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Currently, kinetic analyses using dynamic positron emission tomography (PET) experience very limited use despite their potential
for improving quantitative accuracy in several clinical and research applications. For targeted volume applications, such as
radiation treatment planning, treatment monitoring, and cerebral metabolic studies, the key to implementation of these methods
is the determination of an arterial input function, which can include time-consuming analysis of blood samples for metabolite
correction. Targeted kinetic applications would become practical for the clinic if blood sampling and metabolite correction could
be avoided. To this end, we developed a novel method (Patlak-P) of generating parametric maps that is identical to Patlak Ki

(within a global scalar multiple) but does not require the determination of the arterial input function or metabolite correction. In
this initial study, we show that Patlak-P (a) mimics Patlak Ki images in terms of visual assessment and target-to-background (TB)
ratios of regions of elevated uptake, (b) has higher visual contrast and (generally) better image quality than SUV, and (c) may have
an important role in improving radiotherapy planning, therapy monitoring, and neurometabolism studies.

1. Introduction

PET with 18F-fluorodexoyglucose (FDG) has become a
mainstay in the detection, initial staging, restaging, prog-
nostication, treatment monitoring, and treatment planning
for a variety of cancer types [1, 2]. FDG-PET is effective
in studying a wide range of cancers, because most tumors
are hypermetabolic due to the Warburg effect, a biochem-
ical process where cancer cells preferentially use glucose
metabolism rather than oxidative phosphorylation. The
purpose of upregulating glucose metabolism is to support
a microenvironment that is toxic to normal cells but allows
tumor cells to elude apoptosis [3, 4] and initiate local
invasion and metabolic spread [5]. Two proteins are mainly
responsible for this increase in glucose metabolism: glucose
transporter (GLUT) protein to transport glucose across the

tumor’s membrane and hexokinase to phosphorylate it in
preparation for glycolysis [6]. Another important protein,
glucose-6-phosphatase, is responsible for dephosphorylating
glucose but has low activity in tumor cells. Because FDG is
an analog of glucose, it enters tumor cells via GLUTs and
is phosphorylated by hexokinases. However, it accumulates
as FDG-6-phosphate because its slightly different biochem-
istry prevents it from being metabolized further down the
glycolytic pathway.

Dynamic FDG-PET provides a means of quantifying
GLUT and hexokinase expression. Using the two compart-
mental model for FDG, GLUT expression is quantified
with K1, and hexokinase expression is quantified with K3

[7]. However, compartmental models require nonlinear
regression, and evaluation at the voxel level is difficult [8].
Late-time graphical analysis techniques of FDG-PET such
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as Patlak and simplified kinetic analysis (SKA) methods are
more robust to noise and may be used to generate parametric
maps of the net influx rate constant, Ki [9]. The main
difference between the two methods is how the arterial input
function (AIF) is determined SKAs utilize population-based
average AIFs whereas AIFs are acquired on a per-patient basis
for Patlak. In addition, SKAs require fewer intrusive blood
samples than Patlak and perform almost as well in practice
given strict adherence to injection and acquisition protocols
[9, 10]. However, Patlak may be the more robust method
if the population-based AIF does not account for variation
in large patient populations. Furthermore, population-based
AIFs have only been developed for FDG, so at present, Patlak
is the only option for graphical analysis of other tracers with
irreversible uptake, such as methionine (MET) and fluoro-L-
thymidine (FLT).

In contrast to dynamic analyses, the standardized uptake
value (SUV), which is the widely accepted standard for PET,
only requires a static scan, is easily implemented in the
clinic, does not require determination of an AIF; and may
be used to perform whole-body screens to detect tumors and
metastases [11]. SUV approximates Patlak Ki by assuming
that (a) the unmetabolized component of tracer is negligible
at late times, and (b) the ratio of injected dose to body weight
is proportional to the area under the curve (AUC) of the AIF
[12]. These conditions are not always met, and when they
fail, SUV values can suffer [12]. In fact, several studies have
shown that the inclusion of compartmental modeling and/or
Patlak Ki leads to improved treatment monitoring and
prediction [13, 14] and tumor staging and differentiation
between tumor and benign lesions [15–18]. In addition,
it has been shown that biological tumor volumes (BTVs)
derived from FDG-SUV maps are larger than those derived
from Ki maps [19] due to contrast improvement of the
tumor from the background on the Ki map [20]. Thus, Patlak
Ki analysis may have a significant impact on radiotherapy
planning by (a) limiting the amount of normal tissue
exposed to high radiation dose and (b) improving dose maps
to better reflect the kinetic heterogeneity of the tumor [21].

In the clinic and in research studies, arterial blood
sampling is an intrusive and potentially risky process that
necessitates specific expertise to manage added complexities
[22]. These findings are confirmed in our own experience
at UCSF where maintaining arterial line insertions and
correcting for metabolites are known problems. Thus, the
goal of the present research was to develop a technique to
generate parametric maps that are equivalent to or meet the
same clinical objectives as Patlak Ki without arterial blood
sampling or metabolite correction. The ultimate aims of
this research are (a) to facilitate a wider use of dynamic
PET studies using irreversible tracers such as FDG, FLT,
MET, and acetate and (b) to improve radiotherapy planning
by providing better representations of tumor boundaries
through Patlak Ki parametric maps. In this manuscript,
we describe the methodology of our technique (Patlak-
P), and perform quantitative and qualitative comparisons
of it with Patlak Ki and SUV for several FDG and FLT
studies as a means of initial validation. In addition, we
outline the possible impact of Patlak-P in radiotherapy and

other application areas such as treatment monitoring and
neurometabolism studies.

2. Methods

2.1. Patient Data. This work utilized patient data sets that
had been collected as part of a larger human subjects imaging
trial that was approved by our institutional review board
(IRB). Each patient was suspected of having oropharyngeal
carcinoma and underwent both FDG-PET and FLT-PET
imaging studies as part of the larger trial.

2.2. Patient Preparation. Three patients, each of whom was
imaged using FDG-PET and FLT-PET, were required to
complete a consent form before their studies began. Follow-
ing the insertion of the intravenous catheter, a customized
radiotherapy mask was then prepared, and the patient was
asked to void their bladder.

2.3. Cardiac Acquisition. Each patient was asked to lie flat
on the carbon fiber bed of a Siemens Biograph 16 PET/CT
scanner. A topogram was then acquired in the craniocaudal
direction to assess the patient’s overall radiographic profile.
A computed tomography scan for attenuation correction
(CTAC) of the heart was then obtained in the caudocra-
nial direction with the following settings: 80 mA current,
0.75′′/rotation, 27 mm rotation, and 5 mm recon slice thick-
ness. Subsequently, an 11-minute dynamic PET scan with
a cardiac field of view (FOV) was begun simultaneously
with tracer injection: 10 mCi FLT or 15 mCi FDG. The
images were reconstructed using ordered subsets expectation
maximization (OSEM) with 8 subsets and 4 iterations. One
blood sample was drawn at the end of the cardiac PET
acquisition. The purpose of this dynamic scan was to acquire
the initial dynamic profile of the AIF.

2.4. Head and Neck Acquisition. Before imaging, each patient
was fitted with their radiotherapy mask. A topogram was
then acquired in the craniocaudal direction to assess the
patient’s overall radiographic profile. Following acquisition
of the topogram, a CTAC of the head and neck was then
obtained in the caudocranial direction with the following
settings: 80 mA current, 0.5′′/rotation, 24 mm rotation, and
5 mm recon slice thickness. Subsequently, a 45-minute
dynamic PET scan of the head and neck (HN) was acquired
after matching the CT FOV and recon slice thickness. The
images were reconstructed using ordered subsets expectation
maximization (OSEM) with 8 subsets and 4 iterations. Four
blood samples were drawn at 15, 25, 40, and 55 minutes
after-injection. The purpose of this dynamic scan was to
acquire the late-time dynamic profile of HN tumors and their
surrounding structures for Patlak analysis.

2.5. Patlak-P Methodology. The theory of Patlak-P is closely
aligned with Patlak’s original method [23]. At late times t >
t∗, the tracer concentration in exchangeable compartments
is directly proportional to the tracer concentration in the
plasma for irreversible tracers such as FDG. The well-known
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Patlak equation (1) is obtained by applying this assumption
to first-order tracer kinetics

P(t)
AIF(t)

= Ki

∫ t
0 AIF(t′)dt′

AIF(t)
+ V. (1)

Equation (1) states that P(t), the concentration [Bq/mL]
of an irreversible tracer at time t, is described by two
kinetic components: Ki (the net influx rate) and V (the total
distribution volume). The major issue in calculating Ki is
determining the complete time course of the AIF, which
requires either (a) approximately 1 hour of invasive blood
samples or (b) some combination of blood samples and an
initial cardiac acquisition as we’ve done in this study. Though
our protocol reduces the total number of blood samples
needed, it is still intrusive and requires metabolite correction
for FLT and other tracers including methionine.

We addressed this problem by making a simple, yet novel
assumption regarding the late-time sequence of AIFs. Fitting
AIFs with a triple exponential function is an established
method in reducing the effect of noise on kinetic calcu-
lations [24]. However, to our knowledge, the well-mixed
assumption, which is often used in drug pharmacokinetics
studies, has not yet been applied to dynamic PET. The well-
mixed assumption, as applied to the AIF, is mathematically
equivalent to simple exponential decay. By applying this
assumption, late-time PET kinetics may be described with-
out knowledge of the input function (2)

P(t)− P(t0)

=
(

Ki

∫ t

t0
AIF(t0)e−λ(t′−t0)dt′ + V ∗ AIF(t0)

(
1− e−λ(t−t0)

))

.

(2)

Equation (2) describes late-time kinetics relative to an
initial dynamic frame at t0, which differs from the usual
Patlak view. By evaluating the integral and performing
algebraic rearrangement, (2) is transformed into an equation
that does not contain any discernable kinetic parameters (3)

P(t) = P(t0) + α
(

1− e−λ(t−t0)
)
. (3)

The parameter α in (3) reflects the uptake between t0
and infinity and is a function of AIF(t0), Ki, λ (AIF decay
constant), and V . Inspection of (3) reveals that P(t = ∞), or
P∞, is equivalent to P(t0) + α and is directly proportional to
Ki (4), as Patlak previously demonstrated [25]

P∞ = Ki

∫∞

0
AIF(t′)dt′ = Ki

(
iAIF0 +

AIF0

λ

)
. (4)

Equation (4) states that P∞ is identical to Ki (within
a global scalar constant) if we assume that the integral of
the AIF is constant in space at late times. The global scalar
constant, the total integrated activity (iAIF∞), is the sum of
two terms: the total integrated activity from 0 to t0 (iAIF0)
and the total integrated activity from t0 to infinity, (AIF0/λ).
Thus, we now have a framework for obtaining parametric
images that reflect the behavior ofPatlak Ki without needing

to determine an AIF or correct for metabolites. In addition,
we have a basis for determining Ki given a priori knowledge
of the input function such as population-based AIFs for FDG
(see Appendix).

However, accurate calculation of P∞ maps is most
dependent upon accurate estimates of λ, a global parameter
and the only nonlinear term in (3). In contrast, P(t0) and α
are linear terms and are easily calculated using linear least
squares given knowledge of λ. To this end, we propose a
strategy where λ would be determined first from nonlinear
regression of a large region of interest (ROI) using the
Levenberg-Marquardt algorithm [26]. By doing so, we only
perform nonlinear regression on a time activity curve (TAC)
with excellent statistics and subsequently linearize the model
(3) for simple voxel-by-voxel fits.

Since the biodistribution of tracers at late times changes
minimally, the nonlinear noise properties of OSEM were
assumed to have a minimal effect on predicting a sim-
ple, accurate weighting scheme for nonlinear and linear
regression. Thus, we employed weighted nonlinear and
linear regression to determine λ and P∞, respectively, with
weights equal to the product of frame duration (Δt) and the
radioactive decay factor (DF).

Because P∞ is just a measure of activity at very late times,
it is easily set in the framework of SUV. Thus, we propose
a new quantity, SUV∞, which better reflects the kinetic
behavior of irreversible tracers such as FDG. The application
of SUV∞ to treatment monitoring will be explored in the
discussion section.

3. Results

3.1. Outline of Validation Steps. In our view, validating
Patlak-P as a surrogate for PatlakKi in radiotherapy planning
required two major comparisons of tumors and other regions
of elevated uptake derived from Patlak Ki, SUV∞, and
SUV maps, target-to-background (TB) ratios and qualitative
assessments of image quality. TB ratios were calculated from
manual segmentations of the target region and a nearby
background region that presented the largest challenge to
target visualization. In this way, TB ratios quantitatively
reflected the ability of each technique to delineate the target
from all nearby structures. The metrics for qualitative assess-
ment were visual contrast, delineation of target boundary,
and presence/absence of well-known structural detail such as
tooth “holes” and the cerebellum.

In an effort to maintain analytical cohesion, we decided
to combine select quantitative and qualitative findings for
each patient and present them in their own subsections. A
final subsection was used to summarize general trends.

Tumor volumes derived from the three methods were not
directly compared, because (a) there is no general consensus
for which segmentation algorithm to use [27]; (b) dose
maps drawn by radiation oncologists or nuclear medicine
physicians are considered the gold standard [28]. Thus, the
validation steps of the present work focused on image quality
and contrast as it is reasoned that these factors primarily
influence which regions are included in tumor volumes by
therapy-planning physicians.
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Figure 1: Representative example of target (1) and background def-
inition (2) on SUV image from FLT-PET. The typical background
(3) is less indicative of the difficulty associated with delineating the
target.

3.2. TB Ratios Methodology. As stated previously, the pur-
pose of TB ratios was to compare how each technique is able
to delineate tumors or other regions of elevated uptake from
the background and adjacent structures. A representative
example of how target and background definitions were
defined is illustrated in Figure 1.

3.3. Patient 1 Comparisons. Both FDG and FLT acquisitions
of Patient 1 show a region with elevated uptake (REU) near
the base of the mouth (Figure 2).

Inspection of Figure 2 shows that FLT images derived
from Patlak-P and Patlak have higher contrast than SUV
and in general appear to be of higher quality because their
backgrounds are diminished. These findings are quantita-
tively confirmed through TB ratios: Patlak-P (3.45), Patlak
(3.77), and SUV (2.98). In addition, the REU appears to
be slightly smaller in Patlak and Patlak-P images. Images
generated from the FDG-PET scans are similar to their
FLT counterparts, but the contrast differences are slightly
less pronounced: Patlak-P (2.736), Patlak (2.481), and SUV
(2.270). In this case, however, the Patlak-P parametric map
has slightly higher contrast than Patlak.

An overall analysis of image quality showed that para-
metric maps generated by the three methods follow the prior
examples. For both FDG and FLT studies of this patient,
Patlak and Patlak-P generated parametric maps with higher
contrast and visual quality than SUV. Furthermore, this
increased contrast led to sharper boundaries between regions
of high uptake and their surrounding areas in Patlak and
Patlak-P images, as evidenced in how well each technique
resolved the teeth and bony structures (arrows) in FLT-
PET (Figures 3(a)–3(c)) and the cerebellum in FDG-PET

(Figures 3(d)–3(f)). In particular, Patlak-P predicts more
uniform uptake in the cerebellum, when compared with
Patlak and SUV. Such a result may have implications for
neurometabolism studies (see Discussion Section).

3.4. Patient 2 Comparisons. An REU was seen in both FDG
and FLT images of Patient 2 near the upper row of teeth
(Figure 4).

Inspection of Figure 4 shows that Patlak-P FLT images
have higher contrast than either Patlak or SUV, which is
mirrored by TB ratios of the REU: Patlak-P (5.64), Patlak
(4.37), and SUV (3.71). Patlak-P’s high TB ratio is explained
by increased diffusivity of the REU in Patlak and SUV images
and increased background reduction in the Patlak-P image.
In this study, however, the increase of image contrast is paired
with a slight decrease in image quality.

The same behavior is observed in the FDG images, except
in this case, the Patlak image has higher contrast and lesser
quality than the Patlak-P image, though both are superior
to SUV in both respects. The TB ratios do not mirror the
relative performance of SUV: 1.92 (Patlak-P), 2.661 (Patlak),
and 1.95 (SUV). It is more than likely that the TB ratio for
SUV is improperly elevated, because the background ROI
(indicated by arrows in Figure 4) appears to be improperly
diffuse in the SUV image. In fact, it is much more difficult to
visually separate the REU from the background region in the
SUV image. Furthermore, from an overall visual perspective,
the Patlak-P image appears to be higher quality than the
Patlak and SUV images. This perspective is particularly in the
soft tissue surrounding the REU and the cerebellum.

3.5. Patient 3 Comparisons. A tumor was found on the
tongue of Patient 3 and could be visualized in Patient 3’s FLT
and FDG images. Figure 5 illustrates the caudal-most two
slices in which the tumor is present in the FLT image, and
Figure 6 illustrates the caudal-most two slices in which the
tumor is present in the FDG image.

The results shown in Figure 5 are similar to those seen in
the FLT-PET study of Patient 2; Patlak-P’s contrast is higher
than Patlak or SUV and appears slightly noisier. This height-
ened contrast results in better distinction of the tumor’s
caudal-most extent from the adjacent soft tissue. In addition,
the enhanced contrast provided by Patlak-P improves the
visualization of a small REU that is clearly present in both
the Patlak and Patlak-P images but only subtly so in the SUV
image.

The examination of both slices shows that tumor
boundaries are made sharper but also appear slightly noisier
(due to background reduction) by applying Patlak-P, as
evidenced by TB ratios: 2.04 (Patlak-P), 1.43 (Patlak),
and 1.36 (SUV) for the tumor nodule and 4.639 (Patlak-
P), 2.912 (Patlak), and 2.77 (SUV) for the tumor cross-
section (second row of Figure 5). This observation also
holds for anatomic structures in the vicinity of the tumor
cross-section. However, this effect was less obvious for the
prominent bony structures in the second row of Figure 5
(arrows), where Patlak-P provided better resolution without
a similar increase in apparent noise.
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(a) (b) (c)

(d) (e) (f)

Figure 2: REU near base of the mouth as calculated by Patlak (left), Patlak-P (center), and SUV (right). Top row is FLT-PET, and the bottom
row is FDG-PET.

Visual analysis of Figure 6 indicates that Patlak and
Patlak-P possess higher contrast and image quality than
SUV for the tumor and the cerebellum. These visual
findings do not reflect calculated TB ratios, which do not
vary significantly between techniques: 1.71 (Patlak-P), 1.59
(Patlak), and 1.69 (SUV). TBSUV, however, is artificially
inflated because, as before, the background region in the SUV
image (arrow in Figure 6) is not well resolved. Similarly, SUV
depicts the tumor with blurrier boundaries and does not
delineate the teeth structure as well. Furthermore, cerebellar
details (arrow in Figure 6) seen in Patlak and Patlak-P
images are missing and/or blurred in the SUV image, adding
further evidence that Patlak-P could have an impact in
neurometabolism studies.

3.6. Overall Comparison. In the previous subsections, we
performed qualitative and quantitative analyses of the most
interesting features in each patient’s FDG and FLT images.
However, it is also important to provide an overall picture of
how well each technique performs in terms of contrast and
image quality.

Table 1 was compiled from TB ratios calculated from the
REUs using each technique. Paired, two-tailed Student t-
tests showed that (a) TB ratios calculated by Patlak-P and
Patlak were statistically similar (P = 0.125); (b) TB ratios
calculated by Patlak and SUV were not statistically similar
(P = 0.004); (c) TB ratios calculated by Patlak-P and SUV
were not statistically similar (P = 0.002).

In general, visual contrast observed in Patlak-P and
Patlak images were higher than SUV images. There was
one instance where the Patlak image possessed significantly
higher contrast than the Patlak-P image (2-FDG), and two
instances where the Patlak-P image possessed significantly
higher contrast than the Patlak image (2-FLT and 3-FLT). In
all of these cases, images with significantly enhanced contrast
appeared slightly noisier.

Across all studies, SUV images possessed blurrier bound-
aries than their Patlak and Patlak-P counterparts, which
impacted delineation of teeth, bony structures, the cere-
bellum, and REU/tumor boundaries. This effect was often
emphasized around small structures (Figures 3(a)–3(c) and
Figure 5), which appeared to be more resolved in Patlak and
Patlak-P images.
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Figure 3: Transaxial slices of FLT-PET (a–c) and FDG-PET (d–f) that show difference in quality of visualizing well-known structures (teeth,
cerebellum) for each technique: Patlak (left), Patlak-P (center), and SUV (right).

4. Discussion

We performed this feasibility study to assess the possible
impact of Patlak-P, a novel method for generating Patlak
Ki parametric maps, on radiotherapy planning. Quantitative
and qualitative comparisons demonstrated that Patlak-P
images are similar to Patlak images and possess higher
contrast, sharper boundaries, and (generally) better image
quality than SUV images. These findings show that Pat-
lak or Patlak-P images may have significant bearing on
radiotherapy planning. In particular, improved resolution
of tumors from surrounding structures may help dose-
planning physicians deliver a lethal dose to tumors while
preserving more normal tissue.

4.1. The Challenge of Nonlinear Regression. Nonlinear regres-
sion is a more difficult problem than linear regression,
because solutions of nonlinear regression are not guaranteed
to be unique. This added variability increases the sensitivity
of λ and was likely the proximate cause of discrepancies
between the TB ratios of Patlak and Patlak-P in three studies.
Since we only applied the Levenberg-Marquardt algorithm
with a single initial guess in this study, determination of λ

can be made more robust using several methods. The easiest
method is to execute the Levenberg-Marquardt algorithm
with multiple initial guesses and accept the parameter set
with the lowest “energy” as the global minimum. In fact, it
has been shown that dynamic PET studies benefit from this
technique [29]. We do not anticipate needing more sophis-
ticated methods such as simulated annealing [30] or genetic
algorithms [31], because (a) the number of parameters (3)
is small, and (b) each parameter is physical in nature. Thus,
we should be able to develop ranges of initial guesses for
each parameter that are both small and meaningful so that
a fine-grid exhaustive search is computationally manageable.
If additional refinement is needed, we will explore methods
used to denoise dynamic PET data such as HYPR processing
[32]. We expect that improving the estimation of λ will
increase the statistical similarity (P-value) between Patlak
and Patlak-P.

4.2. Choosing the Acquisition Start Time (t0). Since this was
a retrospective analysis, we could not choose t0. However,
by choosing t0 to be approximately 15–20 minutes after-
injection, as was the case in this feasibility study, the Patlak
assumption of minimal dephosphorylation may be better
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(a) (b) (c)

(d) (e)

f

(f)

Figure 4: Region of high uptake near top row of teeth as calculated by Patlak (left), Patlak-P (center), and SUV (right). Top row is FLT-PET,
and the bottom row is FDG-PET. Arrows indicate background ROI.

upheld than if t0 was delayed further. For example, if t0
was chosen to be 2 hours after injection, even a small
k4, depending on k2 and k3 values, may decrease the
extrapolated uptake at infinity and, thus, underestimate P∞
as a correlate for Ki. Therefore, if the objective is to mimic
Ki, then t0 = 15–20 minutes after-injection may be the
most suitable. However, as is shown in several delayed-time
PET publications [33, 34], if higher contrast is the goal
(e.g, radiotherapy), then delaying acquisition (t0) until 30–
60 minutes after-injection may be the better option.

4.3. Radiotherapy Planning. To our knowledge, there has
not been a study on how using Patlak Ki parametric
maps, rather than static images, would alter radiotherapy
planning. Though, Visser et al. [19] do give a basis for
such investigations. In this work, they show that biological
tumor volume (BTV), as defined by a threshold of 50%,
is significantly smaller in Patlak images than SUV images.
However, since it has been shown that tumor volumes
derived using thresholding techniques are suboptimal [35], it
would be unwise to accept these findings as confirmation that
dose-planning would be improved by using Patlak images.
Based upon the results of this work, the work of Visser et al.,

and other investigations into the use of Patlak Ki maps
in radiotherapy planning and monitoring [20, 21, 36], we
believe such studies are warranted. Furthermore, Patlak-
P would be better suited for this application than Patlak,
because it is easier to implement [22] and less subject to vari-
ability; two advantages that would help facilitate multicenter
clinical trials and routine implementation in the clinic.

4.4. Therapy Monitoring. In this preliminary work, our
primary focus was an initial validation of Patlak-P for radio-
therapy planning. However, Patlak-P has the potential to
impact other areas of research and clinical projects. The first
application area we propose, therapy monitoring, is closely
associated with radiotherapy planning. Early indication of
treatment efficacy can be very beneficial [2, 12–18]; if a
treatment is not having the desired effect, then it may be
substituted for another.

Though SUV is the current standard in treatment mon-
itoring, it has two major weaknesses: (a) it does not account
for unmetabolized tracer, and (b) it crudely approximates
the integrated input function with several normalization
factors (e.g., the ratio of injected activity to body mass).
The quantitative effect of these weaknesses on prediction
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(a) (b) (c)

(d) (e) (f)

Figure 5: Caudal-most two slices of tumor as calculated by Patlak (left), Patlak-P (center), and SUV (right) from FLT-PET study of Patient
3. In the top row, dashed arrows indicate the tumor nodule, and solid arrows indicate the small REU. In the bottom row, arrows indicate a
set of bony structures.

of therapeutic outcome from serial measurements of SUV
was assessed by Freedman et al. [14] using several posteriori
corrections. First, they corrected for the unmetabolized
tracer in SUV using the results of two-compartmental kinetic
modeling. Second, they replaced the typical normalization
factor with the integrated activity. Third, they corrected
for both effects. In order, these corrections increased the
correlation (r) between percent change in SUV (%SUV)
and therapeutic outcome from 0.77 to 0.88, 0.85, and 0.97.
Since the first correction should be equivalent to using SUV∞
instead of SUV, it would be logical to conclude that Patlak-
P may have bearing on treatment monitoring. Furthermore,
two investigations by Dimitrakopoulou-Strauss et al. [13, 18]
and one study by Thie et al. [36] have shown that (a)
outcome prediction may benefit from serial observations of
Patlak Ki and SUV; (b) tumor staging may benefit from serial
observations of Patlak Ki from two different tracers (18FDG
and 68Ga-BZH3); (c) diagnosis of suspicious nodules may
be improved by combining TAC slope and static uptake.
Thus, it is possible that the combination of SUV and SUV∞
may improve the accuracy of outcome prediction and tumor
staging relative to SUV.

We emphasize here that it is the proportional relationship
between Ki and P∞ that allows all observations, independent
of tracer or application, made previously regarding SUV and
Ki to remain partially or wholly true for SUV∞ and Ki.
For the unique case of FDG, which has well-characterized
population-based input functions and minimal metabolites,
Ki values may be directly calculated from P∞ and λ (see
Appendix).

4.5. Neurometabolism Studies. Studies of neurometabolism,
like radiotherapy planning, benefit from sharp boundaries,
high contrast, and resolution of structural detail. These
reasons alone suggest that Patlak-P may have a significant
impact on neurometabolism studies. However, in contrast
to radiotherapy planning, where the main goal is to provide
high-quality images to the dose-planning physician, neu-
rometabolism studies may require quantitative measures of
uptake. Fortunately, these measures are typically not required
to be absolute, only relative, because uptake patterns in
certain regions of the brain (e.g., cerebellum) are often
constant across wide populations. For example, Mosconi
et al. [37] investigated how to best differentiate patients
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: Caudal-most two slices of tumor (a–f) and cerebellar slice (g–i) as calculated by Patlak (left), Patlak-P (center), and SUV (right)
from FDG-PET of Patient 3. Solid arrows indicate background ROI (d–f) and cerebellar region of interest (g–i).

with Alzheimer’s disease (AD) from normal patients using
dynamic PET. They found that the two groups were best
separated using cerebral metabolic rate (CMRglc) ratios
between the medial temporal lobe (MTL) and pons and
the posterior cingulate cortex (PCC) and pons. These
relative metrics could easily be calculated using Patlak-P.
Furthermore, the hallmark of AD is an atypical pattern of
FDG uptake [38], not a global decline. Thus, Patlak-P may
be able to improve the detection of early AD, because of its

high contrast and ability to resolve structural details in the
brain (Figures 3 and 6).

4.6. Extension to Multiple FOVs. In their work [10], Sun-
daram et al. demonstrated that simplified kinetic analysis
methods may be extended beyond one FOV by using
successive scans of several bed positions. In our view, the
main obstacle to a similar extension for Patlak-P would be
the determination of λ, because fewer time points would
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Table 1: TB ratios for all REUs analyzed. Headings under the study
column reflect the patient’s number and tracer type.

Study Patlak-P Patlak SUV

1-FLT

3.448 3.773 2.977

3.625 3.638 3.149

2.537 2.617 2.163

5.606 5.663 3.525

1.280 1.541 1.127

2.039 2.197 1.814

1-FDG
2.736 2.481 2.270

1.543 1.506 1.411

2-FLT
5.329 3.932 3.451

5.637 4.370 3.710

1.555 1.417 1.289

2-FDG
1.922 2.661 1.952

1.600 2.116 1.591

3-FLT
2.040 1.433 1.364

4.639 2.912 2.774

6.272 3.313 3.735

3-FDG
1.712 1.591 1.688

2.237 2.234 2.116

1.562 1.589 1.417

be available for analysis. However, this complication should
have a minimal effect on accuracy, because the available time
points will still span the same total amount of time (45
minutes). In this way, Patlak-P could be made more practical
for targeted analyses of relatively large structures such as the
brain or liver.

4.7. Future Studies. We believe that this feasibility study of
a single cancer is sufficient to provide proof of principle
of the Patlak-P technique and, thus, serve as the basis for
planning future validation studies and clinical investigations.
Validation studies are needed to compare (a) quantitative
and qualitative similarities between P∞ and Ki parametric
maps for other cancer types, (b) ratios of SUV∞, SUV,
Ki (as calculated using Patlak-P, please see the Appendix),
and Ki determined from FDG-PET measurements taken
before and after treatment and (c) intrapatient ratios of
P∞ and Ki between brain regions for the assessment of
neurometabolism distributions.

5. Conclusions

In this feasibility study, we demonstrated a novel method
(Patlak-P), which does not require any sampling data or
an image-derived input function from the blood pool
region, to generate parametric maps that mimic Patlak
Ki. Using quantitative and qualitative comparisons, we
demonstrated that Patlak-P images are similar to Patlak
images and possess higher contrast, sharper boundaries,
and (generally) better image quality than SUV images. We
believe that these improvements over SUV could have direct

impact in radiotherapy planning, therapy monitoring, and
neurometabolism studies.

Appendix

Here, we will present a detailed derivation of the Patlak-P
equation, which was more briefly derived in Methods Section
and outline how Ki may be calculated from P∞ for FDG.
Again, we start with the Patlak equation

P(t)
AIF(t)

= Ki

∫ t
0 AIF(t′)dt′

AIF(t)
+ V. (A.1)

Multiplying both sides by AIF(t) we obtain

P(t) = Ki

∫ t

0
AIF(t′)dt′ + V ∗ AIF(t). (A.2)

Now, we frame (A.2) to reflect the difference between activity
(P) at initial time t0 and a later time t

P(t)− P0 =
(

Ki

∫ t

t0
AIF(t′)dt′ + V(AIF(t)− AIF(t0))

)

.

(A.3)

By applying the well-mixed assumption of the input function
at late times, we obtain

P(t)− P0

=
(

Ki

∫ t

t0
AIF(t0)e−λ(t−t0)dt′ + V

(
AIF(t0)e−λ(t−t0)−AIF(t0)

))

.

(A.4)

By evaluating the integral and performing algebraic combi-
nation, we obtain

P(t) = P(t0) + AIF(t0)
(
Ki

λ
−V

)(
1− e−λ(t−t0)

)
. (A.5)

It is not possible to extract the individual components of the
uptake term, AIF(t0)((Ki/λ) − V), using nonlinear or linear
curve fitting so we combine them into α:

P(t) = P(t0) + α
(

1− e−λ(t−t0)
)
. (A.6)

As shown previously in the Methods Section, P∞ is the
sum of P(t0) and α and is directly proportional to Ki through
the following equation:

P∞ = Ki

∫∞

0
AIF(t′)dt′. (A.7)

Thus, Ki may be calculated from P∞ if the total integrated
arterial input function (iAIF∞) is accurately estimated. For
FDG-PET, we propose two possible methods to improve
patient-specific estimation of iAIF∞ relative to stand-alone,
population-based input functions and, thus, increase the
similarity between Patlak-P and Patlak (Ki) ratios for serial
studies.

The first option is implementing the population-based,
triple-exponential input function developed by Vriens et al.
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[24]. This method showed good accuracy (R2 = 0.856 for
AUC) for a large patient population (n = 80) and does not
require blood sampling or a dynamic cardiac acquisition.
Furthermore, it may be possible to improve the accuracy of
Vriens’ model by using the Patlak-Pλ as the final exponential
decay constant in the triple exponential.

The second option does not require blood samples but
does require an initial dynamic scan over the heart from
which an initial AIF will be derived. By using low-dose CT,
the overall dose of this combined protocol should not be
significantly changed relative to a single dynamic PET/CT
acquisition. Similar to the first option, a triple exponential
would be fit to the initial AIF, and the Patlak-Pλ would be
used as the final decay constant.
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