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PICK1 inhibition of the Arp2/3 complex controls
dendritic spine size and synaptic plasticity
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Activity-dependent remodelling of dendritic spines is

essential for neural circuit development and synaptic

plasticity, but the precise molecular mechanisms that

regulate this process are unclear. Activators of Arp2/3-

mediated actin polymerisation are required for spine en-

largement; however, during long-term depression (LTD),

spines shrink via actin depolymerisation and Arp2/3 in-

hibitors in this process have not yet been identified. Here,

we show that PICK1 regulates spine size in hippocampal

neurons via inhibition of the Arp2/3 complex. PICK1

knockdown increases spine size, whereas PICK1 overex-

pression reduces spine size. NMDA receptor activation

results in spine shrinkage, which is blocked by PICK1

knockdown or overexpression of a PICK1 mutant that

cannot bind Arp2/3. Furthermore, we show that PICK1–

Arp2/3 interactions are required for functional hippocam-

pal LTD. This work demonstrates that PICK1 is a novel

regulator of spine dynamics. Via Arp2/3 inhibition, PICK1

has complementary yet distinct roles during LTD to reg-

ulate AMPA receptor trafficking and spine size, and there-

fore functions as a crucial factor in both structural and

functional plasticity.
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Introduction

Long-term synaptic plasticity is thought to underlie learning

and memory and also the tuning of neural circuitry during

development. Two major postsynaptic processes are involved

in plasticity of excitatory synapses: modification of AMPA

receptors (AMPARs), which mediate the majority of fast

synaptic excitation in the brain, and alterations in the size

and shape of dendritic spines. These protrusions from the

dendritic shaft compartmentalise the postsynaptic apparatus,

and concentrate biochemical signals such as calcium

(Kennedy et al, 2005; Bloodgood and Sabatini, 2007).

During long-term depression (LTD), dendritic spines shrink

and the number of AMPARs expressed at the synapse is

decreased via regulated trafficking. Conversely, long-term

potentiation (LTP) involves spine growth and an increase in

synaptic AMPAR number (Matsuzaki, 2007; Shepherd and

Huganir, 2007).

The dynamic actin cytoskeleton is central to the regulation

of cell morphology and vesicle trafficking by exerting me-

chanical forces that alter the shape of the plasma membrane

(Merrifield, 2004; Kaksonen et al, 2006). Actin dynamics

have a major role in determining spine structure (Dillon

and Goda, 2005; Sekino et al, 2007), and have also been

suggested to regulate the functional expression of LTD and

LTP (Cingolani and Goda, 2008). During LTD, actin dynamics

in spines shift from filamentous (F-) actin towards mono-

meric globular (G-) actin, suggesting that actin polymerisa-

tion is inhibited during this process (Okamoto et al, 2004).

The Arp2/3 complex is the major catalyst for the formation of

branched actin networks that mediate changes in membrane

geometry and is concentrated in dendritic spines (Takenawa

and Suetsugu, 2007; Racz and Weinberg, 2008; Rocca et al,

2008). The Arp2/3 activators N-WASP, WAVE and cortactin

stimulate actin polymerisation and have all been implicated

in spine morphogenesis (Hering and Sheng, 2003; Kim et al,

2006; Wegner et al, 2008). However, inhibitors of Arp2/3-

mediated actin polymerisation involved in spine morphology

and in functional LTD have not yet been identified.

An important unresolved question is whether spine dy-

namics and AMPAR trafficking are linked during functional

synaptic plasticity. As actin regulation is involved in both

processes, there is the intriguing possibility that specific

regulators of actin polymerisation may regulate both receptor

trafficking and spine morphology.

PICK1 is a PDZ and BAR domain containing protein that

binds AMPAR subunits GluA2/3 (Hanley, 2008). This inter-

action is required for AMPAR internalisation in response to

Ca2þ influx via NMDAR activation in hippocampal neurons

during LTD (Kim et al, 2001; Hanley and Henley, 2005;

Terashima et al, 2008). We recently demonstrated that

PICK1 directly binds to and inhibits the activity of the

Arp2/3 complex, and that this has a central role in AMPAR

trafficking in hippocampal neurons (Rocca et al, 2008).

In this study, we show that PICK1 restricts spine size under

basal conditions via direct interaction with the Arp2/3
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complex. PICK1–Arp2/3 interactions are required for spine

shrinkage during chemical LTD, and also for LTD of synaptic

transmission.

Results

PICK1 expression regulates spine size via interaction

with Arp2/3

To investigate the role of PICK1 in regulating dendritic spine

size, we used transfection of IRES plasmids that express both

PICK1 and actinEGFP. ActinEGFP localises to dendritic spines

and is therefore an amenable marker to measure spine size

(Ackermann and Matus, 2003; Chao et al, 2008; Saneyoshi

et al, 2008). ActinEGFP-positive spines are much more defined

than those expressing EGFP, facilitating analysis. In addition,

actinEGFP-positive spines are detectable even when the spine

head is in the same xy position as the dendritic shaft, whereas

those expressing unconjugated EGFP would be obscured.

Expression of WT-PICK1-IRES-actinEGFP in dissociated hip-

pocampal pyramidal neurons results in reduced dendritic

spine size compared with neurons expressing control-IRES-

actinEGFP (Figure 1A; control 1.74±0.05mm2, WT-PICK1

1.40±0.04 mm2, Po0.001). To investigate the role of Arp2/3

inhibition, we made use of a single-point mutation in PICK1,

W413A, which specifically blocks the Arp2/3 interaction

and Arp2/3 inhibition by PICK1 (Rocca et al, 2008). This

mutation blocks the reduction in spine size, indeed expres-

sion of W413A-PICK1-IRES-actinEGFP results in larger spines

(Figure 1; W413A-PICK1 1.94±0.05mm2, Po0.05). Over-

expression of neither WT-PICK1 nor W413A-PICK1 influenced

the number of spines compared with controls (Figure 1A).

We tested both IRES-actinEGFP and IRES-EGFP constructs,

and obtained the same result (Supplementary Figure S1).

We extended this analysis and measured spine length using

NeuronStudio (Rodriguez et al, 2008). WT-PICK1 overexpres-

sion causes a significant reduction in spine length, and
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Figure 1 PICK1 overexpression leads to spine shrinkage via its interaction with the Arp2/3 complex. (A) Analysis of spine size based on cross-
sectional area. Top panels show representative images of dendrites from cultured hippocampal neurons transfected with control-IRES-actinEGFP,
WT-PICK1-IRES-actinEGFP or W413A-PICK1-IRES-actinEGFP. Image width is 20mm. Graphs show quantification of linear spine densities and
spine size. *Po0.05, ***Po0.001 compared with control, K–S test. (B) Analysis of spine length. Graphs show quantification of one-
dimensional length for spines on neurons transfected with control-IRES-EGFP, WT-PICK1-IRES-EGFP or W413A-PICK1-IRES-EGFP. *Po0.05,
**Po0.005 compared with control, K–S test. (C) Inhibition of Arp2/3 activity by N-WASP CA domain mimics and occludes spine shrinkage by
PICK1 overexpression. Top panels show representative images from cultured hippocampal neurons transfected with either mCherry–CA or
mCherry control and either control-IRES-actinEGFP or WT-PICK1-IRES-actinEGFP (only actinEGFP channel is shown). Image width is 20 mm.
Graphs show quantification of spine size. **Po0.01, ***Po0.001, K–S test.
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W413A-PICK1 overexpression causes a significant increase

in spine length compared with controls (control 1.08±

0.02mm, WT-PICK1 1.00±0.01mm, Po0.005, W413A-PICK1

1.16±0.02mm, Po0.05; Figure 1B). To provide further

evidence that PICK1 shrinks spines via Arp2/3 inhibition,

we utilised the CA domain of N-WASP, which is a well-

established inhibitor of Arp2/3 activity, and leads to spine

shrinkage when expressed in cultured neurons (Rohatgi et al,

1999; Haeckel et al, 2008). These experiments confirm this

effect on spine size, and show that mCherry–CA expression

in cultured neurons results in a significant reduction in

spine size compared with mCherry controls (control

1.20±0.03 mm2, CA 1.05±0.03mm2, Po0.01; Figure 1C).

If PICK1 shrinks spines via Arp2/3 inhibition, CA overexpres-

sion and PICK1 overexpression should be mutually occluding

with respect to spine shrinkage. In neurons co-expres-

sing unconjugated mCherry, expression of WT-PICK1-IRES-

actinEGFP results in spine shrinkage compared with control-

IRES-actinEGFP (control 1.20±0.03mm2, PICK1 0.96±

0.03mm2, Po0.001; Figure 1C). In contrast, in neurons co-

expressing mCherry–CA, WT-PICK1-IRES-actinEGFP expres-

sion has no effect on spine size compared with control-

IRES-actinEGFP (CA 1.05±0.03mm2, CAþPICK1 1.05±

0.03mm2; Figure 1C). This demonstrates that inhibition of

Arp2/3 activity via a distinct method (N-WASP CA domain)

mimics and occludes the spine size phenotype of WT-PICK1

overexpression, supporting an Arp2/3 inhibitory mechanism

for PICK1 in the regulation of spine size.

To analyse the role of endogenous PICK1 expression in the

regulation of spine size, we employed shRNA-mediated

knockdown to reduce PICK1 expression. We used an

shRNA sequence that leads to 53% knockdown of PICK1

expressed in COS cells, or 47% of endogenous PICK1 5 days

after transfection in neurons (Supplementary Figure S2).

Transfection of dissociated cultured neurons with plas-

mids encoding PICK1 shRNA results in a significant

increase in spine size (Figure 2A; control 1.17±0.03mm2,

shRNA 1.36±0.03 mm2, Po0.001), but has no effect on the

number of spines (data not shown). This demonstrates that

endogenous PICK1 functions to restrict spine size under basal

conditions.

To validate the specificity of the PICK1 shRNA, we gener-

ated shRNA-resistant rescue constructs for co-transfection

with PICK1 shRNA. Expression of shRNA-resistant WT- or

W413A-PICK1 in conjunction with knockdown of endogen-

ous PICK1 by shRNA results in PICK1 expression levels that

are 40% higher than endogenous PICK1 (Supplementary

Figure S2B). Co-expression of shRNA-resistant WT-PICK1

causes a significant reduction in spine size compared with

expression of PICK1 shRNA alone, demonstrating a rescue of

the shRNA-induced phenotype. In fact, spines in these neu-

rons were smaller than the control condition, indicating a

small, but significant ‘over-rescue’ (Figure 2B; control

1.11±0.02 mm2, shRNA 1.29±0.03mm2, shRNAþWT-PICK1

1.01±0.02 mm2, Po0.001 compared with shRNA, Po0.05

compared with control). This is consistent with the observed

overexpression of PICK1 following co-transfection of PICK1

shRNA and sh-resistant rescue constructs. In contrast, co-

expression of W413A-PICK1 does not rescue the shRNA-

induced increase in spine size (shRNAþW413A-PICK1

1.28±0.03mm2, P40.1 compared with shRNA, Po0.001

compared with control) confirming the crucial role of

PICK1–Arp2/3 interactions in restricting spine size. Taken

together, these results demonstrate that PICK1 regulates spine
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Figure 2 Endogenous PICK1 restricts spine size via its interaction with the Arp2/3 complex. (A) Knockdown of endogenous PICK1 expression
results in increased spine size. Left panels show representative images of dendrites from neurons transfected with actinEGFP and either control-
mCherry or PICK1 shRNA–mCherry plasmids. Only actinEGFP channel is shown. Image width is 20mm. Graphs show quantification of spine
size. ***Po0.001 compared with control, K–S test. (B) Co-expression of WT-PICK1 rescues shRNA-induced spine enlargement, W413A-PICK1
does not. Left panels show representative images of dendrites from neurons transfected with either control-mCherry or PICK1 shRNA–mCherry
plasmids and sh-resistant WT-PICK1-IRES-actinEGFP, sh-resistant W413A-PICK1-IRES-actinEGFP or control-IRES-actinEGFP. Only actinEGFP

channel is shown. Image width is 20mm. Graphs show quantification of spine size. *Po0.05, ***Po0.001 compared with control, K–S test.
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size under basal conditions via direct interaction with the

actin-nucleating Arp2/3 complex.

PICK1-induced reduction in spine size is not caused

by reduced surface GluA2, and does not involve PKC

It has been suggested that the level of GluA2 expressed at the

synaptic plasma membrane regulates dendritic spine size

(Passafaro et al, 2003; Hsieh et al, 2006; Saglietti et al,

2007). However, a number of reports also argue against

this idea (Wang et al, 2007; Biou et al, 2008; Lu et al,

2009). Since PICK1 overexpression reduces surface levels of

GluA2 (Terashima et al, 2004), a possible explanation for the

reduced spine size following PICK1 overexpression could be

that spine shrinkage occurs downstream of GluA2 internali-

sation. To address this, we utilised the observation that

reduced surface GluA2 following PICK1 overexpression is

activity dependent (Hanley and Henley, 2005; Terashima

et al, 2008). Using surface biotinylation assays, we show

that inhibition of synaptic activity using TTX blocks PICK1-

mediated GluA2 internalisation (Figure 3A). Interestingly,

PICK1 overexpression results in reduced spine size even in

the presence of TTX (Figure 3B). Furthermore, while W413A-

PICK1 expression increases spine size, it has no effect on

surface GluA2 levels (Figure 3A and B). This demonstrates

that PICK1 can regulate spine size independently of GluA2

trafficking, strongly suggesting that PICK1-induced spine

shrinkage occurs via downregulation of structural F-actin

in spines.

PICK1 specifically binds activated PKC and is involved in

targeting this enzyme to dendritic spines (Staudinger et al,

1995; Perez et al, 2001). We therefore investigated whether

PKC activation is involved in PICK1-mediated spine shrink-

age using pharmacological inhibition of PKC. Application of

the PKC inhibitor chelerythrine for 1 h before fixation has no

effect on spine shrinkage induced by PICK1 overexpression

(Supplementary Figure S3A). In addition, PKC activation by

PMA has been shown to reduce spine size (Calabrese and

Halpain, 2005). We therefore asked whether endogenous

PICK1 is required for this process by carrying out live time

lapse imaging of spines exposed to PMA (Supplementary

Figure S3B). PKC activation causes a reduction in spine size

20–50 min following the initiation of drug application. PICK1

knockdown by shRNA has no effect on this process

(Supplementary Figure S3B), indicating that PICK1 is not

required for PKC-induced spine shrinkage. These results

demonstrate that PKC and PICK1 do not functionally interact

in the regulation of dendritic spine size.

PICK1–Arp2/3 interactions are involved

in LTD-induced spine shrinkage

To study the role of PICK1 in dendritic spine shrinkage

associated with LTD, we analysed spines following exposure

to a chemical LTD protocol in hippocampal cultures. Bath

application of 20mM NMDA plus 20mM glycine stimulates a

significant spine shrinkage (Figure 4A; vehicle control

1.15±0.02mm2, NMDA 0.95±0.02mm2, Po0.001). This

effect is similar in magnitude as observed in a report of

LTD-induced reduction in spine size in hippocampal slices

(Wang et al, 2007). Using this stimulus, we saw no significant

change in the density of spines on the dendrite (Figure 4A).

Since PICK1 overexpression mimics NMDA-induced

spine shrinkage (compare Figures 1 and 4A), we investigated

whether these treatments mutually occlude. In agreement

with this hypothesis, NMDAR activation has no effect on

spine size in neurons transfected with WT-PICK1-IRES-

actinEGFP, suggesting that NMDA-induced spine shrink-

age involves PICK1 (Figure 4B; controlþ vehicle 1.52±

0.02 mm2, controlþNMDA 1.26±0.02mm2, Po0.001. WT-

PICK1þ vehicle 1.22±0.01mm2, WT-PICK1þNMDA

1.20±0.01, P¼ 0.34).

To specifically investigate the role of PICK1–Arp2/3 inter-

actions in spine shrinkage, we analysed the effect of chemical
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Figure 3 PICK1-mediated spine shrinkage occurs independently of GluA2 trafficking. (A) PICK1-mediated reduction in surface GluA2 is
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virus. Cultures were either treated with 0.5mM TTX for 1 h or left untreated. Top panel shows representative western blot of 50% total GluA2
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Figure 1 (A), except that 0.5mM TTX was applied 1 h prior to cell fixation. *Po0.05, **Po0.01 compared with control, K–S test.
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LTD on spine size in neurons transfected with W413A-

PICK1-IRES-actinEGFP. In neurons expressing control-IRES-

actinEGFP, NMDAR activation results in a reduction in spine

size (Figure 4C; controlþ vehicle 1.26±0.03mm2, controlþ
NMDA 1.10±0.02mm2, Po0.001), which is completely

blocked in neurons expressing W413A-PICK1-IRES-EGFP

(Figure 4C; W413A-PICK1þ vehicle 1.41±0.03mm2, W413A-

PICK1þNMDA 1.40±0.03mm2, P¼ 0.737).

To explore the role of endogenous PICK1 expression in

NMDA-induced spine shrinkage, we used shRNA to knock

down PICK1 expression levels. In control neurons expressing

mCherry and actinEGFP, NMDAR activation causes spine

shrinkage (Figure 4D; controlþ vehicle 1.21±0.04 mm2,

controlþNMDA 0.94±0.03mm2, Po0.001) whereas in neu-

rons expressing reduced levels of endogenous PICK1 follow-

ing transfection with PICK1 shRNA–mCherry and actinEGFP,

spine shrinkage was completely blocked (Figure 4D;

shRNAþvehicle 1.31±0.04 mm2, shRNAþNMDA 1.42±

0.05mm2, P¼ 0.925).

To further examine the role of PICK1 in NMDA-induced

spine shrinkage, we carried out time lapse live cell imaging.

For these experiments, we used mCherry as the morphologi-

cal marker. Mean spine size in control neurons exposed to

vehicle was stable throughout the experiment (1 h; Figure 5).
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and spine area. ***Po0.001 compared with control, K–S test. (B) WT-PICK1 overexpression mimics and occludes chem-LTD-induced spine
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and subjected either to NMDAR activation or vehicle control. Image width is 20mm. Graphs show quantification of spine area. ***Po0.001
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compared with control, K–S test.
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NMDAR activation results in a steady reduction in spine size,

and spines were 19% smaller than vehicle-treated controls at

52 min after the start of the stimulus (Figure 5; controlþ
vehicle 1.036±0.02 relative to baseline, controlþNMDA

0.84±0.02 relative to baseline, Po0.0001), which is consis-

tent with our data from fixed cells. Further analysis

revealed that baseline spine size does not influence the extent

of shrinkage. Knockdown of endogenous PICK1 by shRNA

completely blocks spine shrinkage in response to NMDAR

activation (Figure 5; shRNAþNMDA 1.05±0.04 relative

to baseline, Po0.0001 compared with controlþNMDA at

52 min).

These experiments demonstrate a crucial role for PICK1 in

mediating LTD-induced spine shrinkage via its interaction

with the actin-nucleating Arp2/3 complex.

PICK1–Arp2/3 interactions are involved in synaptically

induced LTD in hippocampal CA1 region

As Arp2/3 inhibition by PICK1 is involved in both AMPAR

internalisation (Rocca et al, 2008) and spine shrinkage (this

study) during chemical LTD in dissociated cultures, we

investigated the role of this pathway in synaptically induced

LTD in CA1 region of hippocampal slices. Hippocampal LTD

involves PICK1-mediated internalisation of GluA2-containing

AMPARs (Kim et al, 2001; Seidenman et al, 2003; Terashima

et al, 2008), but it is unknown whether Arp2/3 regulation by

PICK1 is required.

We used viral transduction with IRES-EGFP constructs in

acute hippocampal slices cultured for 24 h to allow protein

expression. Control neurons expressing EGFP exhibit robust

pathway-specific LTD in response to low-frequency stimula-

tion (Figure 6A; control 80.7±2.7% versus test 59.9±6.0%,

Po0.01). In contrast, LTD was completely absent in neurons

transduced with WT-PICK1-IRES-EGFP (Figure 6B; control

88.6±3.9% versus test 85.2±8.1%, P¼ 0.62). As overex-

pression of WT-PICK1 reduces surface GluA2, and LTD in

CA1 pyramidal neurons involves PICK1-mediated internalisa-

tion of GluA2-containing AMPARs, the absence of LTD in

WT-PICK1 overexpressing neurons represents an occlusion

rather than a block per se. Indeed, a previous report found

that overexpression of WT-PICK1 reduces surface GluA2,

leading to a compensatory increase in synaptic GluA2-lacking

AMPARs that are inwardly rectifying and have a larger

single-channel conductance than GluA2-containing AMPARs

(Terashima et al, 2004). We confirmed this effect on

basal transmission and found larger, inwardly rectifying

AMPAR EPSCs in neurons transduced with WT-PICK1-IRES-

EGFP virus compared with neighbouring control neurons
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(Figure 6C and D). In contrast, neurons expressing the Arp2/

3 non-binding mutant, W413A-PICK1, showed no change

in AMPAR EPSC amplitude, and no change in rectification

index, indicating that interaction with Arp2/3 is essential for

PICK1-mediated regulation of basal synaptic transmission

(Figure 6C and D). Importantly, in neurons expressing

W413A-PICK1, LTD was completely absent (Figure 6E;

control 86.1±3.9% versus test 82.5±5.5%, P¼ 0.59). Since

basal AMPAR EPSCs in W413A-PICK1 expressing neurons are

unchanged compared with controls prior to LTD induction,

this effect represents a blockade of plasticity. These experi-

ments indicate that the regulation of Arp2/3-mediated

actin polymerisation by PICK1 is required for LTD in the

hippocampus.
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To provide further evidence that PICK1–Arp2/3 interac-

tions are required for NMDAR-dependent synaptic depression

in the hippocampus, we exploited the fact that the effects

of PICK1 overexpression on AMPAR trafficking and EPSC

properties are abolished when NMDARs are blocked (Hanley

and Henley, 2005; Terashima et al, 2008). Neurons trans-

duced with WT-PICK1-IRES-EGFP virus in hippocampal slices

and incubated in the NMDAR antagonist D-AP5 from the time

of viral transduction have non-rectifying EPSCs with a similar

amplitude to non-transduced cells (Figure 7A and B, also see

Terashima et al, 2008). We are therefore able to investigate

the acute effects of altered PICK1 expression by analysing

the effects of D-AP5 washout on AMPAR EPSCs. Washout of

D-AP5 (therefore activation of NMDARs) leads to a very rapid

reduction in AMPAR EPSC amplitude, which is completely

blocked by the W413A mutation (Figure 7C). This result

demonstrates that the W413A mutation that abolishes the

interaction between PICK1 and Arp2/3 blocks synaptic de-

pression in response to NMDAR activation, strongly support-

ing a role for PICK1-mediated Arp2/3 regulation in the

expression of synaptic plasticity.

PICK1–Arp2/3 interaction is enhanced by NMDAR

activation

Our data demonstrate a role for the PICK1-mediated inhibi-

tion of Arp2/3 activity in NMDA-dependent structural and

functional plasticity in hippocampal neurons, suggesting that

the PICK1–Arp2/3 interaction may be regulated by NMDAR

activity. To test this idea, we carried out co-immunoprecipita-

tions (co-IPs) using an Arp2/3 antibody from hippocampal

neuronal cultures at various time points following treatment

with a chemical LTD protocol. Figure 8A demonstrates that

the interaction between PICK1 and the Arp2/3 complex is

significantly increased 10 min after the start of the NMDA

stimulus, and returns to basal levels at 20 min. The total

amount of PICK1 and Arp2/3 in the lysates is unchanged

across all conditions. This shows that following chemical LTD

induction, PICK1–Arp2/3 interactions are transiently en-

hanced, strongly suggesting an increase in PICK1-mediated

Arp2/3 inhibition during LTD.

We previously demonstrated that PICK1 functions as a

calcium sensor, and that its interaction with AMPAR subunit

GluA2 is directly sensitive to calcium in the low micromolar

range (Hanley and Henley, 2005). Since NMDAR activa-

tion enhances PICK1–Arp2/3 binding, we investigated

the possibility that calcium directly regulates this interaction,

and carried out co-IPs in buffers containing a range of

free calcium concentrations. Figure 8B shows that PICK1

binds the Arp2/3 complex independent of calcium concen-

tration, indicating that an alternative signalling pathway is

involved downstream of NMDAR activation to regulate

PICK1–Arp2/3 binding.
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Figure 7 NMDA-dependent synaptic depression induced by PICK1 overexpression requires its interaction with the Arp2/3 complex. (A) PICK1
overexpressing neurons in hippocampal slices incubated in D-AP5 have EPSC amplitudes unchanged compared with controls. EPSC amplitudes
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Discussion

We have defined a role for PICK1 in regulating dendritic spine

size via its interaction with the Arp2/3 complex. Knockdown

of endogenous PICK1 results in larger spines, indicating that

PICK1 functions to restrict spine size under basal conditions.

During chemical LTD, spines shrink via a mechanism that

requires PICK1 and its interaction with Arp2/3. Since PICK1

inhibits Arp2/3-mediated actin polymerisation (Rocca et al,

2008), our data strongly suggest that PICK1 inhibits the

Arp2/3 complex in spines resulting in reduced levels of

F-actin and consequent shrinkage of spines. We have demon-

strated this by using the single amino-acid mutation in PICK1

(W413A) that abolishes Arp2/3 interactions, but has no effect

on PICK1 binding to GluA2, GRIP, PKC, Actin, a/b-SNAP or

phospholipids (Rocca et al, 2008). In addition, we used an

independent inhibitor of Arp2/3 activity, N-WASP CA domain

(Rohatgi et al, 1999; Haeckel et al, 2008), and demonstrated

that expression of this peptide in neurons mimics and

occludes spine shrinkage by PICK1.

We have demonstrated a blockade of NMDA-induced spine

shrinkage by overexpression of a dominant-negative PICK1

(W413A) that cannot bind the Arp2/3 complex, and also by

reducing endogenous PICK1 expression using shRNA. This is,

to our knowledge, the first study that defines a role for a

direct inhibitor of the Arp2/3 complex in the regulation of

dendritic spine size.

It is noteworthy that neither PICK1 manipulation nor our

chemical LTD stimulus affects the density of spines on the

dendrite. In addition, no spines completely retract during our

live imaging experiments. While a reduction in spine density

during hippocampal LTD has been observed, the incidence of

spine elimination is very low and is also slow, taking at least an

hour following stimulation (Nagerl et al, 2004; Zhou et al, 2004).

We have also demonstrated that PICK1–Arp2/3 inter-

actions are required for CA3–CA1 LTD in hippocampal

slices. With respect to their effect on LTD expression, both

WT-PICK1 and W413A-PICK1 overexpressing neurons appear

to show the same phenotype. However, under basal condi-

tions, WT-PICK1 overexpression results in larger AMPAR-

mediated EPSCs, which occurs as a result of increased

high-conductance GluA2-lacking AMPARs at the synapse

following PICK1-mediated GluA2 internalisation (Terashima

et al, 2004). Hippocampal LTD involves PICK1-mediated

internalisation of GluA2-containing AMPARs (Kim et al,

2001; Seidenman et al, 2003; Terashima et al, 2008). There-

fore, from a GluA2 trafficking perspective, WT-PICK1 over-

expression mimics and occludes the subsequent LTD.

In contrast, W413A-PICK1 has no influence on basal EPSCs,

indicating that neurons expressing this protein have normal

levels of synaptic GluA2. W413A-PICK1 subsequently blocks

AMPAR internalisation and LTD. Since AMPAR regulation

by PICK1 is NMDAR dependent (Hanley and Henley, 2005;

Terashima et al, 2008), NMDAR blockade using the antago-

nist D-AP5 suppresses the effect of PICK1 overexpression

on basal AMPAR EPSCs. Subsequent withdrawal of D-AP5

results in NMDAR activation, and a PICK1-dependent depres-

sion of AMPAR EPSC amplitude, which is abolished by

mutating the Arp2/3-binding site on PICK1. We have there-

fore demonstrated, under both basal and LTD stimu-

lating conditions, that PICK1-mediated, NMDAR-dependent

synaptic depression in hippocampal CA1 neurons requires

PICK1–Arp2/3 interactions.

It is interesting that the acute effect (minutes; see Figure 7)

of PICK1 recruitment is different from the long-term effect

(overnight; see Figure 6 and Terashima et al, 2004). The acute

effect results in reduced AMPAR EPSC amplitude, indica-

ting an internalisation of GluA1/2 or GluA2/3 receptors.
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The long-term effect of PICK1 overexpression results in a

selective internalisation of GluA2 subunit and enhanced

AMPAR EPSCs (Terashima et al, 2004). This suggests that,

following the PICK1-dependent internalisation of GluA1/2 or

GluA2/3 receptors, GluA2-lacking AMPARs (which have

higher conductance) are inserted at later time points.

A role for Arp2/3 inhibition by PICK1 in synaptic plasticity

predicts that this protein–protein interaction is regulated in

response to a plasticity-inducing stimulus. In agreement with

this hypothesis, we show that chemical LTD transiently

stimulates increased binding of PICK1 to the Arp2/3 complex

at 10 min after stimulus. Although spines continue to shrink

past 50 min following chemical LTD stimulus, this process is

completely blocked by PICK1 knockdown. This suggests that

Arp2/3 inhibition by PICK1 is an absolute requirement for

initiating spine shrinkage in response to NMDAR activation,

and that additional mechanisms are at play at later time

points. In contrast to its interaction with GluA2, the PICK1–

Arp2/3 interaction is not directly sensitive to calcium, in-

dicating that NMDAR activation stimulates binding via an

alternative signalling pathway.

In conjunction with our previous study (Rocca et al, 2008),

our data show that the inhibition of Arp2/3 activity by

PICK1 is involved in both AMPAR internalisation and

spine shrinkage following NMDAR activation, as well as

LTD recorded electrophysiologically. PICK1 is therefore cen-

tral to mechanisms that regulate the processes of both func-

tional and structural plasticity. Importantly, our data show

that PICK1-mediated spine shrinkage can occur indepen-

dently of GluA2 surface removal, indicating that PICK1

regulates spine dynamics via direct modulation of structural

F-actin, not as a secondary effect of AMPAR trafficking. We

previously demonstrated that Arp2/3 inhibition by PICK1 is

dramatically enhanced by its interaction with GluA2 c-termi-

nus, and would therefore be highly localised to the specific

AMPAR-containing membrane subdomain being mobilised

(Rocca et al, 2008). This modulation may underlie a mechan-

ism for PICK1 to separately regulate both spine morphology

and AMPAR trafficking via inhibition of Arp2/3-mediated

actin polymerisation. We propose a model whereby during

LTD, PICK1 strongly inhibits actin polymerisation when

bound to GluA2 to drive the removal of surface AMPARs,

and independently has a less localised effect on F-actin levels

to shrink spines. The separate PICK1-dependent path-

ways controlling spines and AMPAR trafficking are also

highlighted by our data that show a lack of involvement

of PKC in PICK1-mediated spine shrinkage. This is in contrast

to the effect of PICK1 overexpression on AMPAR EPSC

properties, which is inhibited by PKC blockade (Terashima

et al, 2004). In addition to GluA2 and PKC, many other

proteins interact with PICK1 (Hanley, 2008), some of

which may be involved in the process that leads to spine

shrinkage.

We have defined the Arp2/3 inhibitor PICK1 as a novel

regulator of dendritic spine dynamics, both in restricting

spine size under basal conditions, and in spine shrinkage

during plasticity. Furthermore, we have identified important

mechanistic details of hippocampal LTD by demonstrating

that PICK1 regulates this process via an NMDA-dependent

interaction with the Arp2/3 complex. This work shows that

PICK1 has a central role not only in regulating AMPAR

trafficking and functional plasticity, but also in controlling

structural plasticity of dendritic spines by modulating Arp2/

3-mediated actin polymerisation.

Materials and methods

Plasmids and plasmid construction
WT-PICK1-IRES-EGFP and W413A-PICK1-IRES-EGFP have been
reported previously (Rocca et al, 2008). IRES-actinEGFP constructs
were constructed by subcloning PICK1 cDNA, IRES cassette and
actinEGFP cDNA into pcDNA3.1. shRNA and mCherry reporters were
expressed from a modified pFIV (System Biosciences). mCherry was
driven by the CaMKII promoter, shRNA by the H1 RNA pol III
promoter. The DNA sequence used to express PICK1 shRNA was as
follows: 50AGGATGCTCAGAACCTGATTGTTCAAGAGACAATCAGGT
TCTGAGCATCCT30. The control construct did not contain shRNA.
For rescue experiments, WT-PICK1, and W413A-PICK1 had silent
mutations: GAc GCa CAa AAt CTa ATc (mutations in lower case).
mCherry–CA was constructed by subcloning cDNA corresponding
to N-WASP amino acids 459–501 into a modified pcDNA3.1-
mCherry to make an mCherry–CA fusion protein.

Antibodies
The following antibodies are used: anti-GluA2 (Millipore), anti-GFP
(Alexa 488-conjugated; Invitrogen), anti-tubulin (Sigma), anti-p34
(Arp2/3 complex; Millipore) and anti-PICK1 (NeuroMab).

Hippocampal slice culture and viral transduction
Slices were prepared and maintained overnight essentially as
described (Terashima et al, 2004, 2008). Transverse 300mm
hippocampal slices were prepared from 14-day-old Wistar rat pups
in high Mg ACSF (mM): 119 NaCl, 2.5 KCl, 1 NaH2PO4.H2O, 26.2
NaHCO3, 11 glucose, 9 MgSO4 and 2.5 CaCl2 saturated with 95% O2,
5% CO2. Slices were transferred to tissue culture inserts (Millicell-
CM, 0.4mm pore size) with sterile MEM (Gibco) containing (mM):
5 NaHCO3, 30 HEPES, 1 Glutamine, 1 CaCl2, 2 MgSO4, 13 Glucose
and 20% Horse Serum adjusted to pH 7.28 with NaOH and
B320mOsM. Slices were rested in an incubator at 351C and 5% CO2

for 1 h before being pressure injected with Sindbis virus at multiple
sites along the CA1 pyramidal cell layer. Slices were returned to the
incubator for 24 h before use.

Neuronal culture, transfection and chemical LTD
Hippocampal neurons prepared from E18 Wistar rats were
transfected at DIV 12–13 using Lipofectamine 2000, and used for
experiments 5–6 days later. For fixed-cell experiments, cultures
were fixed in 4% formaldehyde, permeablised, and the GFP signal
enhanced by Alexa 488-conjugated anti-GFP. Chem-LTD was
induced at 371C by exposing cells to 0.5mM TTX in culture medium
for 10 min, then transferring coverslips to HBS buffer (20 mM
HEPES, pH 7.6, 140 mM NaCl, 5 mM KCl, 1.8 mM CaCl2, 0.8 mM
MgCl2 5 mM glucose, 0.5 mM TTX), followed by a brief application
of 20 mM NMDA, 20mM glycine in the same buffer for 3 min. Cells
were washed twice with HBS, and transferred back to original
culture medium containing 0.5mM TTX for 40 min before fixation.

Image acquisition and analysis
Fixed-cell images were acquired using a Zeiss LSM510 confocal
microscope. Z-stacks of 6–12 images were taken at 2048� 2048
resolution, optical slice depth of 1mm per image, and z-step of
0.37mm. At the time of acquisition, laser power was adjusted so
that all spines were below the threshold of saturation. Analysis was
by ImageJ software (NIH). Maximum intensity projections were
processed to smooth contours and a binary mask was obtained after
edge detection. The cross-sectional area, and number of spines was
calculated. For each condition, 90–100mm sections of secon-
dary dendrite from each neuron were analysed, 4–6 neurons per
experiment, from three separate experiments, resulting in 700–1400
spines per condition. Experiments were both imaged and analysed
with the experimenter blind to the experimental conditions.
Statistical analyses were performed in Excel (Microsoft). The
Student’s t-test was performed on spine density data. Cumulative
plots were analysed using Kolmogorov–Smirnov test (K–S test).

Time lapse live confocal images of dendritic spines were
acquired using a Nikon Eclipse Ti-E microscope. Z-stacks of
15–20 images were taken at various time points at 512� 512
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resolution with a z-step size of 0.4mm. Neurons were continually
perfused at 351C with HBS at a flow rate of 4 ml/min. For chem-
LTD, buffer was switched to HBS containing 20mM NMDA and
20mM glycine for 3 min, followed by return to normal HBS. For
PMA treatment, perfusion buffer was HBS containing 50 mM D-AP5,
5 mM NBQX and 0.5mM PMA. Baseline perfusion buffer was the
same minus PMA. Glutamate receptor antagonists were present to
prevent any PKC-stimulated release of endogenous glutamate from
activating postsynaptic glutamate receptors (Calabrese and Halpain,
2005). Analysis was by ImageJ. Maximum intensity projections
were produced for each time point and the images were processed
and analysed as above.

Measurement of spine length
To determine spine length, z-stack images were imported into
NeuronStudio (Rodriguez et al, 2008), which allows for the
automated detection of dendrites and spines. NeuronStudio then
measures the length of individual spines and these data were then
imported into Excel for statistical analysis.

Surface biotinylation assays
Biotinylations were carried out as described (Hanley and Henley,
2005).

Co-immunoprecipitations
For NMDA-dependent co-IPs, cultured neurons were subjected to
the chem-LTD protocol (see above sections), and then returned to
HBS for varying time points. Times stated are from the beginning of
chem-LTD. Cultures were chilled on ice, then lysed in 125 mM NaCl,
25 mM HEPES pH 7.5, 0.5% Triton X-100, plus protease inhibitors.
Lysates were cleared by centrifugation, then incubated with 2mg
anti-p34 antibody for 2 h on ice. Protein A-sepharose beads were
added and rotated at 41C for 1 h, followed by four to five washes in
lysis buffer. Bound proteins were then detected by western blotting.

Calcium-dependent co-IPs were carried out as described (Hanley
and Henley, 2005), using 2mg anti-p34 antibody for the co-IP.

Electrophysiology
Slices were visualised using combined IR/DIC and fluorescence
microscopy with an Olympus BX51WI upright microscope. Whole-
cell patch-clamp recordings were made from visually identified
CA1 pyramidal neurons in overnight cultured, virally transduced
hippocampal slices. Recordings were made in ACSF containing the
following (mM): 119 NaCl, 2.5 KCl, 1 NaH2PO4.H2O, 26.2 NaHCO3,
11 glucose, 1.3 MgSO4, 2.5 CaCl2 and 0.05 picrotoxin saturated with
95% O2, 5% CO2. The intracellular solution was composed as
follows (mM): 117 CsMeSO3, 8 NaCl, 10 HEPES, 5 QX314, 4 ATP-Mg.
0.3 GTP-Na, 0.5 EGTA adjusted to pH 7.4 with CsOH and B290
mOsM. For AMPAR rectification measurements, 0.1 mM spermine
was added to the intracellular solution and 50mM D-AP5 to the
extracellular solution. In all experiments, the CA3 region was

severed from the hippocampal slice prior to placement in the
perfusion chamber to minimise recurrent excitation.

Schaffer collateral synaptic pathways were stimulated using two
bipolar tungsten electrodes placed in stratum radiatum of the CA1
region, one towards CA3 and the other towards the subiculum.
For EPSC rectification and amplitude measurements, a fluorescent
transduced CA1 pyramidal cell was first identified for recording
followed by a neighbouring non-transduced cell. For LTD experi-
ments, individual transduced cells were recorded in each slice.
Stable baseline recordings of 10 min were made at a holding
potential of �70 mV and a stimulation frequency of 0.1 Hz for each
pathway. The LTD induction protocol consisted of 300 stimuli at
1 Hz given to the test pathway while holding the membrane
potential at �40 mV. LTD was assessed 26–30 min after the
induction protocol by statistical comparison between control and
test pathways (paired Student’s t-test).

EPSC amplitudes were measured at a holding potential of
�70 mV, EPSC rectification at holding potentials of �70 mV, 0 mV
and þ 40 mV. For rectification analysis, a ratio of the I/V plot
slopes between �70 mV and 0 mV and between 0 mV and þ 40 mV
data was calculated to generate a rectification index (RI¼
Gradientþ 40 mV/Gradient�70 mV). EPSC rectification and amplitudes
were compared between transduced and non-transduced cells in the
same slice (paired Student’s t-test).

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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