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In recent years, microRNAs (miRNAs) have attracted much attention because of their
prominent role in cancer. An increasing number of studies have shown that miRNAs play
an important role in a variety of tumors. miR-608 has been reported to be decreased in
cancers, especially in solid tumors. miR-608 is regarded as a tumor suppressor, which
has been verified through a large number of experiments both in vivo and in vitro. miR-608
participates in many biological processes, including cell proliferation, invasion, migration,
and apoptosis, by inhibiting transmembrane proteins and many signaling pathways. Here,
we summarize the expression profile and biological functions and mechanism of miR-608,
suggesting that miR-608 is an ideal diagnostic and prognostic biomarker and a treatment
target for cancer.
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BACKGROUND

MicroRNAs (miRNAs) are a class of nonprotein-coding single-stranded RNA with a length of
approximately 18-25 nucleotides, and they are encoded by endogenous genes (1–4). miRNAs are
highly conserved and tissue-specific (5). miRNAs were first found in Caenorhabditis elegans, and
Lee et al. (6) also found that miRNAs participate in lin-14 gene expression regulation through
antisense RNA-RNA interactions. In the past 20 years, the number of miRNA studies has increased
substantially. Researchers have shown that miRNAs are involved in the negative posttranscriptional
regulation of gene expression and maintain cell homeostasis (7) in the human body by binding with
the 3’ untranslated region (3’-UTR) of mRNAs of target genes and degrading the target mRNAs.
Generally, a single miRNA has a single mRNA target. However, a miRNAs can possess multiple
targets, and a single miRNA target can also be shared by several miRNAs. Proper control of miRNA
expression is required for a balanced physiological environment, as these small molecules influence
almost every cellular process from the cell cycle and cell proliferation to apoptosis, with a wide range
of target genes (8).

In recent research, numerous aberrantly expressed miRNAs were found to be related to the
development and prognosis of cancers (9, 10). Among them, miR-608 (GeneID: 693 193), mapped
to chromosome 10q24.31, has attracted extensive interest because its dysregulated expression plays
a key role in the occurrence and development of various malignant tumors by affecting the
posttranscriptional regulation of target genes (11). Further studies have demonstrated that miR-608
expression may affect the treatment efficacy in colorectal cancer (CRC) patients treated with
chemotherapy alone or chemoradiotherapy alone (12). Choi et al. (13) demonstrated that miR-608
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had the strongest inhibitory effect on the growth of A549 tumor
cells by screening a miRNA library. Moreover, the expression
level of miR-608 is decreased in many kinds of tumors, including
acute myeloid leukaemia (14, 15), bladder cancer (BCa) (11),
breast cancer (16), chordoma (17), clear cell renal cell carcinoma
(18), gastric cancer (19), glioma (20, 21), melanoma (22), head
and neck squamous cell carcinoma (23), hepatocellular
carcinoma (HCC) (24, 25), lung cancer (LC) (26–28),
osteosarcoma (29), ovarian cancer (30, 31), pancreatic cancer
(32), and prostate cancer (33).

In this review, we summarize the latest progress of miR-608
research in the past decade and detail the expression, biogenesis,
biological functions, and functional mechanisms of miR-608 in
different cancers.
REGULATION OF MIR-608 EXPRESSION

The 3’-UTR is the crucial area by which miRNAs exert
posttranscriptional regulatory functions. Upstream molecules
can also bind to the 3’-UTR of miRNAs, downregulate miRNA
levels and suppress the biological functions of miRNAs.
Generally, upstream molecules mainly include lncRNAs,
proteins, circular RNAs (circRNAs), chemical substances and
drugs. Among these, 3’-UTR regions of CD44, which is a
transmembrane glycoprotein, was firstly identified to bind to
miR-608. The CD44 3’-UTR competitively binds with the 3’-
UTR of miR-608, thus inhibiting miR-608 functions and
releasing the inhibition of downstream mRNAs (34). As
additional upstream molecules of miR-608, tumor suppressor
candidate-2 pseudogene (TUSC2P) and tumor suppressor
candidate 2 (TUSC2) arrest the functions of miR-608 via their
3’-UTRs, which subsequently increases translation of TUSC2.
TUSC2 is a tumor suppressor, and TUSC2P represses cell
invasion, migration, and colony formation via the TUSC2P/
miR-608/TUSC2 axis (35). Moreover, the TUSC2P/miR-608/
TUSC2 axis has been verified to be related to esophageal
squamous cell carcinoma (ESCC) (36). In addition, in human
lung adenocarcinoma (LUSC), B-cell lymphocyte xL (Bcl-xL), as
an anti-apoptotic protein, can interact with hsa-miR-608 and
further play a carcinogenic role through the PI3K/AKT, WNT,
TGF-b, and ERK signaling pathways (37). Xu et al. (38) revealed
that in neuroblastoma, 2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD) could bind to the aryl hydrocarbon receptor (AhR),
induce upregulation of miR-608 and regulate the expression level
of cell division cycle 42 (CDC42). An antagonist of AhR,
CH223191, can reverse the effect of TCDD, further enhancing
the reliability of the above results (38). Kang et al. (39)
successfully demonstrated that during Kaposi’s sarcoma-
associated herpesvirus (KSHV) lytic infection, open reading
frame 57 (ORF57) combined with miRNA and induces the
expression of human interleukin 6 (hIL-6), accelerating cell
proliferation and tumorigenesis. Thus, the virus can promote
the occurrence and development of tumors by interfering with
the function of miRNAs (39, 40). Equally notable is that natural
products can influence the expression level of miR-608.
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For example, toosendanin (TSN) upregulates miR-608 and
inhibits downstream targets, including Notch1 and Notch2
(41). In addition, circRNAs can also interact with miR-608,
and Liu et al. (42) revealed that a circ_0089153/miR-608/
EGFR/p53 interaction pathway exists in ameloblastoma (AB).
The biological function of circ_0089153 relies on the MAPK
signaling pathway (42).

Among the confirmed upstream targets of miR-608, long
noncoding RNAs (lncRNAs) account for the highest proportion,
which will be described in detail below. LINC00963 sponges
miR-608 and upregulates the miR-608 target matrix
metallopeptidase 15 (MMP-15) (14) in acute myeloid
leukaemia (AML). Interestingly, in melanoma, LINC00963 can
also interact with miR-608 and further elevate nucleus
accumbens associated 1 (NACC1) expression, facilitating cell
proliferation, migration and invasion (22), similar to what is seen
in AML. Moreover, the lncRNA HOXD-AS1 was also found to
bind with miR-608 and promote cell proliferation, migration,
invasion, metastasis, and chemoresistance (43). Wang et al. (30)
indicated that HOXD-AS1 combines with miR-608 and increases
frizzled class receptor 4 (FZD4), participating in the
development of ovarian cancer. The lncRNA NORAD has also
been found to bind to miR-608 in cancer and upregulate
forkhead box O6 (FOXO6) in gastric cancer, accelerating cell
growth (19, 44). A similar axis also exists in ovarian cancer, but
surprisingly, NORAD induces overexpression of signal
transducer and activator of transcription 3 (STAT3) by
interacting with miR-608 and functions as a tumor suppressor
(31). Remarkably, Zhang et al. (20) also confirmed that
lncHAS2-AS1 is another upstream target of miR-608, and
STAT1 was found to be an upstream factor of lncHAS2-AS1.
Both STAT1 and STAT3 belong to the STAT family. Thus,
lncRNAs, miRNAs, mRNAs, and proteins can together form
networks of mutual influence and interaction. With the
increasing number of relevant studies, a more comprehensive
and detailed understanding of these networks will be achieved. In
addition, LINC02747, LINC00052, the lncRNA MALAT1, and
the lncRNA BLACAT1 can also act as upstream molecules of
miR-608 (Table 1) (Figure 1) (18, 23, 29, 45).
DYSREGULATION OF MIR-608 IN
MALIGNANT DISEASES

MiR-608 in Acute Myeloid
Leukaemia (AML)
For adults, AML is the most common leukaemia and is
characterized by a reduction in normal haematopoietic cells
and their replacement by primitive cells. At present, diagnosis
is generally achieved by identifying cell immunophenotypes
(46–48). Abnormal genetic examination results are recognized
as an important prognostic factor. However, accumulating
evidence has revealed that some people with normal genetic
test results may also have AML (49). Therefore, it is necessary to
find new diagnostic markers to screen these patients. Zuo et al.
(14) demonstrated that both LINC00963 and MMP15 are
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upregulated in AML, while miR-608 is reduced. LINC00963
inhibits miR-608 and increases MMP15, which can repress
AML cell growth and epithelial to mesenchymal transition
(EMT) (14). Interestingly, Zhuang et al. (15) proposed that the
lncRNA HOTTIP can upregulate DET1 and DDB1-associated 1
(DDA1) by sponging miR-608. However, the overexpression of
DDA1 promotes AML cell proliferation and cell cycle
progression (15), which contradicts the research results above.
This is because the effector molecules MMP15 and DDA1 have
different biological functions. These results remind us that if we
want to utilize miRNA as a therapeutic target or diagnostic
marker, there may be problems with low specificity.

MiR-608 in Bladder Cancer (BCa)
BCa is one of the most common cancers of the urinary system.
The incidence rate of males is higher than that of females (50).
BCa causes approximately 150000 deaths worldwide annually
(51). Patients with BCa are often admitted to the hospital as an
emergency, and the proportion of patients who are actively
found through physical examination is not high. In addition,
emergency admission often means poor prognosis (52, 53).
Therefore, we urgently need to find new diagnostic biomarkers
for the early detection of BCa. Liang et al. (11) found that miR-
608 is always downregulated in BCa, which accelerates cell
proliferation and cell cycle progression. When miR-608 is
upregulated, it inhibits the expression of FLOT1 and induces
G1 phase arrest via the AKT/FOXO3a signaling pathway. In a
xenograft model in vitro, upregulated miR-608 was shown to
repress BCa cell proliferation (11). In addition, another team also
obtained the same results: overexpression of miR-608 can
suppress cell survival and invasion and promote cell apoptosis
(54). Therefore, miR-608 seems to have the potential to become a
diagnostic marker or therapeutic target.
Frontiers in Oncology | www.frontiersin.org 3
MiR-608 in Colorectal Cancer (CRC)
CRC currently has the fourth highest incidence rate in the world.
In recent decades, with the continuous development of screening
technology, the incidence rate of CRC has peaked. Early
screening is one of the most effective measures to improve the
prognosis of CRC patients, so finding new diagnostic markers
remains important (55–57). In the past decade, there have been
many meta-analyses and studies of the correlation of miR-608
rs4919510 and CRC, but the conclusions have not been
consistent. Kupcinskas et al. (58) revealed that in Europe, miR-
608 rs4919510 has no association with CRC. Interestingly,
another team proposed that miR-608 rs4919510 is related to
the risk of CRC in both African Americans and Caucasians (59).
Both Dai et al. (60) and Ying et al. (61) further found that miR-
608 rs4919510 is associated with decreased risk of CRC, although
Gong’s team disagrees (60–62). In addition, Pardini et al. (63)
and Xing et al. (64) discovered that miR-608 rs4919510 is related
to the prognosis of CRC, specifically, CRC recurrence-free
survival (RFS). The rs4919510 variant G allele of miR-608 may
upregulate MRPL43 by causing loss of its function, thus
promoting CRC cell proliferation, invasion, and migration,
inhibiting cell apoptosis, and ultimately increasing the risk of
CRC (65). However, in 2018, another study reported that for the
Iranian population, miR-608 rs4919510 was not associated with
the incidence rate of CRC but was associated with metastatic risk
(66). Therefore, we believe that miR-608 is a potential predictive
biomarker of CRC.

MiR-608 in Hepatocellular
Carcinoma (HCC)
HCC is the third leading cancer worldwide. The incidence rate of
HCC has been high due to the pervasiveness of hepatitis B virus
(HBV) and hepatitis C virus (HCV) infection. Therefore, HCC
TABLE 1 | The upstream and target genes of miR-608 in multiple cancers.

Cancer type Upstream factor Target gene Refs.

Acute myeloid leukaemia LINC00963 MMP-15 (14)
Acute myeloid leukaemia LncRNA HOTTIP DDA1 (15)
Ameloblastoma circ_0089153 EGFR, p53 (42)
Cancer TUSC2P and TUSC2 TUSC2 (35)
Cancer CD44 CDC42 (34)
Cancer LncRNA HOXD-AS1 (43)
Cancer LncRNA NORAD (44)
Clear cell renal cell carcinoma LINC02747 TFE3 (18)
Esophageal squamous cell carcinoma TUSC2P TUSC2 (36)
Gastric cancer LncRNA NORAD FOXO6 (19)
Glioblastoma STAT1/lncHAS2-AS1 PRPS1 (20)
Glioma toosendanin Notch1 (Notch2) (41)
Head and neck squamous cell carcinoma LncRNA TMEM83 EGFR (23)
Kaposi’s sarcoma associated with herpesvirus ORF57 vIL-6, hIL-6 (39)
Kaposi’s sarcoma associated with herpesvirus ORF57 vIL-6, hIL-6 (40)
Lung adenocarcinoma Bcl-xL Silencing
Melanoma LINC00963 NACC1 (22)
Melanoma LncRNA MALAT1/LINC00047 (45)
Neuroblastoma TCDD/AhR CDC42 (38)
Osteosarcoma LncRNA BLACAT1 SOX12 (29)
Ovarian cancer LncRNA HOXD-AS1 FZD4 (30)
Ovarian cancer LncRNA NORAD STAT3 (31)
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has caused massive economic costs to human society. It is
necessary to find new biomarkers to improve the prognosis of
HCC (67–69). Wang et al. (25) found that miR-608 was
downregulated in the HCC cell lines HepG2 and SK-Hep-1.
Correlation analysis was performed with baseline clinical
information. An elevated level of miR-608 was associated with
a good prognosis of HCC and was specifically related to tumor
size, differentiation, clinical stage, overall survival (OS) and
disease-free survival (DFS). Moreover, the researchers also
found that miR-608 inhibits its target macrophage migration
inhibitory factor (MIF) and promotes cell proliferation (25).
Surprisingly, He et al. (24) discovered almost the same pathway,
except that the final effector molecule was not MIF but
bromodomain-containing 4 (BRD4). This result further
confirms that miRNAs can often play a role by targeting
multiple targets. If there is synergy between these targets, the
specific miRNAs can be considered potential biomarkers.
Interestingly, another study revealed that miR-608 rs4919510 is
significantly related to good prognosis (long OS) (70). Wang
et al. (71) confirmed this conclusion by collecting clinical
information from 993 HCC patients and 992 healthy
individuals. Therefore, miR-608 has prognostic value and is
expected to become a potential therapeutic target for HCC.

MiR-608 in Lung Cancer (LC)
Among cancers, the incidence rate of LC is the highest in the
world, and the incidence rate of LC in women with a history of
smoking is the third highest. LC also has the highest mortality
among cancers, and the mortality rates in men and women are
both the second highest (72–75). Therefore, it is of great
significance to reveal the mechanisms underlying the
occurrence and development of LC. In 2016, Li et al. (27)
discovered that miR-608 rs4919510 was likely associated with
both LC risk and susceptibility to LC. In 2019, Xu et al. (26)
revealed that compared with that in normal lung tissue, miR-608
expression was downregulated in LC tissue. A dual-luciferase
reporter experiment showed that BRD4 was a direct target of
miR-608, and the expression level of BRD4 was upregulated in
LC tissues. Reduced miR-608 can also promote LC cell
proliferation, migration, and invasion through the JAK2/
STAT3 signaling pathway (26). These results confirm the
results of a study three years ago. Moreover, miR-608 was also
found to be downregulated in non−small-cell lung cancer
(NSCLC) by of sequencing samples from 106 NSCLC patients
and 124 healthy people. Although miR-608 does not affect the
incidence of NSCLC, miR-608 can target transcription factor
AP-4 (TFAP4) via the Hippo-YAP signaling pathway, thereby
promoting NSCLC cell apoptosis and inhibiting cell proliferation
(28, 76). Through the Hippo-YAP signaling pathway, miR-608
can also target TEA domain transcription factor 2 (TEAD2) and
increase cisplatin sensitivity in NSCLC (77). Moreover, miR-608
can exert a tumor-protecting function in small‐cell lung cancer
(78). What is more surprising is that in LUSC, miR-608
promotes LUAD cell death and increases the antiproliferative
effect of gefitinib via the PI3K/AKT, WNT, TGF-b, and ERK
signaling pathways (37, 79). Therefore, there is sufficient
Frontiers in Oncology | www.frontiersin.org 4
evidence to indicate that miR-608 is a potential therapeutic
target and prognostic biomarker.

MiR-608 in Pancreatic Cancer
Pancreatic cancer has the worst prognosis of solid tumors (80,
81). Pancreatic cancer mortality ranks fourth among cancers
worldwide and has risen considerably in the past few years (82,
83). The incidence of pancreatic cancer continues to slowly
increase. This trend is because most pancreatic cancers are
exocrine cell tumors, and the prognosis for exocrine cell
tumors is worse than that of endocrine cell pancreatic cancers.
Of exocrine cell tumors, pancreatic ductal adenocarcinomas
(PDACs) are the most common subtype (84). Unfortunately, it
is very difficult to detect pancreatic cancer early because of the
lack of obvious symptoms. Thus, further discovery of new
predictive biomarkers is urgently needed. In 2020, Nishiwada
et al. (85) successfully constructed a diagnostic model that
consisted of 6 miRNAs and had excellent performance in
identifying lymph node metastasis in PDAC patients. The
success of this model implies that miRNAs can be very
valuable in the early diagnosis of pancreatic cancer.
Interestingly, in pancreatic cancer, miR-608 is downregulated,
and miR-608 can target ribonucleotide reductase M1 (RRM1)
and cytidine deaminase (CDA) and control gemcitabine
resistance (32). miR-608 also promotes PDAC cell apoptosis
and prolongs PDAC patient OS by binding BRD4 (86, 87) and
AKT serine/threonine kinase 2 (AKT2). Therefore, miR-608 has
the potential to act as a new diagnostic and prognostic marker
and even a treatment target for pancreatic cancer.

MiR-608 in Esophageal Squamous Cell
Carcinoma (ESCC)
The incidence rate and mortality rate of esophageal cancer are
among the top ten rates of all cancers (88–90). Esophageal
adenocarcinoma (EAC) and ESCC are the two major subtypes
of esophageal cancer (88). New biomarkers for ESCC are
currently a hot topic of research, and miRNAs have already
shown some advantages. Liu et al. (36) revealed that in ESCC
EC109 and TE-1 cells, miR-608 targets TUSC2, inhibits cell
proliferation and invasion, and promotes cell apoptosis. In
addition, miR-608 rs4919510 can also act as a predictive factor
for ESCC, as proven by bioinformatics methods (91).

MiR-608 in Other Cancers
In addition to the cancers mentioned above, miR-608 is also
reduced in many other cancers. In chordoma, miR-608 is
significantly downregulated and interacts with EGFR and Bcl-
xL. The downregulation of miR-608 can accelerate chordoma cell
proliferation and migration and repress cell apoptosis (17). In
addition, miR-608 sponges RAC2/BCL2L1 and promotes
prostate cancer cell proliferation, G2/M transition, and
migration (33). In addition, miR-608 also exerts a tumor-
inhibiting effect in breast cancer (92), clear cell renal cell
carcinoma, gastric cancer, glioblastoma (GBM), glioma, head
and neck squamous cell carcinoma, rectal cancer, Kaposi’s sarcoma
associated with herpesvirus infection, melanoma, nasopharyngeal
March 2022 | Volume 12 | Article 870983
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TABLE 2 | The expression profile and biological functions and mechanisms of miR-608.

Cancer type Expression Clinical features Target gene Function Refs.

Acute myeloid leukaemia downregulated MMP-15 cell growth↓ and epithelial to mesenchymal
transition (EMT)↓

(14)

Acute myeloid leukaemia downregulated DDA1 proliferation↑, cell cycle progression↑ (15)
Bladder cancer downregulated FLOT1 proliferation↑ (11)
Bladder cancer upregulated proliferation↓, invasion↓, apoptosis↑ (54)
Chordoma downregulated EGFR, Bcl-xL proliferation↑, migration↑, apoptosis↓ (17)
Clear cell renal cell
carcinoma

downregulated high TNM stage and histological
grade and poor prognosis

TFE3 proliferation↑ (18)

Colon cancer NAA10 proliferation↓, migration↓, and cell cycle
progression↓, apoptosis↑

(93)

Colorectal cancer MRPL43 apoptosis↓, proliferation↑, invasion↑, migration↑, cell
cycle progression↑

(65)

Colorectal cancer metastasis↓ (66)
Colorectal cancer (61)
Colorectal cancer (58)
Colorectal cancer (59)
Colorectal cancer (62)
Colorectal cancer (63)
Colorectal cancer recurrence-free survival (64)
Colorectal cancer (60)
Metastatic colorectal
cancer

tumor recurrence (94)

Esophageal squamous cell
carcinoma

(91)

Esophageal squamous cell
carcinoma

TUSC2 proliferation↓, invasion↓, apoptosis↑ (36)

Gastric cancer downregulated poor prognosis FOXO6 cell growth↑ (19)
Gastric cancer (95)
Glioblastoma downregulated poor prognosis PRPS1 migration↑, invasion↑ (20)
Glioma Notch1 (Notch2) apoptosis↑ (41)
Glioma stem cells downregulated MIF proliferation↑, migration↑, invasion↑, apoptosis↓ (21)
Head and neck squamous
cell carcinoma

downregulated EGFR progression↑ (23)

Head and neck squamous
cell carcinoma

tumor growth↓ (96)

Hepatocellular carcinoma good prognosis, long OS (70)
Hepatocellular carcinoma (71)
Hepatocellular carcinoma downregulated BRD4 proliferation↑ (24)
Hepatocellular carcinoma downregulated tumor size, differentiation, clinical

stage, overall survival, disease-free
survival

MIF proliferation↑ (25)

Rectal cancer better prognosis (12)
Kaposi’s sarcoma
associated with
herpesvirus (KSHV)

vIL-6, hIL-6 cell proliferation↑, tumorigenesis↑ (39)

Kaposi’s sarcoma
associated with
herpesvirus (KSHV)

vIL-6, hIL-6 (40)

Lung adenocarcinoma/
non-small-cell lung cancer

AKT2 apoptosis↑ (87)

Lung adenocarcinoma progression-free survival anti-proliferation effect of gefitinib↑ (79)
Lung adenocarcinoma cell death↑ (37)
Lung cancer downregulated BRD4 proliferation↑, migration↑, invasion↑ (26)
Lung cancer downregulated lung cancer risk↑, susceptibility to lung cancer↑ (27)
Non-small-cell lung cancer downregulated does not influence the incidence of

NSCLC patients
TFAP4 apoptosis↓, migration↑ (76)

Non-small-cell lung cancer downregulated TEAD2 cisplatin sensitivity↓ (77)
Non-small-cell lung cancer downregulated TFAP4 apoptosis↓ (28)
Small-cell lung cancer (78)
Melanoma downregulated poor prognosis NACC1 proliferation↑, migration↑, invasion↑ (22)
Melanoma downregulated proliferation↑, migration↑, invasion↑ (45)
Nasopharyngeal carcinoma (97)
Nasopharyngeal carcinoma (98)

(Continued)
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carcinoma (NPC), neuroblastoma, osteosarcoma, and ovarian
cancer (Table 2).

Mechanism by Which MiR-608 Inhibits
Tumor Growth
Clinically, in almost all cancers, tumor size is closely related to
the prognosis of patients and influences the choice of treatment.
Thus, the mechanisms of tumor growth and progression deserve
attention. Tumor growth is closely related to the degrees of
tumor cell proliferation and apoptosis. Whether a tumor grows
often depends on which of these processes is stronger. Increasing
evidence shows that miR-608 can significantly inhibit the
proliferation of a variety of solid tumors, suggesting that miR-
608 is closely related to cell proliferation and apoptosis. Next, we
will elaborate the molecular mechanism by which miR-608 is
involved in tumor growth from two perspectives.

MiR-608 and Transmembrane Proteins
Membrane proteins are the main executors of biofilm function.
They can effectively participate in cell energy exchange,
information recognition and transmission and material
transport. According to the different positions of membrane
proteins in the cell membrane, these proteins can be divided
into peripheral membrane proteins and internal membrane
proteins, which are also called transmembrane proteins (99).
miR-608 can bind to the 3’-UTR of many transmembrane
proteins to inhibit cancer cell proliferation and accelerate cell
apoptosis. Among these transmembrane proteins, EGFR is
especially important because EGFR can interact with epidermal
growth factor (EGF) and induce receptor dimerization and
tyrosine autophosphorylation, resulting in cell proliferation.
Both Liu et al. (42) and Zhang et al. (17) reported that EGFR is
a target of miR-608 and that miR-608 can indirectly attenuate cell
proliferation by inhibiting EGFR. Moreover, MMP-15, another
transmembrane protein, binds to miR-608 and participates in the
progression of AML. Furthermore, rescue experiments indicate
that overexpression of LINC00963 promotes cell proliferation and
EMT by modulating MMP-15 (14). Interestingly, FZD4 is
reported to be upregulated in ovarian cancer, and FZD4 is a
transmembrane protein that belongs to the b-catenin signaling
pathway. Generally, HOXD4-AS1 exerts tumor-promoting
functions through the miR-608/FZD4 axis in ovarian cancer
(30). These four studies all clearly indicate that the inhibition of
Frontiers in Oncology | www.frontiersin.org 6
transmembrane proteins by miR-608 leads to suppression of
cell growth.

MiR-608 and Signaling Pathways
miR-608 modulates tumor growth not only by affecting
transmembrane proteins but also by affecting multiple
signaling pathways. The MAPK pathway has three levels of
signal transmission: MAPK, MAPK kinase (MEK or MKK)
and kinase of MAPK kinase (MEKK or MKKK). These three
kinase levels can be activated in sequence and together regulate a
variety of important physiological/pathological effects, such as
cell growth and differentiation (100). Importantly, MAPK is also
involved in the apoptosis induced by ultraviolet radiation (101).
miR-608 targets EGFR and p53 and affects cell cycle processes
via the MAPK pathway (42). Interestingly, p53 can further
activate the PI3K/AKT pathway and influence the cell cycle
and mitosis (102). In addition, miR-608 also affects the AKT/
FOXO3a signaling pathway to control cell proliferation. miR-608
inhibits both the AKT and FOXO3a kinases and blocks the
signaling pathway to attenuate cell proliferation (11) and
accelerate cell apoptosis. Moreover, when miR-608 is
overexpressed, the expression levels of BRD4, p-JAK2, p-
STATA3, CD44, and MMP9 are significantly decreased,
indicating that the JAK2/STAT3 signaling pathway is inhibited
by miR-608 (26). The inhibition of miR-608 is essential for
tumor suppression.

MiR-608 as a Biomarker
MiR-608 as a Diagnostic Biomarker
Early detection and diagnosis are key to improving the prognosis
of cancers. An increasing number of studies have shown that the
expression of miRNAs is significantly different between cancer
tissues and normal tissues (12, 18, 33, 94). This difference can
even be detected directly in body fluids (103), which has laid a
foundation for the noninvasive detection of miRNA. single-
nucleotide polymorphisms of genes encoding miRNAs
significantly influence tumor susceptibility and can also act as
diagnostic biomarkers for cancers. Ju et al. (18) demonstrated
that in clear cell renal cell carcinoma, LINC02747 can sponge
miR-608 and further upregulate the mRNA of the target TFE3.
The authors suggest that LINC02747 has diagnostic potential for
renal cell carcinoma (18). We also believe that miR-608 can be
regarded as a diagnostic marker of renal cell tumors because
TABLE 2 | Continued

Cancer type Expression Clinical features Target gene Function Refs.

Neuroblastoma CDC42 (38)
Osteosarcoma downregulated SOX12 proliferation↑, migration↑, invasion↑ (29)
Ovarian cancer downregulated poor prognosis FZD4 proliferation↑, colony formation↑, migration↑,

invasion↑
(30)

Ovarian cancer downregulated STAT3 cancer growth-inhibiting effects of physcion 8-O-b-
glucopyranoside↓, invasion↓, migration↓, apoptosis↑

(31)

Pancreatic cancer downregulated RRM1 and CDA gemcitabine resistance↑ (32)
Pancreatic ductal
adenocarcinoma

OS BRD4 apoptosis↑ (86)

Prostate cancer downregulated RAC2/BCL2L1 proliferation↑, G2/M transition↑, migration↑ (33)
March 2022 | Volume 12 | Article 8
↑ means promote and ↓ means inhibit.
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miR-608 is inhibited by upstream LINC02747. In addition,
Tokarz et al. (94) found that single-nucleotide polymorphisms
of the gene encoding miR-608 can also be used to accurately
Frontiers in Oncology | www.frontiersin.org 7
diagnose metastatic CRC. Moreover, after determining the
genotypes of 1358 CRC patients and 1079 healthy controls
through sequencing, another team found that miR-608
rs4919510 is obviously related to CRC susceptibility (61).
Interestingly, researchers in LC also proposed that miR-608
rs4919510 can significantly affect tumor susceptibility (27).

MiR-608 as Prognostic Biomarker
In addition to its diagnostic biomarker potential, miR-608 also
has the potential to become a prognostic marker for cancers.
Expression of miR-608 is correlated with TNM stage, histological
grade, and prognosis; and miR-608 has a close relationship with
the prognosis of clear cell renal cell carcinoma (18). In addition,
several studies have revealed that miR-608 can function as a
prognostic marker (63, 65) and predict CRC recurrence (94).
miR-608 rs4919510 was also found to be related to the RFS of
CRC (64) . Moreover , a f t er co l l ec t ing bas i c HCC
clinicopathological information, Wang et al. (25) proved that
miR-608 is highly correlated with HCC tumor size,
differentiation, clinical stage, OS, and DFS. The researchers
verified that a decrease in miR-608 facilitated the proliferation
of the HCC cell lines HepG2 and SK-Hep-1 (25). Interestingly,
Ma et al. (70) confirmed that miR-608 rs4919510 is associated
with good prognosis and long OS. To our surprise, miR-608 was
reported to be related to the PFS of LUSC patients, and miR-608
expression can indicate poor prognosis of ovarian cancer
patients (30, 79). In summary, we found that miR-608 has
unprecedented potential for predicting prognosis in solid
tumors. However, there are few studies on the prognostic role
of miR-608 in haematopoietic system tumors. miR-608 will likely
FIGURE 1 | Upstream targets of miR-608. Not only many lncRNAs can
regulate the level of miR-608, but also some circRNAs and drugs, such as
toosendanin, can also play the role of regulator of miR-608.
FIGURE 2 | Molecular mechanism of miR-608 affecting tumor cell proliferation. miR-608 targets a large number of genes to inhibit cancer cell growth, including
bladder cancer, ovarian cancer, lung cancer, liver cancer, and renal cancer, etc.
March 2022 | Volume 12 | Article 870983
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be a promising prognostic marker for multiple tumors, including
both solid tumors and non-solid tumors.

MiR-608 as Therapeutic Target
Intriguingly, miR-608 has already shown obvious therapeutic
effects in tumors according to dozens of studies. TSN can elevate
the expression level of miR-608, enhancing glioma cell apoptosis
via the Notch signaling pathway. In vivo experiments also
showed that TSN clearly inhibits tumor growth (41). Wang
et al. (21) indicated that overexpression of miR-608 attenuates
glioma stem cell proliferation, invasion, and migration and
induces cell apoptosis, clearly explaining the therapeutic effect
of miR-608 in tumors. Moreover, miR-608 can be sponged by
LINC00052, regulate the expression of EGFR, and further
promote the progression of head and neck squamous cell
carcinoma in vivo and in vitro (23). Overexpression of miR-
608 promoted doxorubicin-induced NSCLC cell apoptosis by
repressing the expression of TFAP4, and TFAP4 was
overexpressed in NSCLC tissues (28). Jiao et al. (22) illustrated
that the LINC00963-miR-608-NACC1 pathway might be a
potential treatment target for melanoma. Moreover, the roles
of the BLACAT1/miR-608/SOX12 axis in osteosarcoma (29),
HOXD4-AS1/miR-608/FZD4 axis (30) in ovarian cancer, and
lncRNA NORAD/miR-608/STAT3 (31) axis in melanoma
indicate that miR-608 could be an ideal therapeutic target. Li
et al. (86) revealed that miR-608 can decrease the level of BRD4
and facilitate cell apoptosis. However, in PDAC, miR-608 is
usually significantly reduced. A strategy to overexpress miR-608
utilizing gene editing technology or targeted therapy could
significantly improve the prognosis for PDAC (86). Zhang
et al. (33) also elucidated that miR-608 can obviously alleviate
the progression of prostate cancer. Taken together, our findings
provide valuable insights for the chemotherapy of multiple
tumors, especially solid tumors.
CONCLUSIONS

In this review, we comprehensively summarized the latest and
most valuable research on miR-608. Many researchers in the field
of cancer are constantly looking for more potential tumor
biomarkers to achieve tumor prevention and treatment. In
recent decades, researchers have gradually found that miRNAs
play an important role in the occurrence and development of
Frontiers in Oncology | www.frontiersin.org 8
tumors, and an increasing number of people have devoted
themselves to studying this field. In addition, miR-608 is a
novel miRNA with much potential. miR-608 is decreased in
almost all solid tumors except bladder cancer (54). Interestingly,
although the results of individual studies are different, miR-608
has been found to consistently play a role in inhibiting cancer in
all tumors (Figure 2) . This result is surprising and provides new
hope for tumor treatment.

Unfortunately, there are no clinical trials related to miR-608
yet, which may be a result of the failure of other drugs with
similar targets, such as MRX34, which is miR-34a mimic (104).
According to the results of previous clinical trials, the problems
with such drugs are probably related to the multiple serious
adverse reactions. We speculate that such reactions are caused by
the low specificity of miRNA drugs. Thus, in future drug design,
organ-specific drug dosages should be designed according to the
characteristics of different organs to increase the accuracy of
pharmacological effects and reduce complications. In addition,
due to the wide distribution of RNases in vivo, miRNA drugs also
face the challenge of RNA degradation. At present, most
strategies use nanocarriers to reduce RNA degradation, but the
toxicity of such drugs remains to be studied. In summary, miR-
608 has obvious potential for the diagnosis, prognostication and
treatment of cancer. To benefit patients in the future, new drugs
need to be designed through potential technical routes, and
clinical trials need to be carried out as soon as possible.
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