
Nonlinear Dependencies of Biochemical
Reactions for Context-specific Signaling
Dynamics
Myong-Hee Sung & Gordon L. Hager

Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892,
USA.

Mathematical modeling can provide unique insights and predictions about a signaling pathway. Parameter
variations allow identification of key reactions that govern signaling features such as the response time that
may have a direct impact on the functional outcome. The effect of varying one parameter, however, may
depend on values of another. To address the issue, we performed multi-parameter variations of an
experimentally validated mathematical model of NF-kB regulatory network, and analyzed the
inter-relationships of the parameters in shaping key dynamic features. We find that nonlinear dependencies
are ubiquitous among parameters. Such phenomena may underlie the emergence of cell type-specific
behaviors from essentially the same molecular network. Our results from a multivariate ensemble of models
highlight the hypothesis that cell type specificity in signaling phenotype can arise from quantitatively altered
strength of reactions in the pathway, in the absence of tissue-specific factors that re-wire the network for a
new topology.

M
athematical modeling of cell signaling pathways is recognized as an important component of molecular
systems biology1–6. However, it is still a long way before the approach is widely accepted and utilized in
mainstream cell biology. This could be attributed to several things. Models are often represented by

time-dependent equations that contain kinetic parameters, and most of these rate constants are unknown. One
can attempt to estimate some of the constants by in vitro assays, but it is not clear how they approximate the in
vivo values. Other rate constants are simply not feasible to measure directly and need to be inferred. Therefore,
quite often it is judged that mathematical modeling of a pathway is likely to produce a ‘wrong’ model, because it is
impossible to determine all rate constants accurately.

So how can one avoid using wrong models? A most relevant clue may come from the experimental counterpart:
biological results do not come from studying the behavior of one cell. Even in single cell experiments, a finding is
confirmed to be definitive if it is reproduced in a large number of cells. Thus, it would be more appropriate to
consider an ensemble of models that occupy a ‘cloud’ of multi-parameter space and correspond to the natural
variability of the biological system, rather than looking for ‘the correct model’ (with a single set of parameter
values). Exploration of a range of possible parameter values is necessary not only because of the uncertainty in the
model parameter values that were inferred or compiled from diverse sources. But also, individual cells are likely to
have slightly variable rate constants for any molecular process in the model7. Moreover, studying the parameter
space helps understand all the possible behaviors that could be realized under certain pathological or distinct
situations.

Here we applied these principles to the widely studied NF-kB pathway and considered an ensemble of models
and their signaling characteristics. We present theoretical evidence that context-specific signaling behavior can
emerge from parameter dependencies inherent in the nonlinear network of molecular interactions. Our results
also imply the existence of situations where reaction kinetics can have discrepant signaling roles in different cell
contexts.

Results
NF-kB as a prototypic signaling system within a complex network. NF-kB is an example of latent transcription
factors that respond to cell stress and operate in a feedback-controlled network8–10. It regulates numerous cell
signaling processes and its activity is controlled in part by the level of nuclear translocation. In resting cells,
the predominant dimer p65:p50 exists mostly as a cytoplasmic complex bound to its inhibitor IkB proteins.
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Numerous upstream signals induce degradation of the IkB proteins
following phosphorylation by the IkB kinase complex (IKK). This
release from latency allows NF-kB to translocate into the nucleus
and activate expression of target genes, including several feedback
genes8,11.

We used a previously published model of NF-kB that captures
experimentally observed behaviors reasonably well12–14. The math-
ematical model includes the core NF-kB regulatory network that
operates in virtually all cell types (Fig. 1, Tables 1 and 2). Diverse
upstream signals that activate the canonical NF-kB pathway con-
verge at the IKK complex. It consists of catalytic subunits IKKa and
IKKb, and the regulatory subunit NEMO. The ‘IKK’ in the model
corresponds to the active form of IKK, as it has different kinase
activities depending on many factors such as its phosphorylation
status. The input ‘IKK’ is introduced as an approximate step function
in later simulations. All the processes that negatively regulate IKK
activity are combined into a first order term with rate constant neg.
The IKK-initiated processes, IkBa phosphorylation at serines by
IKK, ubiquitination, and degradation of IkBa by the proteasome is
lumped into a single catalytic reaction with constant r1. r2 is for a
similar but less efficient reaction that targets free IkBa. IkBa binding
to NF-kB, and IKK binding to NF-kB-bound or free IkBa, are all
reversible reactions with association and dissociation rates that are
roughly based on their binding affinities. dg2 and dg1 denote para-
meters for the constitutive degradation of NF-kB bound and free
IkBa, respectively. The nuclear import and export of NF-kB, IkBa,
and the complex are included as first order terms. Finally, the induc-
tion of IkBa gene by NF-kB is represented by a first order process
with a rate constant s and a time delay t. The delay allows one to
incorporate multiple processes during the de novo IkBa synthesis
(gene transcription, mRNA processing and export, translation, fold-
ing, etc.) into a single term, thereby avoiding unnecessary model

complexities that would arise from numerous unknown kinetics in-
volving the intermediates.

A multivariate ensemble of mathematical models for NF-kB in
the high-dimensional parameter space. We explored our differ-
ential equations model with an extensive multi-parameter sampl-
ing approach. Instead of varying one parameter at a time while
fixing all the others, which results in an extremely limited in-
vestigation of the system properties, we employed a large set of
random parameter combinations for model simulations. Such a
high-dimensional ensemble of parameter states better recapitulate
the true variability within a population of single cells, because
individual cells are unlikely to have identical values for any rate con-
stant. In fact, typical single cell measurements from flow cytometry
or quantitative microscopy result in a distribution, not a single value.
Each parameter was allowed to vary by two orders of magnitude, and
1000 random combinations of parameters were generated by Latin
Hypercube sampling method for computational efficiency (see
Methods for details).

The randomly generated parameter sets were used to solve the
delay differential equations where IKK is activated at t 5 0 and to
obtain our multi-parameter variation results. Because of the signifi-
cant coverage of the high dimensional parameter space, the simu-
lated time course profiles consisted of remarkably diverse response
patterns (Fig. 2A), providing numerous signaling dynamics that are
possible and may be realized in some cellular and microenvironmen-
tal contexts.

Control parameters that influence characteristic features of sig-
naling dynamics. To identify the parameters that influence NF-kB
signaling dynamics, we examined the sensitivity of four defining
characteristics in a temporal profile of free nuclear NF-kB (see

Figure 1 | A mathematical model of the core regulatory network for NF-kB. The process diagram represents the individual reactions included in our

model. It includes essential regulatory events such as IKK activation, inducible/constitutive degradation of IkBa, nuclear import/export, inducible

synthesis of IkBa, and post-stimulus attenuation of IKK activity. The quantitative model is described in full by the differential equations in Table 1. The

arrows are color-coded based on the reaction type (black: transport, red: complex formation, gray: degradation, purple: multiple molecular processes).
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Fig. 2B), against variations in parameter values. We will consider F1,
the integrated activity, which is the area under the time course curve
divided by the time interval. It is also mathematically equivalent to
the time average response. The first response magnitude F2 is simply
the height of the first peak. F3, the response time, is the time from the
onset of stimulation to the first peak. F4 is the period of oscillation if
the temporal profile is periodic. These features capture some
essential aspects of a temporal profile.

To assess sensitivity of feature Fk (k 5 1, …, 4) against varia-
tions in parameter pi (i 5 1, …, 18, as ordered in Table 2), we
binned the parameter vectors in the high dimensional parameter
space, according to their pi values (regardless of the other para-
meter values). Bin-average Fk values were obtained and the
standard deviation of these values across the bins was taken to
be our sensitivity measure Di Fk. Table S1 shows the parameters
sorted by this measure, i.e. how much each parameter influences
Fk.

Parameter dependencies are prevalent. Next we addressed our
main question by determining whether the influence of a para-
meter on Fk depends on another parameter. We first illustrate
some cases of control parameter pairs with a strong interaction in
Fig. 3 (using InterF below; see Methods). Panel A shows how the
integrated activity F1 was influenced by rates of IKK association to
NF-kB:IkBa complex (a2) and IKK-induced phosphorylation/
degradation of NF-kB bound IkBa (r1). Their relationship
represented by the best-fit surface indicates that F1 is a decreasing
function of r1 for low a2 values, but F1 is roughly a parabola for high
a2. This can be interpreted in biological terms as follows. First, the
integrated activity of NF-kB over time is a most likely determinant of
the transcriptional output of direct NF-kB-dependent genes12. Then
panel A implies that the gene output can be greater for slower signal-
dependent degradation of IkBa when IKK binding to substrate is
relatively slow. But in a different cellular context where substrate
recognition of IKK is faster (due to local tethering, for example),

Table 1 | Differential equations for modeling the core NF-kB network. The 9-variable, 18-parameter delay differential equations model was
adapted from21 with the addition of a term that represents the post-stimulus attenuation of IKK activity (‘neg IKK’ for the equation for IKK).
(Variable definitions: NF 5 NF-kB, I 5 IkBa, IKK 5 the active IKK complex, the colon indicates a bound complex, and the subscript ‘n’
denotes nuclear species.)

dNF
dt

~{a1NF:Izd1NF : Izr1NF : I : IKKzdg2NF : I{iNF NFzeNF NFn

dI
dt

~{a1NF:Izd1NF : I{a3I:IKKzd3I : IKKzsNFn t{tð Þ{dg1I{iI IzeI In

dNF : I
dt

~a1NF:I{d1NF : I{a2 NF : Ið Þ:IKKzd2NF : I : IKK{dg2NF : IzeNF:I NFn : In

dNFn

dt
~{a1NFn

:Inzd1NFn : InziNF NF{eNF NFn

dIn

dt
~{a1NFn

:Inzd1NFn : InziI I{eI In

dNFn : In

dt
~a1NFn

:In{d1NFn : In{eNF:I NFn : In

dIKK
dt

~k tð Þ{negIKK{a2 NF : Ið Þ:IKKz d2zr1ð ÞNF : I : IKK{a3I:IKKz d3zr2ð ÞI : IKK

dI : IKK
dt

~a3I:IKK{ d3zr2ð ÞI : IKK

dNF : I : IKK
dt

~a2 NF : Ið Þ:IKK{ d2zr1ð ÞNF : I : IKK

Table 2 | Description of model parameters and their reference values. The table describes all the molecular processes that are represented in
the model and the reference values for the corresponding parameters. All values are from14 except for the following: t, neg, and s are
parameters for simplifying terms that represent multiple biochemical processes. Therefore, their values were estimated arbitrarily so that the
TNF-a response profile from these reference parameter values was qualitatively similar to the experimentally observed time course12

Parameter Reaction type Biochemical reaction Reference value Unit

a1 complex formation NF 1 I 2. NF:I 30 mM21 min21

a2 complex formation NF:I 1 IKK 2. NF:I:IKK 11.1 mM21 min21

a3 complex formation I 1 IKK 2. I:IKK 1.38 mM21 min21

d1 dissociation NF 1 I ,2 NF:I 0.03 min21

d2 dissociation NF:I 1 IKK ,2 NF:I:IKK 0.075 min21

d3 dissociation I 1 IKK ,2 I:IKK 0.075 min21

dg1 degradation I 2. 0 0.006 min21

dg2 degradation NF:I 2. NF 0.0013 min21

eNF transport NFn 2. NF 0.0048 min21

eI transport In 2. I 0.025 min21

eNF:I transport NFn:In 2. NF:I 0.84 min21

iNF transport NF 2. NFn 5.4 min21

iI transport I 2. In 0.05 min21

t synthesis NFn 2. NFn 1 I 40 min
neg inactivation IKK 2. 0 0.002 min21

r1 catalyzed degradation NF:I:IKK 2. NF 1 IKK 11.1 min21

r2 catalyzed degradation I:IKK 2. IKK 2.22 min21

s synthesis NFn 2. NFn 1 I 0.24 min21
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Figure 2 | Multiparameter variation analysis and characteristic measures of signaling dynamics. (A) Six example time course plots from the

simulations. The dynamical model was numerically solved for a random sample of 1000 parameter combinations. Each kinetic parameter was varied by

two orders of magnitude around the reference value (see Methods). (B) Four defining characteristics of a temporal profile: F1, F2, F3, and F4 (the period of

oscillation if the temporal profile is periodic).

Figure 3 | Nonlinearities in sensitivity of NF-kB signaling characteristics to kinetic parameter values. (A) The surface plot shows the coordinate effect

of varying a2 and r1 upon F1. The smooth surface was obtained by locally fitting the individual simulated results (see Methods). The x and y axes are in

log10 scale. (B) A similar plot for F1 against iI and a3. (C) A plot for F1 against dg2 and t. (D) A plot for F3 against d1 and s. (E) A plot for F3 against s and dg1.
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the transcriptional output may be generally elevated with a slight
moderation at a mid-range degradation rate of IkBa.

It is also to be noted that the parameter dependencies are not
necessarily symmetric, i.e. the effect of r1 depended on a2, but a2

did not depend on r1(Fig. 3A). Our simulations also found F1 to
depend on iI and a3 in a nonlinear fashion (Fig. 3B). If the import
rate iI was low, F1 increased with the association rate a3, but if iI was
high, a3 had little effect on F1.

Figure 3C shows another pair of inter-dependent parameters
caused by a more complex nonlinearity in their influence on F1.
When the constitutive degradation of NF-kB bound IkBa (dg2)
was minimal, shorter time delays involved in IkBa re-synthesis (t)
resulted in higher integrated NF-kB activity. However, this trend
switched to a completely different outcome when the degradation
of NF-kB bound IkBa was constitutively higher: There was an
optimal time delay that produced maximal transcriptional activity
in such a condition. Therefore we conclude that the effect of t
depends on dg2.

The response time F3 had differential dependence on d1 and s in
that F3 was minimized for a distinct value of IkBa synthesis rate s
only if d1, the dissociation rate of NF-kB:IkBa was high (Fig. 3D).
Figure 3E indicates that the constitutive degradation of free IkBa
(dg1) affected how the IkBa re-synthesis rate (s) influenced the res-
ponse time, F3. If the constitutive degradation was low, the response
was fastest at an optimal IkBa induction rate. If, on the other hand,
the degradation was constitutively fast, the response was generally
fast regardless of the synthesis rate.

Finally, we examined all the inter-dependencies systematically in
the following way. For each combination (i, j, k), the coordinate effect
of pi and pj on Fk was extracted by fitting the data with a smooth
surface as shown in Fig. 3. We defined a quantity InterFk(i, j) to
capture the deviation from the independence of pi effect on Fk from
pj (see Methods). Nonzero InterFk(i, j) values indicate the presence of
an inter-dependency for the two parameters, where the parameter pi

had a different qualitative effect on Fk depending on the value range
of pj. There were numerous such incidences and some pairs (i, j)

corresponded to parameters that had weak influences on Fk, where
any dependencies would impose an insignificant effect. So, for cases
in Fig. 3, we chose those pairs that had significant influence as single
control parameters and had high interF values.

We summarize all the results in the ‘parameter dependency map’
in Fig. 4 (strong to weak interF in yellow to red) which shows the
prevalence of inter-dependencies among parameters in shaping the
signaling dynamics. Most parameters had differential effects on Fk

depending on the values of one or more parameters. On the other
extreme, some vertical stretches of red are discernable from the map
and correspond to parameters that did not depend on the other
parameters. Most of these exert strong control over the relevant Fk.
For example, the time delay (t) and the inactivation rate of IKK (neg)
were critical parameters that determine the period F4 (see Table S1),
and their influence on the period were not affected by other para-
meters.

We explore a possible manifestation of our findings by illustrating
a scenario that corresponds to Fig. 3A in more detail (Fig. 5). In
mathematical terms, we found that F1(r1) is a decreasing function
for low a2 (lower arrow in the surface plot) and is an increasing
function for a higher range of a2 (upper arrow). In biological terms,
this implies that the transcriptional consequence of inhibiting signal-
induced degradation of IkBa can vary depending on the association
rate of IKK to its substrate, NF-kB bound IkBa. This rate, in turn,
may well depend on the cell type under study. Cellular features such
as the organization and volume of the cytoplasm, or local tethering of
kinase scaffolds, are different for distinct cell types. Smaller cyto-
plasm and local clustering can endow the cells with faster substrate
recognition with little need for diffusion-based association. Cell type
A represents such a situation. When such cells are treated with an
inhibitor that reduces the induced degradation of IkBa, the inte-
grated activity of NF-kB, therefore target gene output, is decreased
(indicated by the direction of the upper arrow on the surface plot).
However, just the opposite outcome is expected for the same per-
turbation in another cell type B, where the IKK recognition of its
substrate is relatively slow. Other dependencies we found can simi-
larly be elaborated with concrete biological interpretations.

Inter-dependencies of reaction kinetics may well explain, perhaps
to a significant extent, the cell type specificity of the signaling roles of
numerous factors that seem to have context-dependent actions15,16.
We note that most signaling pathways possess feedback structures
and that the ensuing system nonlinearity is likely to cause inter-
dependencies of parameters. To this end, we have looked into
another signaling pathway, Wnt/b-catenin, and found a similar
extent of parameter dependencies (Myong-Hee Sung, Songjoon
Baek, Kwang-Hyun Cho, unpublished data).

Discussion
A significant hindrance in translating the knowledge from a particu-
lar quantitative signaling model to a real-world molecular system is
the lack of in vivo measurements of the kinetic parameters from the
relevant context, such as particular cell lines or primary tissues. We
have looked into the effects of varying kinetic parameters upon sig-
naling characteristics and their dependencies on other parameters.
For example, suppose that a higher degradation rate of a signaling
protein A has the effect of shortening the response time. But this
effect may depend on whether the synthesis rate of protein B is within
a certain range. The effect of A on response time may even be oppo-
site in other conditions or cellular contexts. By extensive simulations
of an NF-kB model, we demonstrate that such a phenomenon can be
widespread. This may be a source of apparently discrepant behaviors
of the same cellular signaling system in different biological contexts.

The phenomenon seen here may underlie the differential effect of
a given molecular process/reaction that is dependent upon distinct
levels or efficiencies of another reaction. In general, different cell
types are thought to have differences in splice variants17,18, organiza-

Figure 4 | Parameter dependency map. The color-coded matrix plots

display the extent of interaction between all parameter pairs, using the

measure InterF (see Methods) for each Fi. The order of model parameters

on the axes is the same as in Table 2. The color scale from red to yellow

corresponds to low to high interF values.
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tion of the genome into accessible chromatin domains19, basal turn-
over of signaling factors, subunit composition of holoenzymes that
may affect catalysis rates20, and more. Here our results explain how
quantitative differences in such key molecular systems can lead to
qualitatively distinct signaling behaviors.

Methods
A mathematical model of NF-kB signaling network. We used a published
mathematical model12. Briefly, the delay differential equations (DDE) model
described in21 was modified by including a term (neg in Fig. 1) to represent the
inactivation of IKK by various mechanisms including A20, CYLD, and IKK
autophosphorylation11. These IKK inactivation mechanisms lack single cell data on
their kinetic parameters and could not be represented individually. The 9-variable
DDE model is shown in Table 1 and the reference parameter values are listed in
Table 2.

Multi-parameter variation and model simulations. Each kinetic parameter was
varied by 2 orders of magnitude around the reference value (from 0.1- to 10-fold), and
was randomly combined with others by the Latin Hypercube sampling method to
limit the total number of simulations. The time delay parameter for IkBa synthesis
was constrained to vary between 30 and 55 minutes to avoid an unrealistic range.
Specifically, parameter combinations were generated by the following procedure. For
the j-th parameter, we subdivide the range of the parameter into n (5 5) subintervals
of equal size. Then randomly sample n values (pij, i 5 1, …, n), one from each
subinterval, for the j-th parameter. The uniform sampling was done on the logscale
for all parameters. To combine these values of individual parameters to generate sets
of parameter values, we randomly permute the n values for each parameter to get the
parameter vectors, i.e. we permute the elements of each column of the matrix pij

separately, and use the rows as the parameter vectors. This sampling method was
implemented by the MATLAB function ‘lhsdesign’ to produce 1000 sets of parameter
values. These parameter vectors were used for DDE simulations.

The initial condition for numerical solutions of DDE was provided by specifying a
constant history of I 5 0.03 mM; NF:I 5 0.04 mM; In 5 0.03 mM; the other variables 5 0.

The time delay was given by the parameter t. All simulations were run by using the
MATLAB solver ‘dde23’ on the time interval [210 h, 12 h]. IKK activation was
introduced at t 5 0 by a sharp Gaussian k(t) (standard deviation 5 5 min) multiplied
by 0.025 mM/min. Evaluation of NFn from each numerical solution was obtained at
the 5 min resolution grid of time points spanning [0 h, 12 h]. The evaluated series
NFn(t) for each simulation was taken as its time course profile for subsequent ana-
lyses.

Dynamic measures Fi. For each time course profile, Fi (i 5 1, …, 4) values were
calculated as follows.

F1 5 ([area under the time course curve]/T)/[total NF],

where T is the time course interval (12 h) and [total NF] is the amount of all NF-
containing molecular species (determined by the initial condition and fixed at 0.04
mM). F2 and F3 were obtained by finding the first time point t* (. 0) where the time
series becomes decreasing, i.e. NFn(t*1dt) 2 NFn(t*) # 0. Then

F2 5 NFn(t*)/[total NF] and
F3 5 t*.

For the period F4, all time course profiles were analyzed by Fourier analysis to sort
for the oscillating profiles. NFn was considered oscillating if the periodogram from the
fast Fourier transform had a detectable peak between 0 h and 5 h either as a global
maximum or a local maximum which is at least 0.7 of the global maximum. 345 cases
(among 1000) passed the criteria and were used for the analysis of F4.

Identification of single parameters that control Fi. Given Fi, its sensitivity against
varying parameter pj was measured by Dj Fi 5 s(mean {Fi(p) j pj in k-th bin of j-th
parameter}) wheres is the standard deviation of bin-averaged Fi values. In particular,
pj was subdivided into 10 bins in log scale, and then all the parameter vectors were
binned according to their value range in the j-th dimension. The standard deviation of
the bin-average values across the bins was taken as our sensitivity measure Dj Fi.

Assessment of pairwise parameter interactions upon Fi. For each Fk - pi - pj

combination, we extracted the predominant effect of the parameter pairs (pi, pj) on Fk

by considering a smooth surface fit zk(pi, pj) of the data distribution. This was
implemented by Loess fitting Fk against (pi, pj) in log scale with a span of 0.5 and by
evaluating on a fixed grid of 20 by 20 points over the parameter domain. The
pj-conditional effect of pi, dFk, was set to be (zk(pi

max, pj) – zk(pi
min, pj))/zk(pi

mid, pj),
where pi

max, pi
min, pi

mid are maximum, minimum, and center grid values of pi,
respectively. The pairwise interaction measure InterFk(i, j) was then defined asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

{ minfmax
pj

(dFk):min
pj

(dFk),0g
r

:

All Loess-fitting and interaction measures were computed in R (http://www.r-
project.org).
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