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The trivalent arsenic glutathione complexes arsenic triglutathione, methylarsonous diglutathione, and dimethylarsinous
glutathione are key intermediates in the mammalian metabolism of arsenite and possibly represent the arsenic species that are
transported from the liver to the kidney for urinary excretion. Despite this, the comparative stability of the arsenic-sulfur bonds in
these complexes has not been investigated under physiological conditions resembling hepatocyte cytosol. Using size-exclusion
chromatography and a glutathione-containing phosphate buffered saline mobile phase (5 or 10 mM glutathione, pH 7.4) in
conjunction with an arsenic-specific detector, we chromatographed arsenite, monomethylarsonous acid, and dimethylarsinous
acid. The on-column formation of the corresponding arsenic-glutathione complexes between 4 and 37◦C revealed that methylated
arsenic-glutathione complexes are more stable than arsenic triglutathione. The relevance of these results with regard to the
metabolic fate of arsenite in mammals is discussed.
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1. INTRODUCTION

The metalloid arsenic (As) ranks 53rd amongst elements
in the Earth’s crust [1], where it is predominantly found
in sulfidic ores, such as arsenopyrite (FeAsS) and orpiment
(As2S3) [2]. Natural and anthropogenic activities, however,
mobilize geogenic arsenic into the aquatic environment,
including drinking water, where arsenite (As(III)) and/or
arsenate (As(V)) are the most prevalent oxyanions [2].
Because the chronic ingestion of only 50–200 μg/day of
inorganic arsenic is associated with cancers of the skin, the
liver, the lungs, the kidneys, and the bladder in humans
[3–7], the exposure of humans to concentrations of inor-
ganic As in drinking water that are unsafe for human
consumption currently affects∼100 million people [8]. In
fact, the low-level As poisoning tragedy that is currently
unfolding in parts of India and Bangladesh has been referred
to as the largest mass poisoning in history [9, 10].

Investigations carried out in the 1970s, which aimed to
identify As-containing metabolites in human urine, indi-
cated two pentavalent organoarsenicals monomethylarsonic

acid (MMA(V)) and dimethylarsinic acid (DMA(V)), in
addition to As(III) and As(V) [11]. More recently,
two additional trivalent organoarsenicals—monomethylar-
sonousacid [MMA(III), CH3As(OH)2, Figure 1(b), [12–
16]] and dimethylarsinous acid [DMA(III), (CH3)2AsOH,
Figure 1(c), [12, 14, 15]]—have also been identified (we note
that other As-containing metabolites, such as thiodimethy-
larsenopropanoic acid and thiodimethylarsenobutanoic acid,
have been recently identified in human urine as metabolites
of ingested arsenolipids [17]).

Studies into the mammalian metabolism of As(III)
(Figure 1(a)) have revealed a high propensity of this species
to react with soft ligands, such as the thiol group of cysteine
[20–24]. Because the cysteine-containing tripeptide glu-
tathione (GSH, Figure 1(e)) is the most abundant endoge-
nous thiol in mammalian hepatocyte cytoplasm (5 mM [25],
whereas the concentration of L-cysteine is 0.2–0.5 mM [26]),
the chemical reaction of As(III) with three successive mole
equivalents of GSH to arsenic triglutathione [As(SG)3],
according to (1), is possibly the first step in the hepatic
metabolism of this oxyanion in vivo.
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Figure 1: Solution species at pH 7.4 of (a) arsenite, As(III), (b) monomethylarsonous acid, MMA(III), (c) dimethylarsinous acid, DMA(III),
(d) arsenobetaine, AsB, (e) glutathione, GSH, and (f) sodium 2,3-dimercapto-1-propanesulfonate, DMPS [18, 19].
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Given that As(III) is known to be enzymatically methylated
in the liver of most mammals [27–30], the detection
of methylarsonous diglutathione [CH3As(SG)2] in bile of
As(III) treated rats [31–33] indicates that this metabolite is
formed in the liver, according to (2):

SG

SG

OH

OH

CH3As +2GSH CH3As +2H2O (2)

In view of the fact that DMA(III) has also been identified in
mammalian urine [12, 14, 15], it is chemically feasible that
dimethylarsinous glutathione [(CH3)2AsSG] is also formed
in the liver, according to (3):

(CH3)2As-OH + GSH � (CH3)2As-SG + H2O. (3)

With respect to the biomethylation mechanism of As(III)
in mammals, there are currently two proposed pathways
[34, 35]. The first one involves the enzymatic oxidative
methylation of As(III) to MMA(V), which is enzymatically
reduced to MMA(III), and can then undergo a second
enzymatic oxidative methylation reaction to DMA(V) [29,
36–38]. The alternative, more recently proposed scheme
involves the stepwise enzyme-mediated reductive methyla-
tion of As(SG)3 to CH3As(SG)2 and (CH3)2AsSG, using
the same methyl donor as in scheme one—S-adenosyl-L-
methionine [39, 40]. In this latter scheme, CH3As(SG)2

is then oxidized to MMA(V) by endogenously generated
H2O2 while DMA(V) is produced in a similar manner
from (CH3)2AsSG. The entire biomethylation mechanism
in hepatocytes, however, is not completely understood
because the concerted sequence of binding events of As(III)
to endogenous small-molecular-mass thiols [41] and the
methylating enzymes remains unknown [34].

Irrespective of the mechanism of biomethylation,
As(SG)3, CH3As(SG)2, and (CH3)2AsSG likely play impor-
tant roles in the transport of methylated arsenicals from the
liver to the bloodstream [42–46]. Despite this, not much is
known about the stability of the As-S bonds in CH3As(SG)2

and (CH3)2AsSG under conditions that resemble hepatocyte
cytosol (phosphate buffered saline, pH 7.4, 5.0 mM GSH,
37◦C). Previously, the formation of As(SG)3 from As(OH)3

and GSH has been studied under simulated physiological
conditions (phosphate buffered saline, pH 7.4) by size-
exclusion chromatography (SEC) [22]. This investigation
revealed that the on-column formation of the As(SG)3

complex strongly depends on the GSH concentration in the
mobile phase (5–7.5 mM favored) and preferably occurs at
pH 6.0–8.0. An increase of the column temperature from 4 to
37◦C (at constant GSH concentration and at a mobile phase
pH of 7.4) resulted in retention shifts of the As(III) peaks
toward the small-molecular-mass region, which indicated
that the As-S bonds in As(SG)3 are rather labile. This
finding is consistent with results attained in other studies
[20, 47–49].

The mammalian metabolism of As(III) in hepatocytes
is likely driven by its concerted interactions with cytosolic
GSH (5.0 mM) and proteins. In order to gain insight into
the role that GSH plays in the potential efflux of the
generated As(III) metabolites from the liver into the systemic
circulation, we have chromatographed As(III), MMA(III),
and DMA(III) under conditions that resemble the chemical
conditions of mammalian hepatocyte cytosol (phosphate
buffered saline, 5–10 mM GSH, pH 7.4) in the absence
of proteins. Investigations into the temperature-dependent
retention behavior of As(III), MMA(III), and DMA(III)
between 4 and 37◦C provided insight into the formation (at
4◦C) and the comparative stability (between 4 and 37◦C) of
the As-S bonds in the on-column formed complexes. Our
results constitute a first step toward better understanding
the disposal of As(III) metabolites from the liver to the
bloodstream.

2. EXPERIMENTAL

Caution

Since inorganic and organic arsenicals are established cyto-
toxins, genotoxins, and carcinogens [4, 50], measures must be
implemented to reduce dermal and inhalatory exposure. To this
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end, synthesis and solution preparation were conducted in a
glove box whilst wearing nitrile gloves and a respiratory mask.

2.1. Chemicals

Sodium hydroxide, phosphate buffered saline (PBS) tablets,
GSH, sodium 2,3-dimercapto-1-propanesulfonate (DMPS),
blue dextran, oxidized glutathione (GSSG), and glycine (all
>95%) were purchased from Sigma-Aldrich (St. Louis, MO,
USA). Sephadex G-15 (120 μm mean spherical particles of
dextran cross-linked with epichlorohydrin, exclusion limit:
molecular mass (MM) <1500 Da) was purchased from GE
Healthcare. Sodium arsenite (NaAsO2) was obtained from
GFS Chemicals (> 99%). The source of MMA(III) and
DMA(III) was the solid methyldiiodoarsine (CH3AsI2) and
the liquid dimethyliodoarsine [(CH3)2AsI], which were
synthesized according to previously established procedures
[51, 52]. To verify the purity of these trivalent organoarseni-
cals, 1H NMR spectra were obtained for these compounds
(chemical shifts: 1.28 ppm for MMA(III) and 1.53 ppm
for DMA(III)) and the starting material (chemical shifts:
1.44 ppm for MMA(V) and 1.97 ppm for DMA(V)). The
obtained chemical shifts were found to be akin to those
previously reported for these compounds [48, 53]. Arseno-
betaine bromide (AsB) was synthesized according to a
published procedure and its purity was verified by its melting
point (experimental: 225◦C versus reported: 227◦C) [54].
All solutions, including mobile phases, were prepared with
water from a simplicity water purification system (resistivity
18.2 MΩ·cm, Millipore).

2.2. Solutions

To avoid oxidation of GSH in aqueous mobile phases, all
GSH-containing solutions were prepared fresh prior to each
chromatographic run and used within 4 hours. PBS-buffer
was prepared by dissolving PBS tablets in the appropriate
volume of water. After the dissolution of a monothiol (5 or
10 mM GSH) and/or a dithiol (1 mM DMPS) in 400 mL PBS,
the pH of the mobile phase was adjusted to 7.4 with sodium
hydroxide (4.0 M) using a VWR Symphony SB20 pH meter
and filtered through a 0.45 μm Nylon membrane (Alltech).

Aqueous solutions of As(III), MMA(III), DMA(III),
and AsB were prepared by dissolving NaAsO2, CH3AsI2,
(CH3)2AsI, and AsB in water to obtain a concentration of
10 μg As in 20 μL. It is generally accepted that MMA(III)
and DMA(III) are the only species that are formed upon
hydrolysis of CH3AsI2 and (CH3)2AsI in water [18, 53].
Even though all chromatograms were generated with the
acidic solutions of MMA(III) and DMA(III) (hydroiodic
acid is formed during the hydrolysis of CH3AsI2 and
(CH3)2AsI in water), the retention times (tr) of MMA(III)
and DMA(III) were reduced by only∼ 20 seconds when
neutralized solutions were injected. To mitigate oxidation to
the pentavalent state, As(III) and MMA(III) solutions were
prepared every 14 days while DMA(III) was prepared fresh
every 2-3 days [55–57]. All solutions were stored in septum
glass vials at 4◦C.
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Figure 2: Superimposed chromatograms of size calibration stan-
dards. Peaks from left to right represent blue dextran (MM 2 MDa),
GSSG (MM∼ 600 Da), GSH (MM∼ 300 Da), and glycine (MM
75 Da). Stationary phase: Sephadex G-15 (31× 1.0 cm I.D.); mobile
phase: PBS-buffer (pH 7.4), flow rate: 1.0 mL/min; detector: ICP-
AES at 193.091 nm; injection volume: 20 μL.

2.3. Instrumentation

The liquid chromatographic (LC) system consisted of a
Waters 510 high-performance LC isocratic dual-piston
pump, a Rheodyne six-port injection valve (20 μL sample
loop), a glass thermostatable SEC column packed with
Sephadex G-15 (31 × 1.0 cm, GE Healthcare), and a cel-
lulose filter on the column head (1.0 cm × 1.0 mm, GE
Healthcare). After thermostating the packed column at the
desired temperature of 4, 25, or 37◦C (NESLAB RTE-7
digital one refrigerated bath, Thermo Scientific), it was
equilibrated with at least 60 mL of mobile phase before the
As compounds were injected. A flow rate of 1.0 mL/min
was used throughout this study and each retention time was
determined in triplicate (RSD < 1.0%) after the individual
injection of each arsenical.

As-specific detection was achieved with a Prodigy, high-
dispersion, radial-view ICP-AES (Teledyne Leeman Labs,
Hudson, NH, USA) by monitoring the As atomic emission
line at 189.042 nm. Hyphenation of the LC system to the ICP-
AES was accomplished by connecting the LC column exit to
the concentric glass tube nebulizer with a polyethylene tube
(38 cm, 0.13 mm I.D.). The plasma Ar gas-flow rate and the
nebulizer gas pressure were 19 L/min and the radiofrequency
power output was 1.3 kW. Time scans were performed using
the time-resolved analysis mode (Salsa software version 3.0)
with a data acquisition rate of one data point every 1.5
seconds. The data were exported and smoothed (bisquares
weighting) using commercially available software (SigmaPlot
9.0). The chromatographic window of the packed Sephadex
G-15 column was determined by injecting aqueous solutions
of blue dextran (MM 2 MDa, tr∼6 minutes), to define
the exclusion volume (V0), and glycine (MM 75 Da, tr∼15
minutes), to define the inclusion volume (Vi). The col-
umn was size calibrated with aqueous solutions of GSSG
(MM∼ 600 Da, tr∼10 minutes) and GSH (MM∼ 300 Da,
tr∼13 minutes). All calibration experiments were performed
with a PBS mobile phase (pH 7.4 at 25◦C), while the C atomic
emission line at (193.091 nm) was monitored (Figure 2).
Previous studies have demonstrated that the pore size of
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Figure 3: The superimposed chromatograms of AsB, As(III), MMA
(III), and DMA(III) as a function of the SEC column temperature
at 4◦C (—), 25◦C (- - -), or 37◦C (– – –). Stationary phase: Sephadex
G-15 (31×1.0 cm I.D.); mobile phase: PBS buffer containing 10 mM
GSH adjusted to pH 7.4, flow rate: 1.0 mL/min; detector: ICP-AES
at 189.042 nm; injection volume: 20 μL (10 μg As per compound).

Sephadex stationary phases does not change appreciably in
the 4–37◦C temperature range [22].

3. RESULTS AND DISCUSSION

Even though the mammalian metabolism of As(III) is
not entirely understood, still As(SG)3, CH3As(SG)2, and
(CH3)2AsSG likely play an important role [32, 43, 45, 47].
Despite this, only the stability of the As-S bonds in As(SG)3

have been investigated under conditions that resemble
mammalian hepatocyte cytosol [22]. This was established
using the “retention analysis method” which was originally
developed to study the reversible oncolumn formation of
drug-protein complexes by LC [58, 59]. Employing this
approach, we studied the stability of trivalent As-(GS)x com-
plexes (where x = 1–3) by independently chromatographing
As(III), MMA(III), and DMA(III) on an SEC column using
GSH-containing PBS mobile phases (5 or 10 mM GSH, pH
7.4; Figure 3).

SEC was selected as the separation medium because
previous studies into the reaction of the aforementioned
trivalent arsenicals with GSH revealed the formation of

As(SG)3 (MM∼ 900 Da), CH3As(SG)2 (MM∼ 600 Da), and
(CH3)2AsSG (MM∼ 300 Da) [20, 23, 48, 49, 60], which all
differ in their hydrodynamic radii. Therefore, the ideal SEC
stationary phase for the separation of the on-column formed
complexes must have an appropriate fractionation window.
The most suited SEC stationary phase was Sephadex G-15
since it offers an exclusion limit of <1500 Da [61]. Because
of the particle size (120 μm diameter) and particle size distri-
bution (60–180 μm) of this stationary phase [61], however,
relatively broad chromatographic peaks are expected, as has
been previously observed for As(SG)3 [22].

3.1. Temperature-dependent on-column
formation/stability of trivalent As-(GS)x
complexes

To determine the influence of temperature on the on-column
formation and stability of complexes that were formed
between the injected trivalent As compounds and the mobile
phase thiol (10 mM GSH), As(III), MMA(III), and DMA(III)
were chromatographed on a Sephadex G-15 column at 4,
25, and 37◦C. An additional arsenical, AsB (Figure 1(d)),
that does not interact with GSH, was also chromatographed
under these conditions as an internal standard. The observed
retention behavior of As(III), MMA(III), DMA(III), and AsB
is depicted in Figure 3.

In general, all four arsenicals eluted within the chro-
matographic window. As expected, AsB (MM∼ 178 Da)
eluted in the small-molecular-mass region between GSH
(MM∼ 300 Da) and glycine (MM 75 Da), irrespective of
the column temperature (tr∼14 minutes). In addition, the
gradual reduction in peak width at baseline (wb) with an
increase in temperature from 4 to 37◦C can be rationalized
by the faster rate of diffusion of AsB into and out of the pores.
Based on the retention times of the peaks corresponding
to As(III), MMA(III), and DMA(III) (tr range∼9–13.5
minutes) compared to glycine (Vi, tr∼15 minutes) and
the fact that a single chromatographic peak was obtained
for each arsenical, they each must have eluted from the
column in the form of their respective (GS)x-complexes at
all investigated temperatures. This interpretation is further
substantiated by the observation that As(III), MMA(III), and
DMA(III) each eluted at∼20 minutes, which is 5 minutes
after the Vi, when PBS-containing mobile phases without
GSH were employed (data not shown). An unspecified
chemical interaction between these trivalent arsenicals and
the Sephadex G-15 matrix is most likely the cause of this
behavior and has been previously observed for As(III) on a
similar stationary phase material [22]. Presumably, the free
hydroxyl groups of the Sephadex G-15 matrix (stemming
from the dextran groups) interacted with the hydroxyl
group(s) of the arsenicals via hydrogen bonding; hence,
retarding their migration through the column. It is chem-
ically improbable that the observed retention time changes
between 4 and 37◦C with the GSH-containing mobile phases
were caused by the aforementioned unspecified chemical
interaction because all injected arsenicals reacted first with
GSH in the interstitial volume of the filter (∼80 μL) prior to
encountering the stationary phase pores.
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3.2. Rationalization of the chemical structure
of the on-column formed complexes

The elution order of the injected trivalent arsenicals at 4◦C
was As(III) (tr∼9 minutes), MMA(III) (tr∼10 minutes),
and DMA(III) (tr∼13 minutes), which implies that the
hydrodynamic radii of the on-column formed trivalent As-
(GS)x complexes decreased in this order. Based on the known
chemical affinity of As(III), MMA(III), and DMA(III) for
GSH [22, 23, 62] (1)–(3), this order of elution strongly
indicates that As(SG)3, CH3As(SG)2, and (CH3)2AsSG had
formed on the column head. Evidence in favor of the on-
column formation of As(SG)3 (MM∼ 900 Da) comes from
the observation that As(III) eluted between V0 and the
MM 600 calibration standard (GSSG), which indicates that
a complex with an MM between 1500 and 600 Da had
formed (Figure 3). Similarly, CH3As(SG)2 and (CH3)2AsSG
were most likely formed on the column head because the
retention times corresponding to MMA(III) and DMA(III)
were identical to those of GSSG (MM∼600 Da) and GSH
(MM∼300 Da; Figure 3, vertical-dashed lines). These triva-
lent As-(GS)x complexes could not be structurally charac-
terized in the column effluent by electrospray ionization
mass spectrometry (ESI-MS) because the temperature of the
electrospray ion source chamber (120–365◦C, Esquire 3000
ESI-quadrupole ion trap mass spectrometer) would have
dissociated these thermally labile complexes (CH3As(SG)2

decomposes at 180◦C, while (CH3)2AsSG decomposes at
100◦C [23]) during the ionization process, prior to mass
analysis. Moreover, as advised by the instrument supplier
(Bruker Daltonics, Billerica, MA, USA), the salt concen-
tration of mobile phase buffers that can be analyzed by
ESI-MS must be below 10 mM (total salt in the utilized
PBS buffer was∼164 mM). Nevertheless, the alignment of
the on-column formed complexes with the MM standards
(Figure 3) in conjunction with the propensity of trivalent
As compounds to react with soft thiol ligands in aqueous
solution to form As(SG)3, CH3As(SG)2, and (CH3)2AsSG
[20–24] strongly suggests that the latter species were formed
on the column.

3.3. Retention behavior of As(III), MMA(III),
and DMA(III)

With regard to the retention behavior of As(III), the peak
that was observed at 4◦C showed considerable tailing, which
suggests that As(SG)3 and an additional complex with a
smaller hydrodynamic radius, possibly HOAs(SG)2, was
formed on the column. An increase of the column tem-
perature from 4 to 37◦C resulted in a 4.6 minute retention
shift of the As(III) peak toward the small-molecular-mass
region (Figure 3), which can be interpreted in two different
ways. Firstly, the alignment of this peak with GSSG at 25◦C
and with GSH at 37◦C implies similar hydrodynamic radii,
which indicates that HOAs(SG)2 and (HO)2AsSG were likely
formed on the column under these conditions. Even though
the peak corresponding to As(III) at 37◦C did not perfectly
align with the MM 300 calibration standard (GSH), it eluted
closer to this standard than to glycine, which suggests that the

As(III) was loosely bound to one GS-moiety. Alternatively,
the three GS-moieties that are bound to As(III) at 4◦C could
undergo faster exchange upon increase of the temperature
from 4 to 37◦C (1). Nonetheless, these results strongly
confirm the previously demonstrated lability of the As-S
bonds in As(SG)3 [20, 22, 47–49].

The temperature-dependent retention behavior of
MMA(III) and DMA(III) was significantly different from
that of As(III) because the retention time of the peaks
corresponding to MMA(III) and DMA(III) shifted only
marginally (∼40 seconds for both versus 4.6 minutes for
As(III)) upon an increase in the column temperature from
4 to 37◦C (Figure 3). Hence the on-column formation of
the corresponding trivalent As-(GS)x-complexes (where
x = 1 or 2) was only minimally affected by the column
temperature. This, in turn, implies that the As-S bonds in
CH3As(SG)2 and (CH3)2AsSG are more stable than those
in As(SG)3. Overall, these results, which were obtained
under simulated physiological conditions, are in excellent
accord with previous observations, which were conducted
under nonphysiological conditions. In particular, these latter
studies revealed that CH3As(SG)2 and (CH3)2AsSG could
be synthesized in aqueous solution [23], whereas As(SG)3

could only be synthesized in alcoholic solutions (alcohol
apparently stabilizes the hydrolytically labile As-S bonds)
[20, 49].

The entire temperature-dependent retention behavior of
As(III), MMA(III), DMA(III), and AsB was repeated with
a 5 mM GSH-containing mobile phase (PBS, pH 7.4) on
the same SEC column. These results were identical to those
illustrated in Figure 3 (data not shown), which makes the
observed comparative stability of the on-column formed
complexes relevant to mammalian, protein-free, hepatocyte
cytosol.

3.4. Biochemical ramifications of the obtained results

ATP-driven GS-X conjugate export pumps, which shuttle
xenobiotic-GS-conjugates across phospholipid bilayer mem-
branes via multidrug resistance proteins 1 and 2, are known
to exist at the basolateral and apical hepatocyte membrane,
respectively [42–45]. Therefore, our findings raise the pos-
sibility that the biomethylation of As(III) to MMA(III)
and DMA(III) in the liver of mammals may have evolved
simply to export As(III) into the bloodstream for subsequent
urinary excretion via the kidney. This rather simplistic
hypothesis could explain why DMA(III) has been detected
in rat erythrocytes bound to hemoglobin [63] and why
MMA(III) and DMA(III) have been detected in mammalian
urine [12–16]. The exact mechanism by which these trivalent
arsenicals are exported from the liver to the bloodstream,
however, needs to be further investigated.

3.5. Influence of DMPS addition to the mobile phase
on complex formation at 37◦C

To substantiate that the retention shift of As(III) to a small-
er retention time upon the addition of GSH to the mobile
phase was caused by the on-column formation of As(SG)3,
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a mobile phase containing both GSH (5 mM) and DMPS
(1 mM, Figure 1(f)), a chelating agent that forms a stronger
complex with As(III) than GSH, was investigated. This re-
sulted in the expected increase in the retention time of As(III)
to Vi(tr ≈ 17 minutes), which is in accord with previous
findings [22]. In contrast, no As peaks for MMA(III) and
DMA(III) were detected in the column effluent when a PBS
mobile phase containing GSH (5 mM) and DMPS (1 mM)
was employed. The cause of this reproducible behavior is not
presently understood.

4. CONCLUSION

The SEC-based “retention analysis method” approach in
conjunction with an As-specific detector was employed to
study the comparative on-column formation of trivalent As-
(GS)x-complexes. This was achieved by using mobile phas-
es resembling the chemical composition of mammalian,
protein-free hepatocyte cytosol (5 or 10 mM GSH, PBS,
pH 7.4) at column temperatures of 4, 25, or 37◦C. The
separate injections of As(III), MMA(III), and DMA(III)
and their observed retention behavior provided evidence
for the on-column formation of more stable As-S bonds
in CH3As(SG)2 and (CH3)2AsSG than in As(SG)3. These
findings imply that the stability of As-S bonds could be
critically involved in the disposition/excretion of methylated
trivalent As compounds in mammals. Future investigations
should be aimed at identifying whether CH3As(SG)2 and
(CH3)2AsSG are in fact translocated across the hepatocyte
membrane into the bloodstream in vivo.
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