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Prediction of soil cadmium 
distribution across a typical area of 
Chengdu Plain, China
Qiquan Li1, Changquan Wang1, Tianfei Dai1,2, Wenjiao Shi3,4, Xin Zhang1, Yi Xiao1, Weiping 
Song5, Bing Li1 & Yongdong Wang1

A suitable method and appropriate environmental variables are important for accurately predicting 
heavy metal distribution in soils. However, the classical methods (e.g., ordinary kriging (OK)) have 
a smoothing effect that results in a tendency to neglect local variability, and the commonly used 
environmental variables (e.g., terrain factors) are ineffective for improving predictions across plains. 
Here, variables were derived from the obvious factors affecting soil cadmium (Cd), such as road traffic, 
and were used as auxiliary variables for a combined method (HASM_RBFNN) that was developed 
using high accuracy surface modelling (HASM) and radial basis function neural network (RBFNN) 
model. This combined method was then used to predict soil Cd distribution in a typical area of Chengdu 
Plain in China, considering the spatial non-stationarity of the relationships between soil Cd and the 
derived variables based on 339 surface soil samples. The results showed that HASM_RBFNN had lower 
prediction errors than OK, regression kriging (RK) and HASM_RBFNNs, which didn’t consider the spatial 
non-stationarity of the soil Cd-derived variables relationships. Furthermore, HASM_RBFNN provided 
improved detail on local variations. The better performance suggested that the derived environmental 
variables were effective and HASM_RBFNN was appropriate for improving the prediction of soil Cd 
distribution across plains.

Heavy metals in the soil are crucial factors of environmental and food quality and can threaten human health 
through the food chain1, 2. In recent decades, heavy metal pollution of soils has become a globally recognized 
environmental issue1, 3, 4. To evaluate the potential risks to humans and the environment, there is a growing 
concern about the spatial distributions of soil heavy metals in the environment because an inaccurate estimation 
of soil heavy metal distributions will result in considerable bias in risk assessment1. Soil sampling analysis can 
provide highly accurate data of soil heavy metals at sampling sites, but these sampling points are sparse because 
of the laborious sampling process and the expensive costs for sample analysis in the lab5. Therefore, methods of 
spatial distribution modelling are required to obtain accurate spatial distribution maps of soil heavy metals from 
limited point observations for risk control.

Several classical methods, such as kriging, inverse distance weighting and splines, are extensively used to 
estimate the spatial distributions of soil heavy metals in soil pollution investigations1; nevertheless, each of 
these methods has its own limitations1, 5. These classical methods, which predict the soil heavy metal contents 
of untested locations based on the neighbouring soil samples and the spatial autocorrelation of soil sampling 
data6, all have a smoothing effect that tends to underestimate the local high values and overestimate the local low 
values7. This smoothing effect may result in a failure to recognize local variation and thereby produce inaccu-
rate spatial distributions of soil heavy metals in the soil pollution assessment process, which can affect relevant 
environmental decisions1. As a result of higher population densities, more intensive agricultural practices, rapid 
urbanization and industrialization, as well as natural sources, heavy metal pollution has become quite serious and 
the spatial distributions of heavy metals tend to be more complex across plains1, 8–11. Previous studies of soil heavy 
metals across plains have shown that anthropogenic factors, such as roads and crop rotation systems, as well as 
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geogenic sources, can have substantial impacts on soil heavy metal content and can lead to high local variability 
in soil heavy metal distributions9, 11. Due to the limitations of the classical methods, a more effective spatial distri-
bution modelling method is needed for predicting soil heavy metal distributions across plains.

In recent studies, a methodological framework that predicts the spatial distribution of soil properties based 
on both the environmental correlation between a soil variable and environmental parameters and the spatial 
autocorrelation in the residuals of the soil variable has been proven to be effective for obtaining more accurate 
spatial information on soil properties and has received increasing attention5, 6, 12–18. With this framework, a com-
bined method is developed based on the premise that the deterministic component of the targeted soil variable 
caused by correlated environmental factors can be explained by a regression model while the spatially varying but 
dependent component can be described by the prediction residuals of the linear regression model and captured 
by the classical methods such as ordinary kriging (OK)6, 13, 15–19. For instance, regression kriging (RK), which 
has been widely employed in many studies6, 15, 16, 19, is the typical combined method that uses multiple linear 
regression model (MLR) to capture the relationships between soil and the environmental factors and uses OK to 
interpolate regression residuals to prediction grids.

However, the commonly used factors, such as terrain factors, land use and soil type, cannot effectively repro-
duce the spatial variability of the soil heavy metals in plains because of the gently undulating terrain, the relatively 
homogeneous parent material and soil type, and other anthropogenic factors such as traffic road9, 11 and different 
rotation systems of farmland11, 20, 21 that have great impacts on soil heavy metals. Therefore, new environmental 
covariates rather than the above commonly used environmental factors should be employed as auxiliary variables 
in predicting soil heavy metal distributions across plains. Moreover, the relationships between soils and environ-
mental factors are often nonlinear and spatial non-stationary, suggesting that the nonlinear relationships vary 
across space6, 12; thus, a single linear regression model is unlikely to effectively capture such complex relationships 
for all subareas in a regional study14. In addition, although OK is the most commonly used classical method in 
soil science and can provide the best linear unbiased estimates, this method is based on an assumption (intrinsic 
stationarity) that may not be met in practice22. Recent studies have found that the radial basis function neural net-
work (RBFNN) approach can perform better than MLR due to its capacity to capture the complex relationships 
between soils and the environmental factors12, 15, and a new approach, called high accuracy surface modelling 
(HASM), developed on the basis of a fundamental theorem of surfaces by Yue et al.23–26, can outperform the three 
classical methods for predicting soil properties16, 22. Both approaches provide new tools for predicting soil heavy 
metal distributions across plains based on the methodological framework of the combined methods.

Cadmium (Cd) is an extremely important pollutant among the various heavy metal elements because of its high 
transfer rate from soil to plants and strong bio-toxicity27, 28. Soil Cd has become an important environmental pol-
lutant around the world2, 4, 28–30 and was also found to be a serious pollutant on the Chengdu Plain of China11, 31, 32.  
Previous studies have shown that geological origin, road distribution and crop rotation systems had great influ-
ences on soil Cd in the farmland of the Chengdu Plain11, 32. This study aimed to develop a method to predict 
soil Cd distribution in a central area of the Chengdu Plain. The specific objectives were (1) to derive new envi-
ronmental variables from the factors noted above; (2) to develop a combined method (HASM_RBFNN) using 
HASM and RBFNN to predict the spatial distribution of soil Cd that considers the nonlinearity and the spatial 
non-stationarity of the relationships between soil Cd and the derived environmental covariates; and (3) to eval-
uate its performance compared with that of the OK, RK and HASM_RBFNNs which did not consider the spatial 
non-stationarity of the relationships.

Results
Correlation between soil Cd and the environmental covariates.  The relationships between soil Cd 
and the environmental factors are shown in Fig. 1a–f. Soil Cd content was negatively correlated with the distance 
to the Minjiang River; soil Cd content declined significantly with increasing distance to the Minjiang River within 
10 km of the Minjiang River (Fig. 1a). Moderate-Resolution Imaging Spectroradiometer (MODIS) normalized 
difference vegetation index (NDVI) also showed a negative correlation with soil Cd (Fig. 1b). Primary and sec-
ondary roads had impacts on soil Cd up to approximately 1.2 km and 0.2 km from the roads, respectively, and 
the impacts were more significant within 0.5 km and 0.1 km of these types of roads (Fig. 1c and d), which led to 
positive correlations between soil Cd and the densities of the two grades of roads within a 500 × 500 m and a 
100 × 100 m grid, respectively (Fig. 1e and f).

According to regression analysis (Table 1), the four derived factors all had significant impacts on soil Cd 
(p < 0.05 or p < 0.01). Distance to the Minjiang River, MODIS NDVI and the densities of primary and secondary 
roads contributed 22.0%, 12.8%, 1.4% and 5.7% of soil Cd variability, respectively. However, the correlations 
changed in different subareas. Within 10 km of the Minjiang River, soil Cd showed significant negative correla-
tions with MODIS NDVI and the distance to the Minjiang River and positive correlations with the densities of 
both grades of roads, while soil Cd only showed significant correlations with MODIS NDVI and the density of 
primary roads beyond 10 km of the Minjiang River (Table 2).

Comparison of the prediction accuracies of different methods.  The prediction errors, including the 
mean absolute error (MAE), root mean square error (RMSE) and mean relative error (MRE), of different meth-
ods for the independent validation points are listed in Table 3. The results indicated that HASM_RBFNN could 
achieve the smallest prediction errors, followed by HASM_RBFNNs, RK and OK, indicating that HASM_RBFNN 
was the most accurate method and the derived factors and the selected approached for establishing the combined 
method could contribute to the improved prediction accuracy of soil Cd distribution across the study area.

Comparison of the prediction maps created by different methods.  The spatial distribution maps of 
soil Cd predicted by the four methods are illustrated in Fig. 2 (a–d). The prediction maps of soil Cd distribution 



www.nature.com/scientificreports/

3SCIenTIfIC REPOrTS | 7: 7115 | DOI:10.1038/s41598-017-07690-y

obtained from the four methods exhibited similar spatial patterns, which showed that soil Cd was relatively 
higher in the subarea that is closest to the Minjiang River. However, differences among the prediction results of 
the four methods were obvious (Fig. 2). HASM_RBFNN obtained the largest prediction ranges that were closest 
to the observed values, followed by HASM_RBFNNs and RK, while OK had the narrowest prediction ranges 
among the methods. The prediction map produced by OK showed rather gradual transitions with limited detail 
and could not accurately reproduce the local variability (Fig. 2d). Conversely, HASM_RBFNN, HASM_RBFNNs 
and RK performed better, with more detail in the prediction results (Fig. 2a–c), indicating that the methods uti-
lizing the derived environmental covariates as auxiliary variables could significantly improve the performance 
of local variability reproduction. Moreover, OK produced soil Cd maps with much larger areas of high value 
(>0.32 mg·kg−1), indicating that the points with high values of soil Cd had great impacts on the prediction results 

Figure 1.  Relationships between soil Cd content and distance to the Minjiang River (a), MODIS NDVI (b), the 
distances to primary (c) and secondary (d) grade roads, and the density of primary (e) and secondary (f) grade 
roads.

Factors Regression equation R2 F p

Distance to the 
Minjiang River

Y = −0.039 ln 
(X) + 0.306 0.220 94.908 <0.01

MODIS NDVI Y = −0.423X + 0.451 0.128 49.354 <0.01

Density of 
primary roads Y = 0.009X + 0.211 0.014 4.931 0.027

Density of 
secondary roads Y = 0.005X + 0.202 0.057 20.277 <0.01

Table 1.  Results of regression analysis using different factors as independent variables.
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Subareas
Sample 
number

Distance 
to the 
Minjiang 
River

MODIS 
NDVI

Density 
of 
primary 
roads

Density of 
secondary 
roads

Within 
10 km 
of the 
Minjiang 
River

84 −0.44** −0.64** 0.25* 0.43**

Beyond 
10 km 
of the 
Minjiang 
River

189 −0.02 −0.12* 0.14** −0.01

Table 2.  Relationships between soil Cd content and the factors in different subareas.

Methods
Sample 
number MAE RMSE MRE

HASM_RBFNN 66 0.034 0.042 15.715

HASM_RBFNNs 66 0.036 0.045 16.622

RK 66 0.037 0.046 17.746

OK 66 0.040 0.051 18.083

Table 3.  Prediction errors of the different methods for the independent validation points. MAE, mean absolute 
error; RMSE, root mean square error; MRE, mean relative error; OK, ordinary kriging; RK, regression kriging; 
HASM_RBFNN, the combined method (HASM_RBFNN) developed using high-accuracy surface modelling 
(HASM) and radial basis function neural network (RBFNN) modelling, taking into account the spatial non-
stationarity of the relationships between soil Cd and the auxiliary variables; HASM_ RBFNNs, the combined 
method (HASM_RBFNN), without taking into account the spatial non-stationarity of the relationships.

Figure 2.  The spatial distribution maps by HASM_RBFNN (a), HASM_RBFNNs (b), RK (c) and OK (d). (OK, 
ordinary kriging; RK, regression kriging; HASM_RBFNN, the combined method (HASM_RBFNN) developed 
using high-accuracy surface modelling (HASM) and radial basis function neural network (RBFNN) modelling, 
taking into account the spatial non-stationarity of the relationships between soil Cd and the auxiliary variables; 
HASM_RBFNNs, the combined method (HASM_RBFNN), without taking into account the spatial non-
stationarity of the relationships.). All the maps were generated in ArcGIS10.1, http://www.esrichina-bj.cn/
softwareproduct/ArcGIS/.

http://www.esrichina-bj.cn/softwareproduct/ArcGIS/
http://www.esrichina-bj.cn/softwareproduct/ArcGIS/
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surrounding these points, which overestimated the soil Cd contents of these areas. Prediction maps by HASM_
RBFNNs and RK showed some areas with soil Cd exceeding 0.32 mg·kg−1 along roads in the eastern region of the 
study area, which was inconsistent with the measured data (Fig. 2e), while the prediction map by HASM_RBFNN 
was more consistent with the actual soil Cd distribution (Fig. 2a).

Discussion
Effects of environmental factors on soil Cd.  According to the semivariogram analysis (Table 4), the 
ratio of nugget to sill was 0.437, suggesting that soil Cd in this study area was determined by the combined effects 
of natural and anthropogenic sources. Regression analysis (Table 1) further indicated that a natural factor (dis-
tance to the Minjiang River) was a more important factor than the anthropogenic sources including roads and 
MODIS NDVI that could reflect the differences between rice-wheat and rice-rapeseed rotation systems based on 
our calculation method. This result was in agreement with previous studies on the Chengdu Plain11, 32, 33.

The soil parent material of the study area mainly arrives via river transportation from the Longmen 
Mountains, located to the northwest, where the geological background value of soil Cd is 0.376 mg.kg−1; in fact, 
the Cd contents of Carboniferous, Devonian and Sinian outcrops in this mountain range can be up to 0.659 mg.
kg−1 11, 34. A previous study also showed that Cd contents in the first terrace and stream sediment of the Minjiang 
River were 0.27 and 0.53 mg.kg−1, respectively35. The distance from the Minjiang River reflects the differences of 
the sedimentation process of the parent material and the formation time of the soil. The shorter the distance, the 
more recent the soil deposition and the more similar the soil to the parent material, which may account for the 
fact that soil Cd content negatively correlated with the distance to the Minjiang River (Fig. 1a).

The differences between the two rotation systems were related to the different management measures per-
taining to fertilizers, pesticides and the aboveground straws. For example, wheat straw was often returned to the 
field, while rapeseed straw was always removed in this area. Furthermore, previous studies have indicated that 
the Cd content in rapeseed is larger than in wheat21, 22. The different management measures for aboveground 
straw, different Cd content and the different biomass of wheat and rapeseed may partially result in higher soil Cd 
content in the rice-wheat rotation systems regardless of any differences in fertilizer management11. In this study, 
the average MODIS NDVI, calculated from the MODIS NDVI of February, July and December of 2006 to 2012, 
could reflect the differences in the vegetation cover between the two rotation systems as well as soil conditions, 
where high NDVI values correspond to rice-rapeseed rotation systems and low NDVI values may correspond to 
rice-wheat rotation systems. This condition led to the negative correlation between soil Cd and MODIS NDVI 
(Fig. 1b).

High values of soil Cd were found along roads (Fig. 1c and d), which is consistent with other studies9, 36. 
For instance, Zhang reported that Cd is a priority concern as it has the highest contamination factor along the 
Qinghai–Tibet highway36. Khan found that soil Cd in the roadside soils is related to the road grades; the soil Cd is 
highest in the roadside soils of primary roads, followed by those of secondary and tertiary roads9. In the present 
study, primary roads were found to have a more far-reaching impact on soil Cd (Fig. 1c and d), mainly because of 
the heavier traffic flows. However, the density of secondary roads was much higher than that of primary roads in 
the study area (Fig. 3c), which resulted in the fact that the density of secondary roads could explain more of the 
soil Cd variability than primary roads (Table 1).

The effectiveness of the environmental covariates for improving the prediction.  Soil is the prod-
uct of complex interactions between environmental factors, such as terrain factors, land use and parent material6, 12.  
The spatial distribution of soil properties may vary significantly within a short horizontal distance due to various 
environmental factors13, 16. It is difficult to obtain accurate predictions in the absence of the environmental aux-
iliary variables.

Many researchers have shown that the use of the auxiliary information could improve the accuracy of the pre-
dictions5, 12–17. However, the commonly used factors are not the most effective auxiliary variables for the predic-
tion methods in this plain area due to the gently undulating terrain, homogeneous parent material and soil type 
in our study area. The results of a correlation analysis suggested that the geological origin might determine the 
overall spatial trends of the soil Cd distribution, while crop rotation systems and traffic contributed further local 
variability across the study area (Tables 1 and 4). These obviously influential factors cannot be ignored in an effort 
to produce a more accurate spatial distribution map of soil Cd. In this study, the environmental covariates were 
derived from these obviously influential factors and used as auxiliary variables for the prediction methods. The 
results showed that the methods that employed the derived environmental factors as auxiliary variables (includ-
ing RK, HASM_RBFNN and HASM_RBFNNs) obtained a higher degree of accuracy and greater detail than the 
prediction results from OK, which only predicted soil Cd from the neighbouring sampling points (Table 3 and 
Fig. 2), a finding that was consistent with previous studies5, 12–17. This result suggested that the derived environ-
mental variables were effective for improving the prediction results and it was feasible for our approach to derive 
the auxiliary variables from the obviously influential factors.

Variables Models
Nugget 
(C0)

Sill 
(C0 + C)

Nugget/
sillC0/
(C0 + C)

Range 
(km) R2

Soil Cd Exponential 0.038 0.087 0.437 25.2 0.968

Regression residuals Gaussian 0.0075 0.017 0.441 20.7 0.913

Table 4.  Semivariogram parameters of soil Cd and the regression residuals.
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The performance of HASM_RBFNN for reducing predictive error.  HASM_RBFNN showed the best 
performance among the four prediction methods (Table 3 and Fig. 2), which could be attributed to the following 
factors. First, the RBFNN model has been proven to be more effective than MLR in capturing the relationships 
between soil and the environmental factors12, 15. Other researchers have also found that MLR was not appropri-
ate because the MLR model with inclusion of auxiliary information may deteriorate the spatial structure of the 
target soil property37. In the study area, the relationships between soil Cd and the environmental variables were 
complex and included a curvilinear relationship between soil Cd and the distance to the Minjiang River (Table 1 
and Fig. 1), which suggested that the artificial neural network model was more appropriate. Second, the output 
of HASM satisfies the iteration stopping criterion, which is determined by the application requirement for accu-
racy5. Typically, soil heavy metal contents of samples from high pollution risk areas are local spatial outliers38. 
This phenomenon was also found in the much higher contents of soil Cd along the roads (Fig. 1c and d) in our 
study. OK has a smoothing effect and predicts soil Cd content based on the neighbouring soil samples, which 
underestimates the local high values and overestimates the values around the samples with higher values1. In 
contrast, HASM is a new technique based on a fundamental theorem of surfaces that can generate less error in 
areas with high local variability through its algorithm and a large enough iteration number16, 22, which leads to 
both HASM_RBFNN and HASM_RBFNNs having larger prediction ranges than those of RK and OK and smaller 
areas with high values (>0.32 mg·kg−1) in the prediction maps (Fig. 2). Finally, the spatial non-stationarity of the 
relationships between soil Cd and the derived environmental covariates was considered in HASM_RBFNN. The 
superiority of this consideration could be easily demonstrated from the prediction results along the roads in our 
study. Although the density of primary roads had significant impacts on soil Cd (Table 2), the cardinal values 
of soil Cd content were largely different in the two subareas due to the different geological background values 
(Figs 1a and 3e). This condition resulted in overestimation along primary roads beyond 10 km of the Minjiang 
River and underestimation along primary roads within 10 km of the Minjiang River when only one model was 
used to capture the relationships between soil Cd and the environmental covariates across the entire area. This 
underestimation finally led to an inaccurate estimation of soil Cd along the roads and narrower prediction ranges 
of HASM_RBFNNs and RK than that of HASM_RBFNN.

Limitations.  Although the selected environmental factors had significant impacts on soil Cd distribution, 
the relatively low correlation coefficients between soil Cd and the four factors suggested the complexity of the 
relationships between soil Cd and the environmental factors, and other influential factors, such as fertilization 
management for specific locations and the distribution of chemical factories that could lead to high local var-
iations of soil Cd on the Chengdu Plain33, were not included due to a lack of data. Employing more relevant 
environmental factors as auxiliary variables could further improve the prediction accuracy. Moreover, the 
resolution of environmental covariates and the best size of the grid that was used to calculate the road density 
should be further determined based on the prediction results. These limitations should be considered in the 
future studies.

Methods
HASM_RBFNN and HASM_RBFNNs.  The observation of soil Cd at the soil sampling point is divided into 
two components, which can be expressed as

= +Z x y f x y r x y( , ) ( , ) ( , ) (1)i j i j i j

where Z(xi, yj) is the measured soil Cd content at sampling point (xi, yj); (xi, yj) are the coordinates; f(xi, yj) is the 
predicted soil Cd content based on thevarious environmental factors, while r(xi, yj) is the residual that is the spa-
tially variable but dependent component; the residual is computed by subtracting f(xi, yj) from the original value 

Figure 3.  The location of the study area in Sichuan Province (a), the digital elevation model (DEM) and the soil 
sample distribution in the study area (b), and the spatial distribution of roads and the Minjiang River (c). All the 
maps were generated in ArcGIS10.1, http://www.esrichina-bj.cn/softwareproduct/ArcGIS/.

http://www.esrichina-bj.cn/softwareproduct/ArcGIS/
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of soil Cd content. The two components are assumed to be mutually independent and can be predicted by RBFNN 
and HASM, respectively. The RBFNN model was used to predict f(xi, yj) from the environmental covariates as 
follows:

=f x y RBFNN X X X X( , ) ( , , , ) (2)i j 1 2 3 4

where X1, X2, X3 and X4 represent the distance to the Minjiang River, the densities of primary and secondary 
roads, and NDVI at sampling point (xi, yj), respectively. The RBFNN model includes three different layers12: a 
layer of input neurons providing input variables to the network, a hidden layer of RBF neurons that are directly 
connected to the output layer, and a layer of output neurons. The Gaussian function is the most commonly used 
RBF as the activation function of the hidden layer and can be expressed as follows:

ψ
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
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For sufficiently small h, the finite difference approximation of u x y( , )x  and u x y( , )y  could be expressed as,
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For sufficiently small h, the finite difference approximation of u x y( , )xx  and u x y( , )yy  could be expressed as,
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If u{ }i j,  are the sampled values of u at sampling points x y{( , )}i j , ui j
n
,  ( ≥n 0, ≤ ≤ +i0 I 1 and ≤ ≤ +j0 J 1) 

are the nth iteration values of lattices whose centres are points of x y( , )i j , in which = u ui j i j,
0

,  and 
u{ }i j,  are the 

interpolated values based on the sampled values u{ }i j, . In terms of numerical mathematics, the (n + 1) th iterative 
formulation of finite difference of basic equations of HASM given by (6) could be formulated as,
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The matrix formulation of HASM master equations can be respectively expressed as,
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1  are 
respectively coefficient matrix and right-hand item vector of Eq. (17), A2 and b n

2  are respectively coefficient matrix 
and right-hand item vector of Eq. (18).
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, the following equality-constrained least squares problem can be developed to make the 

interpolated values equal to or approximate to the sampled values at the sampling points,
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where − ⋅ + =C k i J j( , ( 1) ) 1 and =d k u( ) i j,  which means that the sampled value is ui j,  at the k th sampling 
point x y( , )i j .

To solve the algorithm (21) which is the least squares problem, a positive weight λ is introduced on the basis 
of the well known method of weights. The parameter λ is the weight of the sampling points and determines the 
contribution of the sampling points to the simulated surface. For sufficiently large λ, the algorithm (21) can be 
transferred into unconstrained least squares approximation,
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In terms of the Gauss-Codazii equation set, the iteration stopping criterion of HASM is formulated as
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G
y , and =Q G

E
x ; et is the iteration stopping criterion of 

HASM determined by the application requirement for accuracy.
The application of HASM_RBFNN includes four steps: based on the modelling points, two specific RBFNN 

models were first trained using a different number of hidden layer nodes and spread constants for the two subar-
eas including within and beyond 10 km of the Minjiang River. The best combinations of the two parameters were 
tested and determined for the RBFNN configurations, which presented a minimum value of RMSE for the vali-
dation points. Second, the two trained RBFNN models were used to predict f(xi, yj) for the two subareas with the 
layers of environmental covariates and to calculate the prediction residuals of RBFNN for the modelling points. 
Third, HASM was then used to predict the spatial distribution of the prediction residuals of RBFNN. Finally, the 
RBFNN prediction was summed to the result of HASM as the final prediction of HASM_RBFNN.

To evaluate the performance of the method without considering the spatial non-stationarity of the relation-
ships between soil Cd and the derived environmental covariates, HASM_RBFNNs was established, which only 
trained one specific RBFNN model for the entire study area.

OK.  OK is the commonly used and classical method in soil science that is based on observations of a target soil 
variable and of corresponding spatial positions. In this study, the experimental semivariogram was fitted using 
authorized theoretical models, including linear, Gaussian, spherical and exponential models. The model with the 
smallest residual sum of squares (RSS) was chosen to provide the key parameters for spatial prediction by the 
Kriging procedure in the Geostatistical Analyst extension in ArcGIS. The semivariogram parameters of the best 
model are listed in Table 4. For the number of the closest samples of OK, we chose the best one from 5 to 30 with 
a 5 step interval.
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RK.  RK is a commonly used method that can introduce auxiliary environmental variables using a regression 
model into the kriging system14, 19. The implementation of RK involves three steps: establishing a multiple linear 
regression between the target variable and auxiliary variables, computing the regression residuals by semivario-
gram and OK, and summing the regression prediction and the OK prediction of the residuals. The process of RK 
in this study can be summarized as follows:

ε= +Z ZRK R OK

where ZRK is the predicted values of soil Cd content using RK, ZR is the predicted values of soil Cd content by a 
special multiple linear regression that used the four derived environmental covariates as independent variables, 
and εOK is the kriging values of the regression residuals by OK with the semivariogram model parameters com-
puted from the residuals (Table 4).

Assessment of the performance.  The prediction performance of each method was evaluated by the dif-
ference between the observations and predictions at validation sites using common indices, including the MAE, 
RMSE and MRE, which were defined as follows:
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where n is number of validation points (herein n = 66), Zobs (i) is the measured value of the ith point (mg/kg), and 
Zpred (i) is the predicted value of the ith point (mg/kg). Generally, lower values of MRE, RMSE and MRE indicate 
higher prediction accuracies.

Study Area and Data.  Study area.  The study area (30°41′ 39″–30°57′ 10″ N, 103°39′ 58″–103°58′ 36″E) is 
located in the central part of the Chengdu Plain in the western region of the Sichuan Basin, China. The entire area is 
a part of the Minjiang River watershed (Fig. 3a). The study area encompasses an area of 480.3 km2, and the elevation 
ranges from 532 to 673 m, with higher elevations in the northwest and lower elevations in the southeast (Fig. 3b). 
Q4 grey alluvium is the main parent material (more than 98%), and paddy soil (Fe-leachi-Stagnic Anthrosols) is 
the only soil type in this area according to the National Soil Census data. Farmland and built-up areas are the two 
main land use types, which account for 71.1% and 25.8% of the entire area, respectively. Rice-wheat rotation and 
rice-rapeseed rotation are the two main cropping systems in the farmland. Due to the high soil fertility, farmers 
may plant other crops after the rice harvest and before planting wheat or rapeseed. This area is characterized by 
developed transport due to the developed economy and the low relief. Road types include expressways, provincial 
roads, county roads, town roads and country roads, which have different traffic flow levels.

Soil samples and analysis.  A total of 339 sampling sites were determined on the basis of a 1.5 × 1.5 km2 grid 
from January to March in 2013 and were also away from built-up areas, woodland and water areas. Information 
regarding each site’s geographic coordinates and road conditions were carefully recorded (Fig. 3b). At each site, a 
topsoil sample (0–20 cm) was collected with three replicates around the sampling site. Each sample was air dried and 
passed through a 0.149 mm sieve. The soil Cd content of each sample was determined using graphite oven atomic 
absorption spectrometry after the soil sample had been digested using a four-acid mixture containing HCl, HNO3, 
HF, and HClO4. National standard reference materials, blank value assays and parallel determinations were used 
to verify the accuracy and precision of the measurements. To evaluate the performance of the prediction methods, 
80% of the samples (273 samples) were randomly selected as modelling points using the create subset function of 
the Geostatistical Analyst in ESRI ArcGIS and the other 20% (66 samples) were used as validation points (Fig. 3b).

Derivation of environmental covariates.  Based on previous studies11, 32, the geological origin, road dis-
tribution and crop rotation systems were selected as the environmental variables in this study. As the Chengdu 
Plain is an alluvial plain, distance to the main river can reflect the differences of sedimentation processes of the 
parent materials and the differences of the development levels of the soils11. In this study, the distance to the 
Minjiang River from each grid of the study area was calculated by buffer analysis in ArcGIS and was used as an 
auxiliary environmental variable. Road distribution data (.shp format) were obtained from the transportation 
department of Sichuan Province; these data contain information on the name, grade, date of construction, and 
other characteristics for each road. According to traffic flow, roads in this area were classified into two grades. The 
first grade includes expressways, provincial roads and county roads, while the second grade includes town and 
country roads. Correlation analysis showed that the primary and secondary roads had significant impacts on soil 
Cd content up to 500 m and 100 m away from the roads, respectively (Fig. 1c and d). The density of primary roads 
within 500 × 500 m grids and the density of secondary roads within 100 × 100 m grids were calculated based on 
the road distribution data and were used as two other auxiliary variables. The sixteen-day NDVI from MODIS 
bands was used to represent the different crop rotation systems. Considering the difference of vegetation cover 
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for the two rotation systems, MODIS NDVIs of February (when there is a large difference in vegetation cover 
between wheat and rapeseed crops), July (when rice has the largest vegetation cover) and December (probable 
crop between rice harvest and wheat or rapeseed planting) from 2006 to 2012 were selected to calculate the aver-
age NDVI value, which was then used as an auxiliary variable. All datasets of the environmental variables were 
resampled to a 10-m resolution in consideration of the computation time of the prediction methods.
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