic
scenes is described in Chella et al. (1998, 2003). The system is
able to learn from examples (Chella et al., 2006) and to deal with
ambiguities (Chella et al., 2010). The integration of the extended
vision system with inner and private speech mechanisms will be
the object of future investigations.

While our approach favors inner and private speech in an
attempt to produce a simple form of self-awareness in AI
agents, other factors also need to be examined for the eventual
development of full-blown human-like self-awareness. As alluded
to before, Morin (2004, 2011) suggests three sources of self-
awareness: (i) the self; (ii) the physical world; and (iii) the social
environment. Although the proposed cognitive architecture
offered above does include some simplified elements only within
these sources, additional sub-processes should be taken into
account. Below we discuss those sub-processes that arguably
seemmost important: social comparison,mental imagery, future-
oriented thinking, and Theory-of-Mind.

Social comparison represents the process by which people
evaluate themselves by comparing themselves to others to learn
about the self (Festinger, 1954). For example, John might observe
that most of his colleagues leave work earlier than him, or
that many are thinner than he is, leading him to conclude
“I am a hardworking person” or “I am overweight.” As this
illustration suggests, inner speech is most likely activated at one
point or another during the social comparison. This process
is far from perfect because of various self-protective and self-
enhancement biases that it entails. Individuals may interpret,
distort, or ignore information gathered by social comparison to
perceive themselves more positively (e.g., Eichstaedt et al., 2002).
For instance, they may opt to engage in upward comparisons
(comparing themselves to someone better off) or downward
comparisons (comparing themselves to someone worse off),
or avoid comparisons as a function of their self-enhancement
needs. Despite these limitations, social comparison certainly
constitutes an authoritative source of self-information and self-
knowledge. Computers, as well as some other AI entities, are
already connected via the internet and thus, theoretically, could
“see” others and compare themselves to them.

Mental imagery constitutes a visual experience in the absence
of the visual stimulus from the outside environment (Morris
and Hampson, 1983). Because mental imagery in humans leads
to the development of autoscopic imagery (i.e., images of the
self, especially one’s face and body; Morin and DeBlois, 1989),
it plays a potentially important role in self-awareness. Although
empirical evidence is sparse, Turner et al. (1978) observed that
highly self-aware people report using the imagery to engage in
introspection. To illustrate, one can mentally generate (or replay)
scenes in which the self is an actor (e.g., relaxing at the beach).

Self-aspects (e.g., an emotion of contentment) can be inferred
from what the actor is mentally seen doing (e.g., smiling).
Like inner speech, mental imagery can internally reproduce and
expand social mechanisms involved in self-awareness, such as the
possibility of seeing oneself (literally) as one is seen by others.
From a self-awareness perspective, robots would certainly benefit
from mental imagery, although it remains currently unclear how
to implement such a process.

Future-oriented thinking represents the capacity to think
about events that are relevant to the future of the agent
(Szpunar, 2010; Schacter et al., 2017). It rests on the ability
to think about one’s past (episodic memory, autobiography),
as personal memories provide the building blocks from which
episodic future thoughts are created. The contents of episodic
memory are sampled and recombined in different ways, leading
to the construction of mental representations of future scenarios
(Tulving, 1985). As an example, in imagining the personal
experience of moving, one can rely on remembering one’s
previous moves—how it felt, how long it took, how much
money it cost, etc. Four types of future-oriented thinking
have been put forward (Szpunar et al., 2016; Schacter et al.,
2017): (1) simulation, or the creation of a precise mental
representation of one’s future, (2) prediction, or the estimation
of the likelihood that a future outcome will occur, (3) intention,
or goal setting, and (4) planning, or the steps needed to
attain a goal. It would be advantageous to endow a robot
with future-oriented thoughts. Since the cognitive architecture
presented earlier includes episodic long-term memory, it already
possesses the fundamental ingredient for such thoughts to
take place.

The Theory of Mind is defined as the ability to attribute
mental states as intentions, goals, feelings, desires, beliefs,
thoughts, to the others (Gallagher and Frith, 2003). It allows
human beings (and arguably some non-human animals—see
Gallup, 1968, 1997) to predict others’ behavior, to help and
cooperate, to avoid, or to deceive the others, and to detect
cheating (Malle, 2002; Brüne and Brüne-Cohrs, 2006). As such,
organisms capable of Theory-of-Mind gain a major adaptative
and survival advantage. According to the Simulation Theory,
people internally simulate what others might be experiencing
inside by imagining the sort of experiences they might have when
in a similar situation (Focquaert et al., 2008). Thus, according
to this view, self-awareness represents a prerequisite to Theory-
of-Mind. It is conceivable that machines made self-aware via
inner speech implementation could engage in Theory-of-Mind,
especially since the former most likely is implicated in the latter
(Fernyhough and Meins, 2009). However, the precise operations
required for the development of artificial Theory of Mind remain
elusive at present—but see Vinanzi et al. (2019) and Winfield
(2018), among others.

CONCLUSION

We discussed self-awareness and inner speech in humans and AI
agents, followed by an initial proposal of a cognitive architecture
for inner speech implementation in a robot. Although several
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authors have put models of self-awareness development in
robots, our approach focuses on inner speech deployment as a
privileged method for reaching this elusive goal because of the
strong ties that exist between self-awareness and inner speech.
The suggested architecture consists of an integration of vital
cognitive elements following Laird et al. (2017) and includes
theoretical insights offered by Baddeley (1992), Morin (2004),
Steels (2003), Clowes (2007), and others. Cognitive operations
such as short-term memory, working memory, procedural and
declarative memory, and covert articulation represent established
factors in conscious human experience. We anticipate that
once activated in the cognitive cycle described earlier, these
components (as well as several others) will replicate self-
awareness via inner speech in robots.

One effort will be to test the establishment of self-awareness
in AI agents empirically. Our approach offers the advantage that
robots’ inner speech will be audible to an external observer,
making it possible to detect introspective and self-regulatory
utterances. Measures and assessment of the level of trust in
human-robot interaction involving vs. not involving robot inner
speech will be the object of further investigations.
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