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A cascade model of information processing and 
encoding for retinal prosthesis 

Abstract
Retinal prosthesis offers a potential treatment for individuals suffering from photoreceptor degeneration diseases. Establishing biological 
retinal models and simulating how the biological retina convert incoming light signal into spike trains that can be properly decoded by 
the brain is a key issue. Some retinal models have been presented, ranking from structural models inspired by the layered architecture 
to functional models originated from a set of specific physiological phenomena. However, Most of these focus on stimulus image com-
pression, edge detection and reconstruction, but do not generate spike trains corresponding to visual image. In this study, based on state-
of-the-art retinal physiological mechanism, including effective visual information extraction, static nonlinear rectification of biological 
systems and neurons Poisson coding, a cascade model of the retina including the out plexiform layer for information processing and the 
inner plexiform layer for information encoding was brought forward, which integrates both anatomic connections and functional com-
putations of retina. Using MATLAB software, spike trains corresponding to stimulus image were numerically computed by four steps: 
linear spatiotemporal filtering, static nonlinear rectification, radial sampling and then Poisson spike generation. The simulated results 
suggested that such a cascade model could recreate visual information processing and encoding functionalities of the retina, which is 
helpful in developing artificial retina for the retinally blind.
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How to construct a cascade model of information processing and encoding for retinal prosthesis?
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Introduction
As neural entrance of human visual system, the retina con-
tains five different cell types: ganglion, amacrine, horizontal, 
bipolar cells and photoreceptor. These visual cells are orga-
nized into a layered architecture. There are many subclasses 
within each major cell type (Goetz and Trimarchi, 2012). 
Not the same as in the brain, most neurons in the retina are 
much localized. They respond through gradual changes of 
the membrane potential. The only exception to this is gan-
glion cells, whose long axons converge to make up the optic 
nerve (Siegert et al., 2009).

Visual information from the surrounding environment is 
captured by photoreceptors and subsequently converted into 
electrical neural signals, which then are processed by differ-
ent excitatory and inhibitory pathways coexisting inside the 
retinal network and ultimately the output of the retina to 
higher brain areas by ganglion cells is encoded as spike trains 
(Seung and Sümbül, 2014).

Nowadays, approximately 1 in 4 blind individuals world-
wide suffers from selective photoreceptor loss, which often 
arises from blinding retinal diseases, such as retinitis pig-
mentosa or age-related macular degeneration. However, no 
effective treatment currently exists for retinitis pigmentosa, 
while progression of age-related macular degeneration can 
be slown but not prevented. In this case, bypass the lesioned 
neural tissue, using electrical stimulation to artificially de-
liver visual information to the surviving retina has become 
increasingly accepted as the best near-term hope for restor-
ing useful vision in these patients, such as the use of retinal 
prosthesis (Weiland et al., 2011, 2014).

According to the location of their device, retinal prosthesis 
generally falls into two categorical types: epiretinal and sub-
retinal prosthesis. No matter what kind of retinal prosthesis 
to be practical, an inevitable question that must be solved is 
designing a device that can perform necessary biological func-
tion as efficiently as retina. Hence, modeling and simulating 
the biological retina how to transform incoming light signal 
into spike trains that can be properly decoded by the brain is 
a challenge for the implementation of retinal prosthesis. 

Amongst the existing models of retina, some structural 
models built on a full set of synaptic and cellular parameters, 
they concern more with a detailed reproduction of anatomic 
connections in successive layers (Bálya et al., 2002; Bonin et 
al., 2005; Passaglia et al., 2009; Lefebvre et al., 2011; Lideberg, 
2013). Other functional models place special emphasis on 
recreating functional computations of retina, each physio-
logic phenomenon being modeled with a series of filters (Pe-
layoa et al., 2004; Wohrer and Kornprobst, 2009; Adesnik et 
al., 2012). Most of these only focus on stimulus image com-
pression, edge detection and reconstruction, but few studies 
have given models that generate spike trains corresponding 
to input visual information.

In the present study, a cascade model of the retina in-
cluding the out plexiform layer (OPL) for information pro-
cessing and the inner plexiform layer (IPL) for information 
encoding was presented, which integrates both anatomic 
connections and functional computations of retina. In this 

model, spike trains corresponding to stimulus image were 
numerically computed by linear spatiotemporal filtering, 
static nonlinear rectification, radial sampling and then Pois-
son spike generation based on MATLAB software. Subse-
quently, we give a general discussion of the advantages and 
disadvantages of the cascade model.

Materials and Methods
The cascade model
Figure 1 exhibits the global structure of our model com-
prised of two cascade synaptic layers: the OPL and the I. The 
OPL defines a signal processing stage through the interac-
tion of light receptors, horizontal cells and bipolar cells. It is 
modeled as a linear spatiotemporal filter to mediate spatial 
oppositions that allow the retinal output to enhance image 
edges. The IPL deals with signal encoding through the inter-
play of bipolar, amacrine and ganglion cells, which produces 
the spike rate and then the sampled ganglion cells generating 
spike trains. Furthermore, information stream flowing be-
tween neighboring cells from different layers is depicted by 
arrows.

Computation by the OPL
In the OPL, the visual signal from receptors to bipolar cells 
can take two parallel paths. The direct path from receptors 
to bipolar cells results in the excitatory center signal. The 
indirect path transits through horizontal cells, and hence 
through two synapses, this leads to the inhibitory surround 
signal. In our model, synaptic transmissions are considered 
linear and both paths will correspond to a linear spatiotem-
poral filter. The spatial filtering is produced by Gaussian ker-
nel as follows:
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here A and σ are, respectively, the peak sensitivities and stan-
dard deviations of gaussian function. Their temporal com-
ponent is the convolution of several exponential kernels as 
follows:
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where α denotes the total number of exponential kernel, 
and τ is the decay constant. For t = ατ, the resulting filter 
peaks. When applied to a signal, the kernel induces a tempo-
ral delay of value (α + 1)τ. 

Finally, always antagonistic center and surround signals are 
mediated by the bipolar cells layer (Tokutake and Freed, 2008; 
Cho and Choi, 2014). The band-pass filtering properties of 
bipolar cells layer are given by the following equations:
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where I(x, y, t) is the input luminosity visual information; 
ω represents the relative weight between center and surround 
signal. According to the previous physiological experiments 
recording, AC > AS, σC < σS, dC < dS.  

Computation by the IPL
In the IPL, ganglion cells are thought as completely indepen-
dent spiking encoders. Each ganglion cell responds to the 
stimulus, by modulating its firing frequency, within its re-
ceptive field and then transmits that information to the next 
visual stage independent of other ganglion cells.  

In contrast to the OPL, signal transmission in the IPL is 
approximately static nonlinear and is implicit in most of the 
experimental literature (Naka and Machuca, 1995). Biologi-
cally, static nonlinearities in the retinal neuron network arise 
from multiple different reasons, such as spiking threshold 
and saturation. A simplified synaptic transmission function 
is applied to approximate this translation process (Keat et al., 
2001). This step is expressed by the following equations:
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here VBip is normalization processing of VBip-1; VGan is 
the average spiking rate of the ganglion cells; VMax is the 
maximum of the spiking rate; V0 is spiking threshold; λ is 
static nonlinear coefficient; and μ is a constant, 0 ≤ μ ≤ 1.

In an effort to make the pixels of spike rate image match-
ing with the ganglion cells for one-to-one correspondence, 
the distribution mode of ganglion cells must be considered. 
In a human retina, ganglion cells are not uniformly distrib-
uted, but show a particular radial structure, whose density 
decreases exponentially with the distance increase from its 
central region, called the fovea (Curcio and Allen, 1990; Har-
man et al., 2000; Masland, 2012). Hence, the spike rate image 
was sampled in the polar coordinate fashion given by the 
following equations:
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here i is the index of sampling circular; j is the index of 
sampling point; R is sampling radius; θ is the sampling polar 
angle; M is the maximum of sampling radius.

Measuring Inter-Spike Intervals (ISI) has been extensively 
used for the computational studies of spike generation pro-
cess of real neurons (Dayan and Abbott, 2005; Gollisch and 
Meister, 2008). For a more biological ISI distribution, the 
refractory period following each spike is taken into account, 
which ensures that two successive spikes can never get closer 
than a few milliseconds. We calculate the firing times of gan-
glion cells by:
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where VRand is a random number generated by MATLAB 

Figure 2 Spatiotemporal filters used for information processing in the out plexiform layer (OPL). 
(A) Spatial, low-pass Gaussian kernel Sσ(x, y), (x, y) are the Cartesian coordinates of pixels in the stimulus image. (B) Temporal, low-pass exponen-
tial cascade kernel Tα,τ(t), t is the time variable, and α is the total number of exponential kernel. 

 A    B   
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Figure 3  Spatiotemporal filtering images in the 
outer plexiform layer (OPL) with different relative 
surround weights. 
(A) Original visual stimulus image. (B) Response to 
the stimulus image with ω = 0.8. (C) Response to 
the stimulus image with ω = 0.85. (D) Response to 
the stimulus image with ω = 0.9. (E) Response to the 
stimulus image with ω = 0.95. (F) Response to the 
stimulus image with ω = 1. When relative weight was 
set as 0.95, this choice results in a predominance of 
edges and contrast in uniform zones. The OPL reacts 
to a mixture of spatiotemporal band pass properties 
and extracts feature information of visual stimulus 
image. 

Figure 1 Schematic diagram of the retinal cascade model. 
Layers of the cells are represented by boxes. Two distinct synaptic layers, 
the inner plexiform layer and outer plexiform layer, define two succes-
sive information processing and encoding stages. 

Figure 4  Static nonlinear rectification function in the inner 
plexiform layer. 
The S-type simplified synaptic transmission function means that the 
gain of biological visual systems is high at low light levels and low at 
high light levels. This processing step ensures that the spike rate of the 
ganglion cells is maintained in an appropriate range. VBip means nor-
malized gray value at pixel.
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Figure 5  Radial sampling pattern of the Static nonlinear rectification 
image in the inner plexiform layer.
(A) Static nonlinear rectification output in the inner plexiform layer. (B) 
The radial sampling pattern of all spike rates for 1 circular level and 25 
samples per circle. 

Figure 6  Spike trains generated by one of 25 sampled retinal 
ganglion cells.
Each dark vertical line indicates a retinal ganglion cell fires spike at 
certain time. Visual information is encoded in the form of interspike 
times.
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average spike rate image, the result is shown in Figure 5A 
and what follows is sampling them according to the topogra-
phy of ganglion cells in the retina. To this end, a uniform ra-
dial sampling pattern of all spike rates for one circular level 
and 25 samples per circle were adopted (Figure 5B).

The average firing rate of sampled ganglion cells is taken as 
the input parameter (VGan) for Poisson spike generator. Once 
the absolute refractory is passed, a spike is emitted. Finally, 
as shown in Figure 6, we get the firing times of 25 sampled 
ganglion cells within one second. Dark vertical lines indicate a 
neuron fires at certain time. This temporal sequence of spikes 
accords with the sparse encoding feature of neurons. When 
transforming a continuous firing rate into a discrete and ran-
dom set of spike trains, the Poisson process is considered as 
a good alternative for coding, in terms of the statistical links 
between the spike train and the underlying firing rate (Kara 
et al., 2000; Hartveit and Heggelund, 1994). So we believe that 
the output is a sequence that indicates the spiking pattern we 
need to induce on the ganglion cell in order to achieve the de-
sired visual response to our input image in brain. 

Discussion
The goal of this study was to construct a cascade model to 
simulate how the biological retina processes and encodes 
incoming light signal. The main constraint that has been 
found to be imposed by retinal connectivity is the nonsepa-
rability of filtering in the OPL. Because of its cellular imple-
mentation, the spatial surround signal is necessarily delayed 
temporally. In comparison with the conventional difference 
of Gaussian model, a supplementary temporal component is 
induced in this paper, which makes our non-separable spa-
tiotemporal filter not only acting as an edge detector but also 
preserving more detailed information of the original image. 
Integration of center and surround signals at the level of bi-
polar cells implies a signal weighting parameter ω that con-
centrates the whole balance of a channel of unites between 
low pass and band pass properties. To indeed display a visi-
ble mixture of both characteristics, we found the best weight 
ω to be about 0.95, but there is no evidence that weight is 
a constant for different subtypes of bipolar cells, nor that 
it is a constant spatially. The static nonlinearity naturally 
provides a better fit to real cellular response and allows the 
model to function under the wide variety of illuminations 
in our environment. Even in real experiments, it is observed 
that retinal spike trains have more or less variability than a 
Poisson emission process, at least during the periods of high 
firing activity. In case of no other information is known 
about a spike train than its average firing rate, we applied 
the homogeneous Poisson process to minimize artificial, 
model-related correlations, in addition, neuronal absolute 
refractory period is embedded in the precise spike emissions 
of a Poisson process. It efficiently reflects the information 
processing and encoding mechanism of retina in response to 
a static visual stimulus. A further advantage is that the mod-
el allows for the simultaneous analysis of the responses of a 
large number of neurons for a given stimulus condition.

In order to reproduce the most important characteristics 

and set the bounds from zero to one; TRef is the absolute 
refractoriness of retinal ganglion cell, which obeys the nor-
mal distribution of N (3 ms, 1 ms) (Field and Chichilnisky, 
2007).

Numeric computation was performed with MATLAB 
2007b software (MATLAB, Natick, MA, USA).

Results
The visual stimulus
In this work, a static Lena grayscale image was implemented 
as original visual stimulus to our cascade model. The size 
of image was 256 × 256 pixels and gray-level was 256. The 
stimulus intensity was represented by pixel value.

Information processing in the OPL
When visual stimulus image was given to the model, the 
OPL processed it by using Gaussian kernel and exponential 
cascade kernel for spatiotemporal filtering. 

The Gaussian function is a common way to model elec-
trical coupling between cells and dendritic spread of retinal 
cells. Figure 2A shows the low-pass spatial filter, which is a 
normalized and averaging filter. The low-pass temporal filter 
is also normalized to have an integral of one, which only 
performs temporal averaging on incoming information, 
without a linear gain. When the parameter α is greater 0, the 
shape of exponential cascade filter shows high variability 
(Figure 2B).

In equation (5), ω defines the relative weight between sur-
round and center signal. The best-fitting weights for center 
and surround single are biologically measured to display a 
strong cell-to-cell variability, which ranges from 0.85 to 1 
(Enroth-Cugell and Robson, 1966). 

The simulated result of information processing in the 
OPL with different relative surround weights are shown in 
Figure 3. As ω increases, the filtering characteristic of OPL is 
affected obviously. When ω = 0.95, spatiotemporal filtering 
exports clear edge and good contrast image. The intensity 
of each pixel in the difference image indicates the change 
in spiking rate for the ganglion cell, whose receptive field is 
centered at that pixel. The main parameters we used in the 
OPL are: AC = AS = 1, σC = 1.5 pix, αS = 4.5 pix, (αC + 1)τC = 
30 ms, (αS + 1)τS = 60 ms.

Information encoding in the IPL
Static nonlinear rectification has been demonstrated as a very 
distinct feature in visual image undergoes neural transforma-
tion. As shown in Figure 4, the experimental curves reported 
early (Chichilnisky, 2001) can be fitted well with the simpli-
fied synaptic transmission function for static nonlinearity in 
the IPL. Visual neurons in the retina could effectively adjust 
their gain to maintain an optimal sensitivity at varying light 
levels. The sigmoid function was carefully adapted to assure a 
reasonable physiological range for the spike rate of ganglion 
cells. The main parameters we used in the static nonlinear 
rectification are: VMax = 70, λ = 0.05, V0 = 0.06.

Processing the spatiotemporal filtering image resulting 
from the out plexiform layer with this function gives the 
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of retina, it was attempted to include all relevant details on 
the basis of the available experimental data. However, full 
biological realism is difficult to achieve in a model, as it 
is impossible to include every known fine detail of retinal 
anatomy and physiology. Therefore, specific assumptions 
and simplifications were made in order to ensure a high de-
gree of realism. This is sometimes difficult as the available 
experimental data is not always conclusive or contradictory. 
Also, many details of the model are based on experimental 
evidence from different species. For example, all neurons 
were implemented as single-compartment structures, and 
effects of neighboring cells in the same layer were neglected, 
such as photo transduction and cellular adaption (Chen et 
al., 2005). Moreover, translation equation between distinct 
layers was simplified to allow for an easier mathematical 
treatment, and information loss is inevitable. Additionally, 
an important information processing property of the retina, 
contrast gain control (Victor, 1987) was not involved in our 
model. Empirical models have been proposed, some includ-
ing divisive normalization of the signal by a surround com-
ponent, but no definitive explanation about the usefulness 
or biological origin of this phenomenon exists yet. Temporal 
properties of ganglion cells as well as their global filtering 
gain depend on the local level of contrast. Empirical models 
have been proposed, some including divisive normalization 
of the signal by a surround component, but no definitive 
explanation about the usefulness or biological origin of this 
phenomenon exists yet. This effect could result in a nonlin-
ear compression function that would be dynamic, depending 
on the local contrast of the scene (Berry et al., 1999; Jarsky et 
al., 2011; Scholl et al., 2012). 

The overall motivation for the work is to restore partial 
vision to people who are blind due to loss of photoreceptor 
function. If we can construct a more complicated retina 
model including all basic retinal neuron classes and their 
realistic interconnection patterns based on better anatomical 
and physiological data, it will provide greater assistance in 
the realization of a clinically viable prosthesis.
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