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Abstract
The	biosynthesis	of	long-	chain	polyunsaturated	fatty	acids	(LC-	PUFAs,	≥	C20)	is	reli-
ant	on	the	action	of	desaturase	and	elongase	enzymes,	which	are	encoded	by	the	
fatty	acyl	desaturase	(Fad)	and	elongation	of	very	long-	chain	fatty	acid	(Elovl)	gene	
families,	respectively.	In	Metazoa,	research	investigating	the	distribution	and	evolu-
tion	of	these	gene	families	has	been	restricted	largely	to	Bilateria.	Here,	we	provide	
insights	 into	the	phylogenetic	and	molecular	evolutionary	histories	of	 the	Fad	and	
Elovl	gene	families	 in	Cnidaria,	the	sister	phylum	to	Bilateria.	Four	model	cnidarian	
genomes	and	six	actiniarian	transcriptomes	were	interrogated.	Analysis	of	the	fatty	
acid	composition	of	a	candidate	cnidarian	species,	Actinia tenebrosa,	was	performed	
to	 determine	 the	 baseline	 profile	 of	 this	 species.	 Phylogenetic	 analysis	 revealed	
lineage-	specific	gene	duplication	in	actiniarians	for	both	the	Fad	and	Elovl	gene	fami-
lies.	Two	distinct	cnidarian	Fad	clades	clustered	with	functionally	characterized	Δ5 
and	Δ6	proteins	from	fungal	and	plant	species,	respectively.	Alternatively,	only	a	sin-
gle	 cnidarian	 Elovl	 clade	 clustered	 with	 functionally	 characterized	 Elovl	 proteins	
(Elovl4),	while	two	additional	clades	were	identified,	one	actiniarian-	specific	(Novel	
ElovlA)	 and	 the	another	 cnidarian-	specific	 (Novel	ElovlB).	 In	actiniarians,	 selection	
analyses	 revealed	 pervasive	 purifying	 selection	 acting	 on	 both	 gene	 families.	
However,	codons	in	the	Elovl	gene	family	show	patterns	of	nucleotide	variation	con-
sistent	with	the	action	of	episodic	diversifying	selection	following	gene	duplication	
events.	Significantly,	 these	codons	may	encode	amino	acid	residues	that	are	 func-
tionally	important	for	Elovl	proteins	to	target	and	elongate	different	precursor	fatty	
acids.	In	A. tenebrosa,	the	fatty	acid	analysis	revealed	an	absence	of	LC-	PUFAs	>	C20 
molecules	and	 implies	 that	 the	Elovl	 enzymes	are	not	 actively	 contributing	 to	 the	
elongation	of	these	LC-	PUFAs.	Overall,	this	study	has	revealed	that	actiniarians	pos-
sess	Fad	and	Elovl	genes	required	for	the	biosynthesis	of	some	LC-	PUFAs,	and	that	
these	genes	appear	to	be	distinct	from	bilaterians.
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1  | INTRODUC TION

The	 long-	chain	 polyunsaturated	 fatty	 acid	 (LC-	PUFAs;	 e.g.,	 ≥	 C20 
molecule)	biosynthetic	pathway	converts	PUFAs	(e.g.,	C18	molecule)	
to	LC-	PUFAs.	Omega-	3	and	omega-	6	LC-	PUFAs,	such	as	eicosapen-
taenoic	acid	(EPA;	20:5n-	3)	and	arachidonic	acid	(ARA;	20:4n-	6),	are	
converted	from	PUFA	precursors	α-	linolenic	acid	(ALA;	18:3n-	3)	and	
linoleic	acid	 (LA;	18:2n-	6),	 respectively.	This	pathway	relies	on	the	
action	of	desaturase	and	elongase	enzymes	(Sprecher,	2000).

The	 fatty	 acyl	 desaturase	 (Fad)	 gene	 family	 encodes	 desatu-
rase	 enzymes	which	 insert	 double	 bonds	 at	 different	 positions	 of	
PUFAs.	The	coordination	of	multiple	functionally	different	desatu-
rase	enzymes	is	often	required	to	desaturate	PUFAs	and	LC-	PUFAs.	
Desaturase	enzymes	are	required	to	have	a	combination	of	Δ5	and/
or Δ6	activity;	however,	alternative	pathways	also	exist	which	uti-
lize	desaturase	enzymes	with	Δ8	activity	(Cook	&	McMaster,	2002;	
Monroig,	 Li,	 &	 Tocher,	 2011;	 Sprecher,	 2000).	Genes	 that	 encode	
elongase	enzymes	are	from	the	elongation	of	very	long-	chain	fatty	
acid	 (Elovl)	 gene	 family.	 In	 mammals,	 seven	members	 of	 the	 Elovl 
gene	 family	 have	 been	 identified,	 with	 different	 genes	 encoding	
elongase	 enzymes	 that	 have	 altered	 affinity	 to	 elongate	 precur-
sor	 fatty	 acids.	 Specifically,	 elongase	 enzymes	 encoded	 by	 Elovl1,	
3,	6,	 and	7	 are	 involved	 in	 the	elongation	of	 saturated	 fatty	 acids	
(SFAs)	 and	monounsaturated	 fatty	 acids	 (MUFAs),	whereas	Elovl2,	
4,	 and	5	 encode	 enzymes	 involved	 in	 the	 elongation	of	 PUFAs	 to	
LC-	PUFAs	 (Jakobsson,	 Westerberg,	 &	 Jacobsson,	 2006;	 Leonard,	
Pereira,	 Sprecher,	 &	 Huang,	 2004;	 Tamura	 et	al.,	 2009).	 Despite	
this	 research,	 the	distribution	and	evolution	of	genes	 that	encode	
enzymes	responsible	for	the	desaturation	and	elongation	of	PUFAs	
remain	largely	unresolved	in	many	metazoan	taxa.

Whole	genome	and	single	gene	duplication	events	have	played	
a	major	 role	 in	 the	distribution	 and	 copy	number	of	Fad	 and	Elovl 
genes	(Carmona-	Antoñanzas,	Monroig,	Dick,	Davie,	&	Tocher,	2011;	
Castro	 et	al.,	 2012;	 Fonseca-	Madrigal	 et	al.,	 2014;	 Kabeya	 et	al.,	
2017;	 Li	 et	al.,	 2017;	 Li	 et	al.,	 2010;	Mohd-	Yusof,	Monroig,	Mohd-	
Adnan,	Wan,	&	Tocher,	2010;	Monroig,	Guinot,	Hontoria,	Tocher,	&	
Navarro,	2012;	Monroig,	Navarro,	Dick,	Alemany,	&	Tocher,	2012;	
Monroig,	Tocher,	&	Navarro,	2013;	Monroig,	Webb,	 Ibarra-	Castro,	
Holt,	 &	 Tocher,	 2011;	 Monroig	 et	al.,	 2010,	 2016,	 2017;	 Morais,	
Monroig,	Zheng,	Leaver,	&	Tocher,	2009;	Surm,	Prentis,	&	Pavasovic,	
2015).	Gene	duplication	events	in	mammals	have	resulted	in	multiple	
gene	copies	encoding	desaturase	(Fads1,	2,	and	3)	enzymes,	whereas	
in	other	vertebrates	 (such	as	Danio rerio),	only	a	single	desaturase,	
with	Δ5	and	Δ6	activity,	is	present	(Hastings	et	al.,	2001).	Similarly,	
whole	genome	duplication	events	have	 resulted	 in	 the	diversifica-
tion	of	elongase	enzymes	observed	in	vertebrates	(Elovl2	and	5)	not	
present	in	other	chordates,	which	contain	a	single	elongase	enzyme	
referred	to	as	Elovl2/5	(Castro,	Tocher,	&	Monroig,	2016;	Monroig	
et	al.,	2016).	Gene	duplication	events	of	Fad	and	Elovl	gene	families	
have	also	occurred	 in	a	 lineage-	specific	manner	across	other	bilat-
erian	 taxa,	 such	 as	molluscs	 (Monroig,	Navarro,	 et	al.,	 2012;	 Surm	
et	al.,	 2015).	Despite	 these	 key	 observations,	 the	 distribution	 and	
evolution	of	Fad	and	Elovl	genes	remain	unresolved	in	early	diverging	

metazoan	phyla	such	as	Cnidaria.	Furthermore,	due	to	limited	molec-
ular	studies	investigating	the	Fad	and	Elovl	gene	families	in	Cnidaria,	
their	 phylogenetic	 and	 molecular	 evolutionary	 histories	 remain	
unresolved.

Studies	 investigating	 the	 fatty	 acid	 profiles	 of	 early	 diverging	
metazoan	taxa	have	been	focused	on	the	fatty	acid	profile	of	cnidar-
ians	that	rely	on	an	interaction	with	symbionts,	such	as	Symbiodinium 
(Garrett,	Schmeitzel,	Klein,	Hwang,	&	Schwarz,	2013;	Harland,	Fixter,	
Davies,	&	Anderson,	1991,	1992;	Papina,	Meziane,	&	van	Woesik,	
2003).	From	this	body	of	work,	there	is	strong	evidence	to	suggest	
that	the	symbionts	transfer	essential	LC-	PUFAs	to	the	host.	This	was	
evident	with	the	fatty	acid	profile	of	sea	anemones	that	were	treated	
to	remove	symbionts	revealing	the	presence	of	LC-	PUFAs,	ARA	and	
EPA,	 but	 lacked	 LC-	PUFAS	>	C20	 such	 as	 docosapentaenoic	 acid	
(DPA;	22:5n-	3)	and	docosahexaenoic	acid	 (DHA;	22:6n-	3)	 (Garrett	
et	al.,	2013;	Harland	et	al.,	1991,	1992;	Papina	et	al.,	2003).	The	fatty	
acid	profile	of	early	diverging	metazoan	species	that	lack	a	symbiotic	
relationship,	however,	remains	unclear,	and	further	research	inves-
tigating	 the	 ability	 of	 these	organisms	 to	 elongate	 and	desaturate	
PUFAs	to	LC-	PUFAs	is	required.

Using	 a	 comparative	 genomic	 approach,	 this	 study	 examined	
the	distribution	and	copy	number	of	Fad	and	Elovl	genes	from	four	
cnidarian	genomes	 (Hydra vulgaris,	Acropora digitifera,	Nematostella 
vectensis,	 and	 Exaiptasia pallida).	 A	 further	 fine-	scale	 comparative	
transcriptomic	analysis	was	also	undertaken,	within	order	Actiniaria,	
to	identify	specific	candidate	genes	in	this	group.	Phylogenetic	and	
selection	analyses	of	these	data	have	also	been	performed	to	elu-
cidate	 the	molecular	 evolution	 of	 the	 Fad	 and	 Elovl	 gene	 families	
in	Cnidarians.	The	fatty	acid	profile	of	candidate	cnidarian	species,	
Actinia tenebrosa	(Figure	1),	which	lacks	a	symbiotic	relationship	with	

F IGURE  1 Australian	sea	anemone,	Actinia tenebrosa. 
Photograph	credit:	Jonathon	Muller
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Symbiodinium	(Black	&	Johnson,	1979;	Muller,	Fine,	&	Ritchie,	2016;	
Ottaway,	1978),	was	investigated	using	fatty	acid	analysis	to	address	
our	 lack	 of	 understanding	 of	 the	 baseline	 levels	 of	 fatty	 acids	 in	
these	organisms.	Finally,	we	examined	if	the	fatty	acid	composition	
data	were	concordant	with	the	Fad	and	Elovl	enzymes	found	in	this	
species.

2  | MATERIAL S AND METHODS

2.1 | Identification of candidate genes

Fad	and	Elovl	candidate	genes	were	identified	by	interrogating	pre-
dicted	protein	sets	from	a	range	of	species	in	phylum	Cnidaria.	The	
specific	 species	 interrogated	 were	H. vulgaris,	 A. digitifera,	N. vect-
ensis,	and	E. pallida	(Cnidaria).	Furthermore,	these	genes	involved	in	
the	 synthesis	 of	 omega-	3	 LC-	PUFAs	were	 investigated	 in	 six	 can-
didate	 actiniarian	 species	 with	 sequenced	 transcriptomes.	 These	
species	include	A. tenebrosa	(four	ecotypes:	blue,	brown,	green,	and	
red),	 Anthopleura buddemeieri,	 Aulactinia veratra,	 Calliactis polypus,	
Telmatactis	sp.,	and	Nemanthus annamensis	from	the	NCBI	Bioproject:	
PRJNA313244	(van	der	Burg,	Prentis,	Surm,	&	Pavasovic,	2016).	All	
transcriptomic	data	were	generated	from	either	whole	organism	or	
multiple	tissue	types.	Raw	reads	were	retrieved	from	the	Sequence	
Read	Archive	 and	 converted	 to	 FASTQ	 files.	 The	Trinity	 software	
package	(v2.0.6)	was	used	to	assemble	the	data	after	Trimmomatic	
quality	 filtering	 (Bolger,	 Lohse,	 &	 Usadel,	 2014;	 Grabherr	 et	al.,	
2011).	CEGMA	was	performed	to	validate	the	quality,	and	complete-
ness	 of	 the	 transcriptomes	 (Parra,	 Bradnam,	Ning,	 Keane,	&	Korf,	
2009).	BUSCO	 (v3)	was	also	performed	using	a	metazoan-	specific	
dataset	 (Simão,	 Waterhouse,	 Ioannidis,	 Kriventseva,	 &	 Zdobnov,	
2015).	TransDecoder	version	2.0.1	was	used	to	identify	open	read-
ing	frames	(ORF)	encoding	for	proteins	to	produce	a	predicted	pro-
teome	 (Haas	et	al.,	 2013).	CD-	HIT	 (v4.6.4)	was	 then	performed	 to	
cluster	100%	identical	proteins	for	each	individual	proteome	to	re-
move	redundancy	(Fu,	Niu,	Zhu,	Wu,	&	Li,	2012).

Protein	sequences	generated	from	both	genomic	and	transcrip-
tomic	datasets	were	then	used	to	identify	candidate	genes.	BLASTp	
(e	 value	<	1e−05)	 was	 performed	 using	 the	 nonredundant	 trans-
lated	 ORFs	 as	 queries	 against	 the	 Swiss-	Prot	 database.	 Potential	
Fad	 and	 Elovl	 candidates	 were	 identified	 that	 had	 a	 top-	blast	 hit	
with	 a	 functionally	 characterized	 protein	 from	 the	 Swiss-	Prot	 da-
tabase	 (e	 value	<	1e−05).	 Functionally	 characterized	 Fad	 and	 Elovl	
proteins	were	 identified	 in	 the	 Swiss-	Prot	 database	 by	 having	 the	

essential	Pfam	domains.	For	Fads,	this	required	Pfam	domains:	Cyt-	
b5	 (PF00173)	 and	 FA_desaturase	 (PF00487);	 and	 Elovls	 this	 re-
quired:	ELO	(PF01151).	The	respective	candidates	and	functionally	
characterized	 Fad	 and	 Elovl	 proteins	were	 aligned	 using	MUSCLE	
in	MEGA	7	 (Kumar,	Stecher,	&	Tamura,	2016).	Sequences	were	re-
tained	 only	 if	 they	 contained	 essential	 structural	 characteristics.	
These	 included	 an	N-	terminal	 cytochrome	 b5-	like	 binding	 domain	
(cyt-	b5;	 PF00173),	 three	 histidine	 boxes	 (HXXXH,	 HXXXHH,	 and	
QXXHH)	located	in	a	fatty	acid	desaturase	domain	(FA_desaturase;	
PF00487),	and	a	hem	binding	motif	 (HPGG)	 in	Fads.	Furthermore,	
functionally	 characterized	 sphingolipid	 desaturases	 that	 also	 con-
tain	 these	 essential	 structural	 characteristics	 were	 removed	 from	
the	 alignments.	 The	 structural	 characteristics	 of	 Elovls	 included	 a	
diagnostic	 histidine	 box	 motif	 (HXXHH)	 and	 a	 Pfam	 ELO	 domain	
(PF01151).	These	structural	characteristics	are	essential	 for	desat-
uration	 and	 elongation,	 and	 therefore,	 transcripts	 not	 containing	
these	domains	were	not	considered.	Candidate	genes	from	actiniar-
ian	transcriptomes	were	checked	for	symbiont	contamination	using	
PSyTranS	 (https://github.com/sylvainforet/psytrans).	 The	 symbiont	
proteomes	from	Symbiodinium microadriaticum,	Symbiodinium kawa-
gutii,	and	Symbiodinium minutum	were	used	as	a	training	dataset	to	
identify	potential	contamination,	while	the	host	proteome	used	for	
training	was	N. vectensis.

2.2 | Phylogenetic analyses

The	refined	 list	of	full-	length	translated	ORFs	was	used	for	phylo-
genetic	analyses	to	determine	the	distribution	of	Fad	and	Elovl	pro-
teins	within	 and	 across	Metazoa.	 Protein	 sequences	were	 aligned	
using	MUSCLE	in	MEGA	7	(Kumar	et	al.,	2016)	followed	by	manual	
curation	 to	 remove	 sequences	 that	 lack	 conserved	 residues	 and	
motifs.	 Protein	 alignments	 were	 imported	 into	 IQ-	TREE	 (v1.4.2)	
(Nguyen,	Schmidt,	von	Haeseler,	&	Minh,	2014)	to	determine	best-	fit	
of	protein	model	evolution.	Using	Bayesian	information	criterion,	a	
LG+I+G4	model	was	selected	for	both	Fad	and	Elovl	as	the	best-	fit	
model	of	protein	evolution.	Phylogenetic	trees	were	generated	from	
alignments	using	1,000	ultrafast	bootstrap	iterations.	The	Fad	tree	
was	 visualized	 using	 Figtree	 (v1.4.3)	 (http://tree.bio.ed.ac.uk/soft-
ware/figtree/),	 and	 the	 Elovl	 tree	was	 visualized	 using	 Interactive	
Tree	Of	Life	(v3)	(Letunic	&	Bork,	2016).

2.3 | Selection analyses

Sequences	 that	 encode	 full-	length	 protein	 sequences	 for	 both	
Fad	and	Elovl	proteins	generated	from	actiniarian	transcriptomes	
were	 investigated	 to	 detect	 the	 action	 of	 pervasive	 diversifying	
selection.	These	codon	sequences	for	the	respective	Fad	and	Elovl 
gene	families	were	aligned	using	MUSCLE	within	MEGA	7	(Kumar	
et	al.,	 2016).	 Codon	 alignments	 were	 imported	 into	 IQ-	TREE	
(v1.4.2)	 (Nguyen	 et	al.,	 2014)	 to	 determine	 best-	fit	 substitution	
model	 (GTR+I+G4),	 and	phylogenetic	 trees	were	generated	 from	
alignments	using	1,000	ultrafast	bootstrap	iterations.	Using	these	
alignments	and	phylogenetic	trees	as	inputs,	the	rates	of	selection	

TABLE  1 Fad	and	Elovl	gene	copy	numbers	in	cnidarian	taxa	with	
sequenced	genomes

Organism Fad Elovl

Hydra vulgaris 1 1

Acropora digitifera 0 3

Nematostella vectensis 1 1

Exaiptasia pallida 3 4

https://github.com/sylvainforet/psytrans
http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
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could	be	determined	using	maximum-	likelihood	models	in	the	pro-
gram	CODEML	in	PAML	(v4.8)	(Yang,	2007)	using	the	protocol	of	
(Fang	et	al.,	2009)	and	codon	frequency	F3X4.	To	accurately	deter-
mine	significance,	Bonferroni	correction	was	computed	to	account	
for	 the	 repeated	 testing	 of	 multiple	 branches	 (Fletcher	 &	 Yang,	
2010;	Hunt	et	al.,	2011)	where	Fad	had	n	=	2	branches	and	Elovl 
had	 n =	4	 branches	 and	 the	 adjusted	 p-value	=	.05/n.	 To	 detect	
pervasive	purifying	and	diversifying	selection,	Fast	Unconstrained
Bayesian	AppRoximation	(FUBAR)	(Murrell	et	al.,	2013)	was	used	
from	the	HyPhy	package	(Pond,	Frost,	&	Muse,	2005).

2.4 | Fatty acid analysis

Fatty	acid	analysis	was	performed	to	investigate	the	baseline	fatty	
acid	 levels	 in	 a	 candidate	 cnidarian	 (A. tenebrosa)	 lacking	 symbi-
onts.	 Individuals	were	 placed	 in	 isolated	 holding	 tank	 containing	
only	artificial	sea	water	and	not	fed	for	3	days.	The	fatty	acid	lev-
els	 of	 banana	 prawn,	 the	 primary	 feed	 provided	 to	A. tenebrosa,	
were	also	investigated	to	provide	a	comparison	with	the	fatty	acid	
profile	of	A. tenebrosa	prior	to	starvation.	Analysis	was	performed	
using	 three	 different	 individuals,	 with	 three	 technical	 replicates	
for	each	individual.	An	analysis	without	internal	standard	was	per-
formed	 to	validate	 the	absence	of	 the	 internal	 standard	 (21:0)	 in	
the	samples.

Lipid	 extraction	 was	 performed	 using	 a	 modification	 of	 the	
method	 of	 Matyash,	 Liebisch,	 Kurzchalia,	 Shevchenko,	 and	
Schwudke	(2008).	In	brief,	10	mg	of	the	sample	was	homogenized	
in	 liquid	nitrogen	 (LN2),	 immediately	an	aliquot	of	300	μl	metha-
nol	 (cold)	containing	0.01%	butylated	hydroxytoluene,	and	 inter-
nal	standard	 (21:0,	heneicosanoic	acid,	1	mmol/L)	 (Chem	Service	
INC,	West	Chester,	PA,	USA)	was	added	and	mixed	by	vortexing.	A	
1,000	μl	aliquot	of	methyl	tert-	butyl	ether	was	added,	and	samples	
were	 rotated	 at	 room	 temperature	 for	 1	hr.	 A	 total	 of	 250	μl	 of	
0.15	mol/L	ammonium	acetate	was	added	to	 induce	phase	sepa-
ration.	Tubes	were	centrifuged	at	2,000	g	 for	5	min	 to	complete	
phase	 separation,	 and	 50	μl	 of	 the	 upper	 organic	 layer	 was	 re-
moved	to	a	new	2-	ml	glass	vial	and	stored	at	−20°C	until	analysis,	
following	 a	 similar	method	utilized	 by	Tran	 et	al.	 (2014).	 For	 the	
preparation	of	fatty	acid	methyl	esters	(FAMEs),	10	μl	of	derivatiz-
ing	reagent	 (trimethylsulfonium	hydroxide	solution,	~0.25	mol/L)	
(Sigma-	Aldrich,	Castle	Hill,	NSW,	Australia)	was	added.	The	solu-
tion	was	mixed	for	30	s	and	allowed	to	react	for	30	min,	following	
the	method	proposed	by	Gómez-	Brandón,	Lores,	and	Domínguez	
(2010).

The	 FAME	extracts	were	 analyzed	 using	 a	 gas	 chromatograph	
coupled	 to	 a	 mass	 spectrometer	 (GCMS	 –	 TQ8040)	 (Shimadzu,	
Kyoto,	Japan)	with	RTX-	2330	capillary	columns	(Restek,	Bellefonte,	
PA,	USA;	60	m	×	0.25	mm,	film	thickness	0.20	μm),	and	electron	ion-
ization	set	at	70	eV.	Conditions	for	the	analysis	of	FAMEs	were	as	
follow:	carrier	gas,	He:	2.6	ml/min;	22:1	split	ratio,	injection	volume	
1 μl;	 injector	 temperature	 220°C;	 thermal	 gradient	 150–170°C	 at	
10°C/min,	then	170–200°C	at	2°C/min,	then	200–211°C	at	1.3°C/
min,	 and	 temperature	held	 for	5	min.	The	mass	 spectrometer	was	

equipped	with	an	ion	source	(250°C).	The	data	were	acquired	with	
Q3	scan	mode	from	m/z	50–650.	For	data	collection,	the	MS	spectra	
were	recorded	from	4	to	30.5	min.

All	 data	 were	 processed	 using	 GCMS	 Postrun	 Analysis	 soft-
ware	(Shimadzu,	Kyoto,	Japan).	FAME	identification	was	based	on	
an	 internal	 spectral	 library	as	well	 as	a	 series	of	FAME	standards	
(20-	component	FAME	mix)	(Restek,	Bellefonte,	PA,	USA)	were	used	
to	 identify	 retention	 times	 (Rt)	 of	 specific	m/z	 profiles	 associated	
with	 known	 FAs.	 The	 data	 processing	 included	 smoothing,	 peak	
detection,	 integration,	 peak	 alignment,	 normalization,	 and	 identi-
fication.	Extraction	and	solvent	blanks	were	 included	 in	 the	anal-
ysis	to	allow	exclusion	of	 ions	detected	at	 lipid	masses	that	result	
from	extraction	chemical	or	solvent	impurities.	Quantification	was	
achieved	by	comparison	of	the	peak	area	of	individual	lipids	to	the	
internal	standard.

3  | RESULTS

3.1 | Identification of candidate genes

The	distribution	and	copy	number	of	Fad	and	Elovl	genes	found	 in	
cnidarian	species	with	sequenced	genomes	are	shown	in	Table	1.	In	
phylum	Cnidaria,	gene	copy	number	varies	ranging	from	zero	to	three	
Fad	genes.	Genes	encoding	full-	length	Elovl	proteins	were	identified	
in	all	taxa,	ranging	from	one	to	four.	From	these	data,	more	Fad	and	
Elovl	genes	were	observed	in	the	actiniarian	E. pallida	compared	with	
the	other	cnidarian	species.

The	distribution	of	Fad	and	Elovl	genes	was	further	investigated	in	
the	transcriptome	assemblies	of	six	actiniarian	taxa,	which	 included	
A. tenebrosa,	A. buddemeieri,	A. veratra,	C. polypus,	Telmatactis	sp.,	and	
N. annamensis.	 The	 six	 species	with	 sequenced	 transcriptomes	 that	
were	 used	 in	 this	 analysis	 are	 from	 two	 superfamilies:	 Actinioidea	
(A. tenebrosa,	A. buddemeieri,	and	A. veratra)	and	Metridioidea	(C. poly-
pus,	 Telmatactis	 sp.,	 and	N. annamensis).	 The	 N50	 (minimum	 contig	
length	to	cover	50%	of	the	cumulative	sum	of	contigs)	for	all	transcrip-
tomes	are	>	800	bp	and	have	a	completeness	>	90%	for	both	CEGMA	
and	BUSCO,	with	the	exception	of	Telmatactis	sp.	which	has	a	CEGMA	
and	BUSCO	completeness	of	77%	and	BUSCO	83.4%,	 respectively	
(Tables	S1	and	S2).

Fad	 and	Elovl	 gene	 copies	were	 identified	 in	 all	 transcriptomes	
(Table	2).	The	four	A. tenebrosa	individuals	all	encode	two	full-	length	
Fad	proteins,	except	for	the	brown	individual	which	encodes	a	single	
full-	length	Fad	protein.	Two	full-	length	Fad	proteins	are	also	encoded	
by	N. annamensis	and	A. buddemeieri,	whereas	C. polypus,	Telmatactis 
sp.,	 and	A. veratra	 encode	 a	 single	 full-	length	Fad	protein.	Multiple	
genes	copies	encoding	full-	length	Elovl	proteins	were	also	observed	
in	all	actiniarian	species.	All	A. tenebrosa	individuals	encode	five	full-	
length	Elovl	proteins,	with	the	expectation	of	the	brown	individual,	
which	encode	four	full-	length	proteins.	In	the	remaining	Actinioidea	
species,	A. buddemeieri	and	A. veratra	encode	four	and	five	full-	length	
proteins,	 respectively.	 Metridioidea	 transcriptomes	 for	 C. polypus,	
Telmatactis	 sp.,	 and	N. annamensis	 encode	 five,	 two,	 and	 four	 full-	
length	proteins,	respectively.
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3.2 | Comparative and phylogenetic analyses of 
Fad and Elovl gene families

Using	 a	 phylogenetic	 framework,	 we	 investigated	 the	 distribution	
of	Fad	genes	across	Metazoa	(Figure	2).	A	maximum-	likelihood	tree	
revealed	three	distinct	clades,	which	we	name	A,	B,	and	C.	Clades	A	
and	B	were	sisters	to	each	other,	with	clade	C	the	most	divergent.	
All	 bilaterian	Fad	proteins	 are	 found	 in	 clade	B.	 Sequences	within	
clades	A	and	C	are	found	to	be	from	phylum	Cnidaria	as	well	as	non-
metazoan	eukaryote	 taxa,	 such	as	 fungi	and	plant	species.	 In	 fact,	
functionally	 characterized	 plant	 Fad	proteins	 (green	branches)	 are	
found	in	clade	A,	while	functionally	characterized	fungal	and	amoe-
bozoan	Fad	proteins	(blue)	are	present	in	clade	B.

A	maximum-	likelihood	phylogeny	of	 the	Elovl	 gene	 family	pro-
duced	two	clades	(A	and	B)	which	both	contained	multiple	subclades	
(Figure	3).	 Broadly,	 in	 clade	 A,	 four	 distinct	 subclades	 clustered	

TABLE  2 Fad	and	Elovl	gene	copy	numbers	in	actiniarian	
transcriptome	assemblies

Superfamilies Organism Fad Elovl

Actinioidea Actinia tenebrosa 
(blue)

2 5

Actinioidea A. tenebrosa	(brown) 1 4

Actinioidea A. tenebrosa	(green) 2 5

Actinioidea A. tenebrosa	(red) 2 5

Actinioidea Anthopleura 
buddemeieri

2 4

Actinioidea Aulactinia veratra 1 5

Metridioidea Calliactis polypus 1 5

Metridioidea Telmatactis	sp. 1 2

Metridioidea Nemanthus 
annamensis

2 4

F IGURE  2 Maximum-	likelihood	tree	with	midpoint	root	depicting	relationships	among	Fad	protein	sequences	and	branches	transformed	
as	a	cladogram.	Bootstrap	values	after	1,000	iterations	are	shown	next	to	nodes,	values	under	70%	not	reported.	Three	distinct	clades	are	
named	clades	A,	B,	and	C.	The	branches	of	functionally	characterized	Fad	proteins	are	highlighted	by	the	color	of	their	respective	clade.	
These	functionally	characterized	sequences	were	retrieved	from	the	SWISS-	prot	database	and	named	according	to	their	Uniprot	accession	
with	the	species	name	abbreviated,	Candidate	sequences	identified	in	this	study	have	their	full	species	names
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together	 including	 Non-metazoan	 eukaryote	 Elovl,	 Elovl3,	 Elovl6,	
and	 Elovl	 3/6-	like.	 Sequences	 from	 the	 Non-metazoan	 eukaryote	
Elovl	 subclade	 include	 sequences	 from	 Saccharomyces cerevisiae,	
Schizosaccharomyces pombe,	 and	 Dictyostelium discoideum.	 The	
Elovl3	clade	contains	only	mammalian	taxa	and	Elovl6	clade	contain	
only	taxa	from	phylum	Chordata.	The	Elovl	3/6-	like	clade	contains	
functionally	 characterized	 Elovl	 sequences	 from	Caenorhabditis el-
egans	 (sp_P49191_ELO3_CAEEL	 and	 sp_Q03574_ELO4_CAEEL).	 A	
second	broad	clustering	of	eight	subclades	(clade	B)	can	be	observed	
in	Figure	3	and	was	annotated	as	Elovl1,	Elovl7,	Elovl1/7-	like,	Elovl4,	
Elovl5,	 Elovl2,	 a	 subclade	 that	 include	 sequences	 from	 actiniarian	
taxa	 that	 did	 not	 cluster	 with	 any	 functionally	 characterized	 se-
quences	(Novel	ElovlA),	and	a	subclade	that	included	cnidarian	taxa	
that	did	not	cluster	with	any	 functionally	characterized	sequences	
(Novel	ElovlB).	The	novel	ElovlA	subclade	was	sister	to	all	other	sub-
clades	in	clade	B,	contained	no	functionally	characterized	sequences	
and	consisted	only	of	actiniarian	taxa.	The	Elovl1	and	Elovl7	clades	
were	sister	to	each	and	contain	sequences	from	phylum	Chordata.	
The	Elovl1/7-	like	clade	contains	functionally	characterized	Elovl	pro-
teins	from	the	arthropod	Aedes aegypti	as	well	as	Drosophila melano-
gaster	(Chertemps	et	al.,	2007;	Ribeiro	et	al.,	2007).	The	Novel	ElovlB	
subclade	consisted	of	only	protein	sequences	from	phylum	Cnidaria	
and	no	functionally	characterized	Elovl	proteins.	This	subclade	is	sis-
ter	to	Elovl1,	Elovl7,	and	Elovl1/7-	like.	Subclades	Elovl2	and	Elovl5	
were	 sister	 to	 each	 other,	 and	 only	 sequences	 from	Chordata	 are	
found	in	these	two	subclades.	In	the	Elovl4	subclade,	both	function-
ally	characterized	Elovl4	protein	sequences,	from	phylum	Chordata,	
and	sequences	from	phylum	Cnidaria	clustered	together.

3.3 | Selection analysis of the Fad and Elovl gene  
families

To	 investigate	 the	 selection	 pressures	 on	 both	 the	 Fad	 and	 Elovl 
gene	families,	multiple	analyses	were	performed.	Results	 from	the	
site	model	selection	analysis	reveal	that	both	the	Fad	and	Elovl	gene	

families	 show	patterns	of	 nucleotide	 variation	 consistent	with	 the	
action	of	pervasive	purifying	selection	(Table	3).	The	weighted	aver-
age	dN/dS	ratio	of	the	Fad	and	Elovl	gene	families	for	all	models	is	<0.1	
for	both	gene	families.	Using	a	chi-	square	significance	test,	the	null	
models,	M1,	and	M7,	could	not	be	rejected	against	the	models	M2,	
and,	M8,	 respectively.	 The	null	model,	M0,	 however,	 could	 be	 re-
jected	testing	against	the	M3	model,	and	therefore,	the	assumption	
that	all	codons	show	the	same	patterns	of	nucleotide	variation	could	
be	rejected.	To	further	examine	whether	specific	codons	within	gene	
families	are	under	the	influence	of	pervasive	purifying	selection	or	
pervasive	diversifying	selection,	FUBAR	was	used	within	the	HyPHy	
package	(Table	S3).	These	results	confirmed	no	codons	are	under	di-
versifying	 selection	 for	both	gene	 families;	 however,	 codons	were	
identified	to	be	under	pervasive	purifying	selection.	In	the	Fad	and	
Elovl	gene	families,	282	codons	of	a	possible	419	codons,	and	197	co-
dons	of	a	possible	223	codons,	show	patterns	of	nucleotide	variation	
consistent	with	the	action	of	purifying	selection,	respectively.	This	
indicates	that	pervasive	purifying	selection	is	acting	on	the	majority	
of	the	codons	for	both	the	Fad	and	Elovl	gene	families.

Duplication	 events	 have	 played	 a	 major	 role	 in	 the	 expansion	
of	both	gene	families	in	cnidarians,	in	particular	the	Elovl	gene	fam-
ily	 which	 has	 undergone	 repeated	 rounds	 of	 duplication	 events.	
Episodic	 diversifying	 selection	 following	 duplication	 events	 was	
tested	in	both	the	Fad	and	Elovl	gene	families.	Maximum-	likelihood	
trees	were	constructed	using	 the	coding	 sequence	 (CDS)	 for	both	
Fad	and	Elovl	gene	families	(Figure	S1).	From	the	maximum-	likelihood	
trees,	two	subclades	in	the	Fad	gene	family	are	observed,	and	four	
subclades	are	observed	in	the	Elovl	gene	family.	The	null	hypothesis	
could	not	be	 rejected	 for	any	subclade	 in	both	Fad	 and	Elovl	 gene	
families,	with	exception	of	branch	4	in	the	Elovl	gene	family	which	
had	a	dN/dS	ratio	of	0.003	(Table	4).

Finally,	 the	 branch-	sites	 model	 was	 implemented	 to	 test	 for	
codons	 under	 episodic	 diversifying	 selection	 following	 gene	 du-
plication	 (Figure	4).	 The	 same	 foreground	 branches	 as	 previously	
described	 were	 tested	 (Figure	S1).	 Foreground	 branches	 with	

Gene families Model Likelihood dN/dS Parameters
Diversifying 
selected codons

Fad M0	(one	ratio) −8,130.15 0.0814 17 —

M1	(neutral) −8,103.01 0.1142 18 —

M2	(selection) −8,103.01 0.1142 24 NS

M3	(discrete) −8,033.15 0.0935 21 —

M7	(beta) −8,041.72 0.0932 18 —

M8	(beta	&	ω) −8,041.61 0.0939 20 NS

Elovl M0	(one	ratio) −9,462.38 0.0795 45 —

M1	(neutral) −9,452.13 0.0876 46 —

M2	(selection) −9,452.13 0.0876 48 NS

M3	(discrete) −9,279.86 0.0856 49

M7	(beta) −9,281.49 0.0845 46 —

M8	(beta	&	ω) −9,281.17 0.0850 48 NS

NS,	not	significant.

TABLE  3 Detecting	pervasive	
diversifying	selection	using	site	models	
implemented	in	CODEML	for	the	Fad	and	
Elovl	gene	families	from	actiniarian	
transcriptome	assemblies
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significant	p-	values	were	corrected	using	Bonferroni	correction.	The	
foreground	branches	 that	had	significant	p-	values	were	 then	used	
to	 identify	codons	with	dN/dS	 ratio	>	1	and	a	posterior	probability	 
≥	0.95	using	Bayes	Empirical	Bayes	(BEB)	analysis.	The	null	hypoth-
esis	could	not	be	rejected	for	any	of	the	foreground	branches	in	the	
Fad	gene	family,	and	therefore,	no	codons	appear	to	be	under	epi-
sodic	 diversifying	 selection.	 Conversely,	 the	 null	 hypothesis	 could	
be	 rejected	 for	 all	 foreground	 branches	 tested	 in	 the	 Elovl	 gene	
family.	Furthermore,	BEB	analysis	 identified	multiple	codons	to	be	

under	episodic	diversifying	selection	following	duplication	events	in	
the	Elovl	gene	 family.	The	codons	under	diversifying	selection	can	
be	observed	 in	Figure	4	and	 in	Tables	S4	and	S5.	Branch	4,	which	
includes	 sequences	 that	 clustered	 with	 functionally	 characterized	
Elovl4		proteins	(Ohno	et	al.,	2010),	was	observed	to	have	15	codons	
under	 episodic	 diversifying	 selection	 with	 a	 posterior	 probability	
≥	0.95.	The	remaining	branches	are	observed	to	have	between	11	
and	14	codons	under	episodic	diversifying	selection	with	a	posterior	
probability	≥	0.95.

F IGURE  3 Maximum-	likelihood	tree	with	midpoint	root	depicting	relationships	among	Elovl	protein	sequences	and	branches	transformed	
as	a	cladogram.	Bootstrap	values	after	1,000	iterations	are	shown	next	to	nodes,	values	under	70%	not	reported.	Twelve	distinct	clades	
are	annotated	based	on	the	functionally	characterized	proteins	found	within	them.	The	branches	of	functionally	characterized	proteins	are	
highlighted	by	the	color	of	their	respective	clade.	These	functionally	characterized	sequences	were	retrieved	from	the	Swiss-	prot	database	
and	named	according	to	their	Uniprot	accession	with	the	species	name	abbreviated.	Candidate	sequences	identified	in	this	study	have	their	
full	species	names
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3.4 | Fatty acid analysis

Fatty	acid	analysis	was	performed	for	three	biological	replicates	
in	 triplicate	 to	 determine	 the	 fatty	 acid	 profile	 of	 an	 anemone	
(A. tenebrosa)	 and	 their	 feed,	 banana	 prawn.	 FAMEs	 observed	
in	 the	whole	 organism	 of	A. tenebrosa	 and	 prawn	 are	 shown	 in	
Figure	5	(Table	S6).	Of	the	FAMEs	analyzed	in	A. tenebrosa,	SFAs	
are	 dominant	 in	 the	 samples	 (65.75%	of	 total	 FAMEs),	 followed	
by	PUFAs	(15.29%	of	total	FAMEs)	and	MUFAs	(10.37%	of	total	
FAMEs).	The	FAMEs	analyzed	 in	prawn	also	 revealed	 that	SFAs	
are	 dominant	 in	 the	 samples	 (59.98%	 of	 total	 FAMEs)	 followed	
by	MUFAs	(24.13%	of	total	FAMEs)	and	PUFAs	(15.89%	of	total	
FAMEs).

In	 A. tenebrosa	 and	 prawn,	 SFAs,	 namely	 16:0	 and	 18:0,	
are	 the	 most	 abundant	 component	 of	 the	 total	 FAME	 profile	
(A. tenebrosa:	21.17%	and	18.34%,	respectively;	prawn:	29.87%	
and	 16.42%,	 respectively).	 Four	MUFAs	 are	 found	 in	A. tene-
brosa,	 and	 five	 are	 found	 in	 prawn.	 In	 both	 A. tenebrosa	 and	
prawn,	 the	 methyl	 ester	 18:1n-	9	 is	 found	 in	 high	 concentra-
tion,	4.32%	and	10.27%	of	total	FAMEs,	respectively.	Multiple	
different	 PUFA	 methyl	 esters	 are	 identified	 in	 both	 A. tene-
brosa	 and	prawn.	 In	A. tenebrosa,	 LA	 (18:2n-	6),	ALA	 (18:3n-	3),	
ARA	 (20:4n-	6),	 and	EPA	 (20:5n-	3)	 are	present;	 however,	DHA	
(22:6n-	3)	was	absent.	The	PUFA	methyl	esters	present	in	prawn	
includes	 LA,	 ARA,	 EPA,	 and	DHA.	 Among	 the	 PUFAs,	 ALA	 is	
the	 methyl	 ester	 form	 most	 abundant	 in	 A. tenebrosa,	 corre-
sponding	to	4.22%	of	total	FAMEs,	and	ARA	is	the	methyl	ester	
form	most	abundant	in	prawn,	corresponding	to	6.09%	of	total	
FAMEs	(Figure	5).

4  | DISCUSSION

Research	 investigating	the	Fad	and	Elovl	gene	families	that	desatu-
rate	 and	 elongate	 LC-	PUFAs	 has	 largely	 been	 restricted	 to	 bilate-
rian	 taxa	 (Carmona-	Antoñanzas	 et	al.,	 2011;	 Castro	 et	al.,	 2012;	
Fonseca-	Madrigal	et	al.,	2014;	Kabeya	et	al.,	2017;	Li	et	al.,	2017;	Li	
et	al.,	2010;	Mohd-	Yusof	et	al.,	2010;	Monroig,	Guinot,	et	al.,	2012;	
Monroig,	Navarro,	et	al.,	2012;	Monroig,	Webb,	et	al.,	2011;	Monroig	
et	al.,	2010,	2016,	2017,	2013;	Morais	et	al.,	2009;	Surm	et	al.,	2015).	
We	have	investigated	the	phylogenetic	and	molecular	evolutionary	
histories	 of	 the	Fad	 and	Elovl	 gene	 families	 in	 phylum	Cnidaria,	 to	
provide	 insights	 into	 evolution	 and	 the	 distribution	 of	 these	 gene	
families	in	Metazoa	outside	of	bilaterian	taxa.	Our	results	found	mul-
tiple	copies	of	both	the	Fad	and	Elovl	gene	families	in	cnidarian	spe-
cies,	and	most	of	these	gene	copies	had	no	true	ortholog	in	bilaterian	
taxa.	An	expansion	of	both	Fad	and	Elovl	genes	can	be	observed	in	
actiniarians	compared	with	other	cnidarian	species.	This	expansion	
is	the	result	of	lineage-	specific	gene	duplications	in	both	the	Fad	and	
Elovl	gene	families.	This	was	evident	in	both	the	transcriptomic	and	
genomic	data,	with	 the	exception	of	N. vectensis.	Variations	of	Fad 
and	Elovl	gene	copy	number	were	also	observed	within	the	same	spe-
cies	as	observed	in	the	brown	ecotype	of	A. tenebrosa,	which	had	one	
less	Fad	and	Elovl	compared	with	the	other	three	ecotypes.	This	may	
be	an	actual	case	of	copy	number	variation	or	also	could	be	an	arti-
fact	of	low	expression	of	this	gene	in	this	ecotype	(Surm	et	al.,	2015).

Actiniarian	Fad	proteins	clustered	with	functionally	characterized	
Δ5	and	Δ6	desaturases	Fad	proteins	in	clades	A	and	C,	respectively	
(Figure	2).	 In	 clade	A,	 a	 functionally	 characterized	Δ6	 Fad	 protein	
with	the	ability	to	desaturate	PUFAs	from	the	plant	species,	Borago 

F IGURE  4 Episodic	diversifying	selection	of	Elovl	gene	family	in	actiniarians.	(a)	Maximum-	likelihood	tree	of	nucleotide	sequences	with	
midpoint	root	depicting	relationships	among	Elovl	genes	in	actiniarians.	Foreground	branches	tested	are	numbered	and	colored.	Foreground	
branches	corresponding	to	their	respective	clades	in	Figure	3	are	annotated	accordingly.	(b)	A	plot	of	posterior	probability	of	codons	
with	dN/dS	≥	1	against	amino	acid	residue	positions.	Significantly	detected	codons	under	diversifying	selection	(dN/dS	>	1)	with	posterior	
probability	≥0.95	(Bayes	Empirical	Bayes	analysis)	are	colored	to	correspond	to	their	respective	foreground	branches.	The	horizontal	line	
represents	the	line	of	significance	with	posterior	probability	≥	0.95
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officinalis,	is	present	(Sayanova	et	al.,	1997).	In	clade	C,	a	functionally	
characterized	Δ5	Fad	from	the	oleaginous	fungus,	Mortierella alpina,	
was	found	(Michaelson,	Lazarus,	Griffiths,	Napier,	&	Stobart,	1998).	
The	fatty	acid	profile	of	M. alpina	has	been	found	to	have	high	levels	
of	ARA	and	also	EPA	when	conditions	 are	optimal,	 but	 lack	>	C20 
PUFAs,	such	as	DHA	(Knutzon	et	al.,	1998;	Michaelson	et	al.,	1998).	
Furthermore,	M. alpina	has	been	shown	to	encode	an	additional	Δ6 
desaturase	 enzyme;	 however,	 this	 sequence	 is	 not	 present	 in	 the	
Swiss-	prot	database	and	therefore	was	not	included	in	this	analysis	
(Knutzon	et	al.,	1998;	Michaelson	et	al.,	1998).

Several	 sphingolipid	 desaturases	 share	 the	 same	 structural	
characteristics	as	Fads.	These	structural	 characteristics	 include	an	
N-	terminal	 cytochrome	 b5-	like	 binding	 domain	 (cyt-	b5;	 PF00173),	
which	 contains	 a	 hem	 binding	motif	 (HPGG),	 and	 a	 fatty	 acid	 de-
saturase	 domain	 (FA_desaturase;	 PF00487),	 which	 contains	 three	
histidine	 boxes	 (HXXXH,	 HXXXHH,	 and	 QXXHH).	 To	 date,	 these	
sphingolipid	 desaturases	 have	 been	 identified	 in	 plants,	 such	 as	
Arabidopsis thaliana	and	B. officinalis,	 and	 fungi	such	as	Candida al-
bicans	and	Kluyveromyces lactis	(Libisch,	Michaelson,	Lewis,	Shewry,	
&	Napier,	2000;	Oura	&	Kajiwara,	2008;	Sperling,	Libisch,	Zähringer,	
Napier,	&	Heinz,	2001;	Sperling,	Zähringer,	&	Heinz,	1998;	Takakuwa,	
Kinoshita,	 Oda,	 &	 Ohnishi,	 2002).	 Previous	 phylogenetic	 stud-
ies	 (Feng	 et	al.,	 2017;	 Gostinčar,	 Turk,	 &	Gunde-	Cimerman,	 2010;	
Meesapyodsuk	&	Qiu,	2012)	have	 shown	 that	 the	paralogs	of	 the	
genes	encoding	Fads	and	sphingolipid	desaturases	cluster	together,	
as	opposed	to	their	respective	orthologs.	These	sphingolipid	desat-
urases	 that	 share	 the	same	structural	 characteristics	as	Fads	have	
yet	 to	 be	 identified	 in	metazoan	 taxa.	 Indeed,	 if	 these	 sequences	

are	sphingolipid	desaturases,	it	will	be	the	first	report	of	metazoan	
sphingolipid	desaturase	with	the	same	structural	characteristics	as	
Fads	and	would	reveal	insights	into	evolution	of	the	Fads	and	sphin-
golipid	desaturases.

The	fatty	acid	analysis	in	A. tenebrosa	revealed	a	similar	fatty	acid	
profile	as	M. alpina,	with	the	presence	of	EPA	and	ARA,	and	an	ab-
sence	of	DHA.	Although	A. tenebrosa	was	starved	prior	to	fatty	acid	
analysis,	it	is	likely	that	some	fatty	acids	from	the	diet	are	incorpo-
rated	into	its	lipid	profile.	This	is	evident	with	both	A. tenebrosa	and	
prawn	sharing	similar	lipid	profiles;	however,	this	inflated	concentra-
tion	of	FAME	does	not	account	for	the	lack	of	DHA	found	in	the	fatty	
acid	profile	of	A. tenebrosa.

In	mammals,	 the	Elovl	gene	 family	has	been	comprehensively	
investigated,	 revealing	 repeated	 rounds	 of	 gene	 duplication,	 re-
sulting	in	seven	members:	Elovl1-7	(Jakobsson	et	al.,	2006;	Leonard	
et	al.,	2004).	Of	these	seven	genes,	only	the	proteins	encoded	by	
Elovl2,	4,	and	5	play	a	role	in	the	elongation	of	PUFAs	to	LC-	PUFAs,	
with	Elovl1,	3,	6,	 and	7	having	 roles	 in	elongating	other	 types	of	
fatty	acids,	such	as	SFAs	and	MUFAs.	Overall,	few	orthologs	PUFA	
elongases	 (Elovl2,	4,	and 5)	were	 identified	 in	 cnidarians	 relative	
to	 bilaterian	 taxa.	Only	 bilaterian	 Elovl4	 proteins	were	 found	 in	
a	 clade	with	 actiniarian	 Elovl	 proteins.	 This	 suggests	 cnidarians,	
including	actiniarians,	 lack	the	diversity	of	elongases	required	to	
biosynthesis	LC-	PUFAs.	Although	chordates	are	considered	ineffi-
cient	at	biosynthesising	LC-	PUFAs,	their	fatty	acid	profiles	contain	
LC-	PUFAs	>	C20	 (e.g.,	DHA)	 (Sprague,	Dick,	&	Tocher,	2016).	The	
presence	of	 LC-	PUFAs	>	C20	 in	bilaterian	 taxa	and	 their	 absence	
in	A. tenebrosa	may	be	explained	by	a	diversification	of	 the	Elovl 

F IGURE  5 Plot	of	average	fatty	acid	profile	from	wholeorganism	(n	=	3)	of	anemone	and	prawn.	(a)	Bar	plot	of	average	concentration	
of	fatty	acid	methyl	ester	(FAME)	given	in	mmol/kg	for	both	anemone	and	prawn	with	error	bars	shows	standard	deviation.	(b)	Bar	plot	of	
average	concentration	of	FAME	given	in	%	of	total	FAME	for	both	anemone	and	prawn	with	error	bars	shows	standard	deviation
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gene	family	 in	some	bilaterians,	 resulting	 in	Elovl2,	4,	and	5.	This	
diversification	 of	 PUFA	 elongases	 is	 not	 present	 in	 cnidarians,	
with	only	Elovl4	 identified	in	most	species	investigated.	It	should	
be	noted	that	the	Elovl4	protein	has	been	shown	to	elongate	LC-	
PUFAs	>	C20	(Castro	et	al.,	2016;	Monroig	et	al.,	2013,	2016),	and	
therefore,	functional	characterization	of	the	Elovl4	protein	in	cni-
darians	is	required.

In	 A. tenebrosa,	 our	 fatty	 acid	 analysis	 results	 revealed	 a	 high	
proportion	of	SFAs	compared	with	MUFAs	and	PUFAs.	The	higher	
levels	of	SFAs,	especially	the	presence	of	20:0,	22:0,	and	24:0,	sug-
gest	a	capacity	of	A. tenebrosa	to	elongate	SFA	from	16:0	and	18:0.	
In	 bilaterians,	 the	 elongases	 capable	 of	 these	 SFA	 elongation	 are	
Elovl1,	3,	6,	and	7.	Furthermore,	non-metazoan	eukaryote	taxa	and	
early	diverging	metazoans	have	somewhat	similar	fatty	acid	profiles,	
with	the	presence	of	C20	LC-	PUFAs	(ARA	and	EPA)	and	an	absence	
of	 LC-	PUFAs	>	C20.	 The	 elongase	 capabilities	 of	 the	 sequences	
found	within	both	novel	subclades	(Novel	ElovlA	and	Novel	ElovlB)	
are	unknown,	as	no	functionally	characterized	sequences	clustered	
with	these	subclades.	Currently,	the	Novel	ElovlA	and	Novel	ElovlB	
subclades	 appear	 to	 be	 actiniarian-	specific	 and	 cnidarian-	specific,	
respectively.	However,	 including	more	taxa	from	other	phyla,	such	
as	Porifera,	Ctenophora,	and	Placozoa,	would	be	essential	in	discern-
ing	whether	the	genes	from	these	subclades	are	lineage-	specific.	A	
lack	of	DPA	and	DHA	in	the	fatty	acid	profile	of	A. tenebrosa,	how-
ever,	 suggests	 that	 the	 putative	 function	of	 the	 proteins	 encoded	
by	genes	that	cluster	within	the	Novel	ElovlA	and	Novel	ElovlB	sub-
clades	is	unlikely	to	have	an	action	consistent	with	those	elongase	
enzymes	capable	of	elongating	LC-	PUFAs	>	C20.

Selection	analyses	of	actiniarian	Fad	and	Elovl	gene	families	re-
vealed	significant	evolutionary	constraint	 in	 their	CDS,	despite	re-
peated	rounds	of	duplications.	The	dN/dS	ratio	for	Fad	and	Elovl	gene	
families	was	<0.1	for	both,	indicating	patterns	of	nucleotide	variation	
consistent	with	the	action	of	purifying	selection.	The	application	of	
a	combination	of	CODEML	and	FUBAR	identified	no	codons	to	be	
under	 pervasive	 diversifying	 selection;	 however,	 FUBAR	 revealed	
that	the	vast	majority	of	codons	are	under	pervasive	purifying	se-
lection	(Table	S3).	A	total	of	67%	(282/419)	and	88%	(197/223)	of	all	
codons	are	under	pervasive	purifying	selection	for	the	Fad	and	Elovl 
gene	families,	respectively.	While	both	gene	families	were	found	to	
be	under	pervasive	purifying	selection,	some	codons	were	observed	
to	be	under	episodically	diversifying	selection	in	specific	clades.

The	branch-	site	model	 implemented	 in	CODEML	 identified	no	
evidence	of	episodic	diversifying	selection	for	the	Fad	gene	family,	
whereas	strong	evidence	of	episodic	diversifying	selection	was	ob-
served	 following	 each	 duplication	 event	 for	 the	Elovl	 gene	 family.	
Codons	 in	the	Elovl	gene	family	which	were	 identified	to	be	under	
episodic	diversifying	selection	may	also	be	responsible	for	targeting	
different	fatty	acids,	such	as	SFA,	MUFA,	and	PUFA.	Codons	were	
identified	 to	 be	 under	 episodic	 diversifying	 selection	 on	 all	 four	
branches	tested	(Figure	4).	From	Figure	3,	the	Elovl	genes	that	clus-
tered	to	the	Novel	ElovlA	and	Novel	ElovlB	subclades	appear	to	be	
actiniarian-	specific	and	cnidarian-	specific,	respectively.	In	particular,	
15	codons	were	 identified	to	be	under	episodic	diversifying	selec-
tion	on	branch	4	of	Figure	4,	which	corresponds	to	actiniarian	Elovl 
genes	 orthologs	 to	 bilaterian	 Elovl4	 (Figure	3).	 As	 Elovl4	 proteins	
are	responsible	for	elongating	PUFAs,	these	codons	may	have	a	role	
in	 the	targeting	and	elongating	of	PUFAs.	A	study	from	the	genus	
Drosophila	revealed	that	the	Fad	gene	family	in	this	group	is	under	
the	 influence	of	pervasive	purifying	selection	but	also	episodic	di-
versifying	selection	at	specific	codons	(Fang	et	al.,	2009).	This	study	
also	found	that	the	majority	of	the	codons	under	episodic	diversify-
ing	selection	occurred	in	clades	produced	by	duplication	events.	The	
authors	suggest	that	the	amino	acid	residues	under	positive	selec-
tion	may	be	responsible	for	altered	substrate	selectivity.

To	date,	 research	 investigating	 the	 ability	of	metazoan	 taxa	 to	
biosynthesis	LC-	PUFAs	has	been	restricted	to	bilaterian	taxa.	Here,	
we	provide	 the	 first	comprehensive	analysis	of	Fad	and	Elovl	gene	
families	across	phylum	Cnidaria.	Our	analysis	revealed	that	lineage-	
specific	 gene	 duplication	 has	 played	 a	 major	 role	 in	 the	 distribu-
tion	 and	 diversification	 of	 both	 the	Fad	 and	Elovl	 gene	 families	 in	
actiniarians.	The	molecular	evolutionary	histories	were	investigated	
revealing	 pervasive	 purifying	 selection	 for	 both	 gene	 families	 in	
actiniarians.	However,	 in	 the	Elovl	 gene	 family,	 codons	were	 iden-
tified	to	be	under	episodic	diversifying	selection	following	gene	du-
plication.	The	amino	acids	that	are	encoded	by	these	codons	under	
episodic	diversifying	selection	may	be	functionally	important	for	tar-
geting	and	elongating	different	fatty	acids,	such	as	SFA,	MUFA,	and	
PUFA.	The	 fatty	acid	composition	data	 implies	 that	Elovl	 enzymes	
found	in	A. tenebrosa	are	not	actively	contributing	to	FAs	of	longer	
than	20	carbons,	but	this	speculation	must	be	viewed	with	caution	as	
further	functional	validation	is	required	before	this	result	is	validated	
Overall,	this	study	has	revealed	that	actiniarian	species	possess	Fad 

Gene families Branch H0 Likelihood H1 Likelihood p-Value dN/dS

Fad 1 −8,130.15 −8,128.74 9.31	e-	02NS NS

2 −8,130.15 −8,129.28 1.89	e-	01NS NS

Elovl 1 −9,462.38 −9,462.37 9.26	e-	01NS NS

2 −9,462.38 −9,461.54 1.97	e-	01NS NS

3 −9,462.38 −9,462.01 3.95	e-	01NS NS

4 −9,462.38 −9,458.16 3.66	e-	03* 0.003

Significance	≤	0.05	following	Bonferroni’s	correction	are	highlighted	as	*.	NS,	not	significant.

TABLE  4 Detecting	lineages	under	
episodic	diversifying	selection	with	
branch	models	implemented	in	CODEML	
for	Fad	and	Elovl	gene	families	from	
actiniarian	transcriptome	assemblies
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and	Elovl	genes	required	for	the	biosynthesis	of	some	LC-	PUFAs,	and	
these	 genes	 appear	 to	 share	 a	 greater	 similarity	 to	 non-metazoan	
eukaryotes.
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