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Maximal distant entanglement in 
Kitaev tube
P. Wang1, S. Lin1, G. Zhang1,2 & Z. Song1

We study the Kitaev model on a finite-size square lattice with periodic boundary conditions in 
one direction and open boundary conditions in the other. Based on the fact that the Majorana 
representation of Kitaev model is equivalent to a brick wall model under the condition t = Δ = μ, this 
system is shown to support perfect Majorana bound states which is in strong localization limit. By 
introducing edge-mode fermionic operator and pseudo-spin representation, we find that such edge 
modes are always associated with maximal entanglement between two edges of the tube, which is 
independent of the size of the system.

Topological materials have become the focus of intense research in the last years1–4, since they not only exhibit 
new physical phenomena with potential technological applications, but also provide a fertile ground for the dis-
covery of fermionic particles and phenomena predicted in high-energy physics, including Majorana5–10, Dirac11–17  
and Weyl fermions18–26. These concepts relate to Majorana edge modes. A gapful phase can be topologically 
non-trivial, commonly referred to as topological insulators and superconductors, the band structure of which 
is characterized by nontrivial topology. The number of Majorana edge modes is determined by bulk topological 
invariant. In general, edge states are the eigenstates of Hamiltonian that are exponentially localized at the bound-
ary of the system. A particularly important concept is the bulk-edge correspondence, which links the nontrivial 
topological invariant in the bulk to the localized edge modes. On the other hand, Majorana edge modes have been 
actively pursued in condensed matter physics27–33 since spatially separated Majorana fermions lead to degenerate 
ground states, which encode qubits immune to local dechoerence34. There have been theoretical proposals for 
detecting Majorana fermions in 2D semiconductor heterostructures35,36, topological insulator-superconductor 
proximity5,37–40, 1D spin-orbit-coupled quantum wires6,9,41–48 and cold atom systems33,49–53. Experimentally, it is 
claimed that indirect signatures of Majorana fermions in topological superconductors have been observed7,8,54–62. 
So far, the thoretically predicted Majorana bound state in literatures requires the system in thermodynamic limit. 
An interesting question is whether there exists the Majorana bound state in a small sized system, or the topolog-
ical feature is a prerequisite for Majorana bound state. The existence of such a type of edge mode would indicate 
that the bulk topology is not necessary to the spatially separated Majorana fermions and may provide an alterna-
tive way to detect and utilize Majorana fermions.

In this paper, we study the Majorana edge modes in the Kitaev model on a square lattice based on analytical 
solutions. In contrast to previous studies based on open boundary conditions in two directions, we focus on a 
finite-length cylindrical lattice. We show that the Majorana representation of Kitaev model is related to a brick 
wall model, based on which this model in a finite-length cylindrical geometry supports the perfect Majorana 
bound states under the condition μ= Δ =t . The perfect Majorana bound state is in the strong localization limit. 
This Majorana zero mode has two notable features: (i) The edge-mode states exhibit maximal entanglement 
between the two edges of the cylinder; (ii) By introducing edge-mode pesudospin operators, we find that the edge 
mode relates to a conserved observable. Remarkably, the expectation values of two types of pseudospins for eigen-
states indicate the coexistence of both bosonic and fermionic excitations. And the eigenstates also possess maxi-
mal entanglement about the bosonic and fermionic modes. These results provide a way to detect the Majorana 
bound states in p-wave superconductors.

Model
We consider the Kitaev model on a square lattice which is employed to depict 2D p-wave superconductors. The 
Hamiltonian of the tight-binding model on a square lattice takes the following forma
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where r is the coordinates of lattice sites and cr is the fermion annihilation operators at site r. Vectors a = ai, aj, 
are the lattice vectors in the x and y directions with unitary vectors i and j. The hopping between (pair operator 
of) neighboring sites is described by the hopping amplitude t (the real order parameter Δ). The last term gives 
the chemical potential. Imposing boundary conditions on both directions, the Hamiltonian can be exactly diag-
onalized. The Kitaev model on a honeycomb lattice and chain provides well-known examples of systems with 
such a bulk-boundary correspondence63–69. It is well known that a sufficient long chain has Majorana modes at 
its two ends70. A number of experimental realizations of such models have found evidence for such Majorana 
modes7,54,56,57,71. In contrast to previous studies based on system in thermodynamic limit, we focus on the Kitaev 
model on a finite lattice system. This is motivated by the desire to get a clear physical picture of the egde mode via 
the investigation of a small system. We first study the present model from the description in terms of Majorana 
fermions.

We introduce Majorana fermion operators
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Then the Majorana representation of the Hamiltonian is
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It represents a dimerized brick wall lattice (or honeycomb lattice) with extra hopping term brar+a.

Majorana Edge Modes
Let us consider a simple case to show that Majorana modes can appear on some edges. Taking t = Δ = μ the 
Hamiltonian reduces to
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which corresponds to the original Kitaev model

∑

∑

= − + + . .

+ − .

+ +
†

†

H t c c c c h c

t c c

( )

(2 1)
(6)

BW
r,a

r r a r r a

r
r r

Now, we consider a finite lattice system on a cylindrical geometry by taking the periodic boundary condition in 
one direction and open boundary in another direction. For a M × N Kitaev model, the Majorana Hamiltonian 
can be explicitly expressed as

∑ ∑= − +

+ − . .
= =

+

+

H it a b b a

b a h c
2

(

), (7)

BW
m

M

n

N

m n m n m n m n

m n m n

1 1
, , 1, ,

, 1 ,

by taking = + →m n m nr i j ( , ). The boundary conditions are = = =+ + +b b a b, 0, 0m m N M n M n,1 , 1 1, 1, .
Consider the Fourier transformations of Majorana operators
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where the wave vector K = 2πl/N, l = 1, …, N. Here am,K and bm,K represent the linear combinations of Majorana 
fermion operator. These are not standard Majorana fermions since
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are also Majorana fermion operators. The following analysis for edge modes only involves two such operators.
The Hamiltonian HBW accordingly can be rewritten as
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i.e., HBW has been block diagonalized. We note that for K = 0, we have
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Term am,0 bm,0 disappears from the Hamiltonian, indicating the existence of an edge modes of Majorana fermi-
ons am,0 and bm,0. It is a perfect edge mode with zero character decay length. The mechanism of the mode is the fact 
that, a honeycomb tube lattice with zigzag boundary is equivalent to a set of SSH chains72. The formation of such 
a state is the result of destructive interference at the edge. Figure 1 schematically illustrates the relation among the 
Kitaev model on a square lattice and the corresponding Majorana ferimonic model on a brick wall model, and the 
perfect edge modes, through a small size system73,74.

Actually, Hamiltonian hBW
0  can be diagonalized by introducing M fermionic operators through

Figure 1.  Schematic picture of the Kitaev model on a square lattice and its corresponding Majorana fermion 
system. (a) A 3 × 6 square lattice with periodic boundary condition in horizontal direction and open boundary 
in vertical direction. (b) The corresponding Majorana system which is a brick wall lattice with the same 
boundary conditions in lattice (a). Fermions ci,j (blue circle) in (a) are decomposed into two Majorana fermions 
ai,j and bi,j (white and black circles, respectively) in (b). Majorana edge states for a and b are indicated by blue 
and red dotted circles, respectively, which are perfectly localized at the two edges of the cylinder.
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for m = 1, …, M − 1. Note operators that dm (m ≠ M) combine the Majorana operators which derive from neigh-
boring sites, while dM combines the two ending Majorana operators. Using the above definition of dM, the 
Hamiltonian hBW

0  can be written as the diagonal form
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On the other hand, we note that

= =d h d H[ , ] [ , ] 0, (19)M BW M BW
0

which means that dM and †dM are the eigen operators of the Hamiltonian HBW with zero energy. Operators dM and 
†dM are refered as zero-energy mode operators, or edge-mode operators since only edge Majorana fermions a1,0 

and bM,0 are involved. For an arbitrary eigenstate |Φ〉 of HBW with eigenenergy E, i.e.,

Φ = ΦH E , (20)BW

state dM|Φ〉 Φ†d( )M  is also an eigenstate of HBW with the same eigenenergy E, if dM|Φ〉 ≠ 0 Φ ≠†d( 0)M . In gen-
eral, all the eigenstates of HBW can be classified into two groups {|Φ+〉} and {|Φ−〉}, which are constructed as the 
forms
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Here |d − Vac〉 is the normalized vacuum state of all fermion operators dj (j ∈ [1, M])
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satisfying − =d d Vac 0j , where Λ is the normalization factor. Obviously we have

Φ = .−d 0 (23)M

We find that |Φ−〉 and |Φ+〉 possess the same eigen energy by acting with the commutation relation 
=†d H[ , ] 0M BW  on state |Φ−〉. Therefore, we conclude that all the eigenstates of HBW is at least doubly degenerate 

and this degeneracy is associated with the existence of Majorana edge modes.
We are interested in the feature of edge-mode operator dM. It is easy to check that
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are collective fermionic operators on the two edges of the cylinder. We note that edge-mode operator dM is a linear 
combination of particle and hole operators of spinless fermion c on the edge with the identical amplitudes. To 
demonstrate the feature of the operator dM, we focus on two related states, vacuum state and excited of dM particle 
(or hole and particle states). The vacuum state of fermion operator dM can be constructed from c vacuum state as

− =

= −† †

M Vac d Vac

c c Vac

2
1
2

( ) ,
(27)

M

M1,0 ,0

which satisfies − =d M Vac 0M . Then the particle state is

− = + .† † †d M Vac c c Vac1
2

(1 )
(28)M M ,0 1,0

Remarkably, by the mappings of → ↓ ↓Vac M 1 and → ↑ ↑† †c c VacM M,0 1,0 1, which are based on the 
Jordan-Wigner transformation, we find that the edge particle state −†d M VacM  is a maximally entangled state 
between two edges of the cylinder (see Fig. 2). On the other hand, if we take the mapping → ↑ ↓†c Vac M1,0 1  
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and → ↓ ↑†c Vac)M M,0 1 , we find that the edge hole state |M − Vac〉 is also a maximally entangled state. 
Although both states |M − Vac〉 and −†d M VacM  are not eigenstates of HBW, the entanglement reflects the fea-
ture of the edge modes.

In short, a zero-energy mode is characterized by a conventional fermion operator, which is also referred as 
edge-mode operator. Any standard fermion operator has its own vacuum and particle states, or hole and particle 
states. We have shown that the corresponding hole and particle states for the edge-mode operators dM and †dM are 
both EPR pair states in the spin representation. It reveals the non-locality of edge mode, through the particle and 
hole states are not eigenstates of the system.

For the eigenstate, the long-range correlation still exists. In the section Method, we show that the eigenstate 
|Φ±〉 can be regarded as entangled states between boson and fermion. It is expected that such a framework can be 
applied to more general cases.

Summary
In this paper we have studied the edge modes of a finite size Kitaev model on a square lattice. The advantage of 
studying the finite system is that the obtained result can be demonstrated in synthetic lattice system. We studied 
the Majorana edge modes for the Kitaev model in a cylindrical geometry. The Majorana representation of the 
Hamiltonian turns out to be equivalent to a brick wall model under some conditions. The analytical solutions 
show that there exist perfect Majorana edge modes, which are in the strong localization limit. We provide a new 
way to analyze the excitation mechanisms in the framework of pseudospins for the edge modes. These modes, 
in contrast to the modes in Kitaev chain, can appear in small finite systems. This may provide a new venue for 
observing Majorana fermions in experiments.

Method
Pseudospin description.  To get insight into the feature of the edge-mode related eigenstates in such a cylin-
drical Kitaev model, we introduce two types of pseudospin operators
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Figure 2.  Schematics of the Kitaev model on a square lattice of cylindrical geometry with length M (upper 
panel). The Majorana zero-mode state corresponds to an EPR pair state of spinless fermions on the two edges of 
the cylinder (lower panel).
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which satisfy the relations
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angular momentum relation
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We note that Jx is a conserved observable since =J H[ , ] 0x
BW .

On the other hand, both operators Jx and HBW are also invariant under a local particle-hole transformation  , 
which is defined as
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The fact that,  = = =J H H J[ , ] [ , ] [ , ] 0x
BW BW

x , tells us operators Jx,   and HBW share a common eigen 
vectors |Φ±〉. In fact, one pseudospin can be transformed to the other (and vice versa) by applying the transfor-
mation  . Direct derivation shows that

  τ=− s , (35)1 2 2

and
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which result in

τΦ Φ = Φ Φ = .± ± ± ±s 3/8 (37)2 2
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2

, (38)
x

we find that state |Φ±〉 does not have definite values of s and τ. Unlike a standard spin operator which has its own 
vector space, operators {sα} and {τβ} share a common vector space.

Actually, for two edge sub-system, there are total four possible states which can be written down as
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We have the relations
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which mean that states |1〉 and |4〉 are spin state with s = 0, while |2〉 and |3〉 are spin states with s = 1/2. Simlarly, 
as for operator τ, we have
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which mean that states |2〉 and |3〉 are spin state with τ = 0, while |1〉 and |4〉 are spin state with τ = 1/2. Then if we 
regard operators {sα} and {τβ} as independent standard spin operators with s, τ = 0, 1/2, two degree of freedom in 
states |1〉, |2〉, |3〉, and |4〉 can be separated and written as direct product of two independent spin states
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Obviously, this factorization of states is consistent with the Eqs from 40 to 43. In the spirit of this representa-
tion, one can construct equivalent states Φ∼±  to |Φ±〉 by regarding operators {sα} and {τβ} as standard spin opera-
tors with s, τ = 0, 1/2,

Φ = → + →
∼

τ τ+
1
2

( 0 0 ),
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We find that Φ∼±  has the same feature with |Φ±〉, i.e.,

τΦ Φ = Φ Φ =
∼ ∼ ∼ ∼

± ± ± ±s 3/8, (51)2 2

Φ = ± Φ .
∼ ∼

± ±J 1
2 (52)

x

It indicates that eigenstate state |Φ±〉 originates from the couple of two types of excitations, boson and fermion. 
Particles s and τ have an internal degree of freedom, with quantum number 0 and 1/2, corresponding to bosonic 
and fermionic states. State |Φ±〉 can be regarded as the eigenstate of a boson-fermion coupling system. The state is 
maximally entangled between particles s and τ with the respect to the boson and fermion modes. Such an exotic 
feature is responsible to the existence of edge modes.
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