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Schizophrenia is a severe neuropsychiatric disorder that affects approximately 0.5–
1% of the population. Response to antipsychotic therapy is highly variable, and it
is not currently possible to predict those patients who will or will not respond to
antipsychotic medication. Furthermore, a high percentage of patients, approximately
30%, are classified as treatment-resistant (treatment-resistant schizophrenia; TRS).
TRS is defined as a non-response to at least two trials of antipsychotic medication
of adequate dose and duration. These patients are usually treated with clozapine,
the only evidence-based pharmacotherapy for TRS. However, clozapine is associated
with severe adverse events. For these reasons, there is an increasing interest to
identify better targets for drug development of new compounds and to establish
better biomarkers for existing medications. The ability of antipsychotics to improve
psychotic symptoms is dependent on their antagonist and reverse agonist activities at
different neuroreceptors, and some genetic association studies of TRS have focused on
different pharmacodynamic factors. Some genetic studies have shown an association
between antipsychotic response or TRS and neurodevelopment candidate genes,
antipsychotic mechanisms of action (such as dopaminergic, serotonergic, GABAergic,
and glutamatergic) or pharmacokinetic factors (i.e., differences in the cytochrome
families). Moreover, there is a growing body of literature on the structural and functional
neuroimaging research into TRS. Neuroimaging studies can help to uncover the
underlying neurobiological reasons for such resistance and identify resistant patients
earlier. Studies examining the neuropharmacological mechanisms of antipsychotics,
including clozapine, can help to improve our knowledge of their action on the central
nervous system, with further implications for the discovery of biomarkers and the
development of new treatments. The identification of the underlying mechanisms of
TRS is a major challenge for developing personalized medicine in the psychiatric field
for schizophrenia treatment. The main goal of precision medicine is to use genetic and
brain-imaging information to improve the safety, effectiveness, and health outcomes
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of patients via more efficiently targeted risk stratification, prevention, and tailored
medication and treatment management approaches. The aim of this review is to
summarize the state of art of pharmacogenetic, pharmacogenomic and neuroimaging
studies in TRS.

Keywords: treatment resistant schizophrenia (TRS), genetic, pharmacogenetic, pharmacogenomic,
neuroimaging, precision medicine

INTRODUCTION

Schizophrenia is a disabling disease and many patients who
are affected will not be able to achieve their goals in most
areas of life. Schizophrenia outcome is quite heterogeneous, with
a course of illness characterized by different trajectories (Van
Eck et al., 2018). Antipsychotic medication has revolutionized
schizophrenia treatment, but approximately one-third of patients
show scarce or no response to these drugs (Kane, 2012). The
efficacy of antipsychotics for the initial treatment of psychosis is
now well established and early antipsychotics introduction in first
episode psychosis seems also to improve the long-term course
of schizophrenia. Moreover, the effectiveness of antipsychotics
maintenance treatment in schizophrenia management and in the
relapse prevention represents a therapeutic practice supported by
strong data (Goff et al., 2017). The Remission in Schizophrenia
Working Group (RSWG) established schizophrenia clinical
remission criteria, through the cut-off severity of some
characterizing symptoms of the disease (Andreasen et al., 2005).
However, clinical remission criteria, while necessary, are not
sufficient to explain schizophrenia full functional remission, not
taking into account other essential elements of recovery, such
as: cognitive performance, depressive symptoms, experiences
and daily functioning, quality of life and personal satisfaction
(Zipursky and Agid, 2015). Indeed, in the past, more attention
was focused on positive symptoms, giving less weight to negative
symptoms, cognitive and psychosocial functioning (Vita and
Barlati, 2018). It is now well established that positive symptoms
explain only a small part of the variance of psychosocial
functioning and that the greatest contribution to the functional
outcome of schizophrenia is given by negative symptoms,
cognitive and social cognitive impairment, as well as anxiety and
depression (Galderisi et al., 2014, 2016). Despite the presence of
effective antipsychotic drugs and the introduction of evidence-
based psychosocial interventions, the course of schizophrenia
is characterized by the alternation of remissions and relapses
and only a few patients are classified as meeting recovery
criteria (Zipursky and Agid, 2015). All this evidence leads to the
conclusion that, regardless of the crucial role of antipsychotics,
some patients who don’t achieve clinical and functional recovery
are defined as treatment-resistant schizophrenia (TRS) patients.
Epidemiological data from the scientific literature report that
approximately 30% of schizophrenic patients will develop TRS
during the course of their disease (Kane et al., 1988; Elkis and
Buckley, 2016). The first definitions of TRS were mostly based
on the persistence of positive symptoms, despite an adequate
antipsychotic treatment for doses and duration (Itil et al., 1966).
However, the most commonly used TRS definition in clinical and

research fields remains that of Kane’s clozapine study (Kane et al.,
1988). However, it has become clear that there is a need to revise
Kane’s resistance criteria, or some their variants, giving more
attention to psychosocial functioning and not only to positive
symptoms. Suzuki et al. (2012) proposed a broad definition of
TRS and suggested the criteria include a failure to respond to
two adequate doses and durations of antipsychotic treatment.
Furthermore, the authors also recommended a comprehensive
functional assessment. Recently, the National Institute for Health
and Clinical Excellence (NICE) has defined the criteria for
the TRS as an insufficient response to at least two different
sequential antipsychotic drugs at appropriate doses and taken for
an appropriate period of time (Nice Guideline, 2014).

Despite some efforts to standardize the resistance criteria
of schizophrenia, there is considerable discrepancy in current
clinical approaches. In addition to the NICE criteria, TRS
definitions have been proposed by other relevant treatment
guidelines, such as: the American Psychiatric Association (APA)
(Lehman et al., 2004), the Texas Medication Algorithm Project
(Moore et al., 2007), the Schizophrenia Patient Outcome
Research Team (PORT) (Buchanan et al., 2010), the World
Federation of Societies of Biological Psychiatry Guidelines
(Hasan et al., 2012), and the International Psychopharmacology
Algorithm Project (IPAP)1. All these TRS definitions are different
and exposed to a wide range of interpretations, potentially leading
to inconsistent clinical management and inaccurate treatment
(Howes et al., 2017). Furthermore, even in research field a wide
variety of TRS criteria have been applied in different studies.
Variation in criteria limits studies comparison, complicates
finding interpretation and their replication. Heterogeneity
of study designs and populations, including less restrictive
definitions of treatment resistance, may contribute to these
inconsistencies (Howes et al., 2017). To address this issue,
the Treatment Response and Resistance in Psychosis (TRRIP)
Working Group has developed consensus criteria and guidelines
on TRS, providing a fixed point for research and clinical
translation (Howes et al., 2017).

Aim of the Review
Currently, it is not possible to predict those patients will
or will not respond to antipsychotic treatment, and there
is a growing interest in identifying new targets for drug
development projects and better response biomarkers for
current medications. Various levels of evidence have shown
that treatment response and resistance in schizophrenia may be
associated with certain genetic factors and brain abnormalities

1http://www.ipap.org
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(Lally et al., 2016; Mouchlianitis et al., 2016). It is plausible that
both neurodevelopmental and neurodegenerative factors may
contribute to TRS, in terms of structural, functional brain
abnormalities, neurochemical abnormalities or dysregulated gene
expression (Elkis and Buckley, 2016). From this perspective, the
aim of this review is to summarize the genetic and neuroimaging
correlates associated with TRS, to uncover the underlying
neurobiological mechanisms of such resistance and to find
methods or markers for the early detection of this group of
patients. In particular, this review aimed to provide an integrated
point of view between genetics and neuroimaging regarding the
possible causes of TRS.

MATERIALS AND METHODS

Search Strategy
Electronic searches were performed using MEDLINE/PubMed,
PsycINFO, and EMBASE databases combining the
following search terms: “schizophrenia,” “pharmacogenetics,”
“pharmacogenomic,” “candidate gene study,” “genome wide
association study,” “GWAS,” “neuroimaging,” “Positron Emission
Tomography – PET,” “Single Photon Emission Computed
Tomography – SPECT,” “functional Magnetic Resonance
Imaging – fMRI,” “Magnetic Resonance Spectroscopy – MRS,”
“typical or first-generation antipsychotics – FGAs,” “atypical
or second-generation antipsychotics – SGAs,” “response,”
“resistance,” and “refractory.” Detailed combinations of the
above search terms are available from the authors on request.
Two of the authors (SB, AM) independently reviewed the
database to avoid mistakes in the selection of articles. In
addition, the reference lists of the included articles were carefully
hand-searched to identify other studies of possible interest.

Selection Criteria
All the studies, meta-analyses, and review articles on
pharmacogenetics, pharmacogenomic, structural and functional
neuroimaging related to TRS published until June 2018 were
included. Studies were included if they met the following criteria:
(a) being an original paper published in a peer-reviewed journal,
(b) being an English language paper, and (c) involving subjects
with TRS, defined according to established international criteria.
When the inclusion criteria for TRS were not clearly defined,
the study was excluded. Pharmacogenetics or neuroimaging
studies on pharmacokinetics or on antipsychotic side effects
were not considered.

RESULTS

Brain Structural and Functional
Abnormalities in Schizophrenia
Since the first MRI study of schizophrenia, the use of
this technique allowed the quantification of gray (GM) and
white matter (WM) and the measurement of discrete, cortical
and subcortical brain structures (Smith et al., 1984). Early
morphological studies of schizophrenia primarily assessed

specific brain regions of interest (ROIs) (Wible et al., 2001). More
recently, functional neuroimaging has provided a direct way of
investigating regional brain activity and the pathophysiology of
schizophrenia in vivo. The presence of multiple small structural
brain abnormalities in schizophrenia is now well established
(Vita et al., 2015). Results about the progressive brain changes
over time in schizophrenia are controversial, and the potential
confounding effects of antipsychotics on brain structure is still
under discussion. The presence of multiple structural brain
abnormalities has been demonstrated by a large number of
computed tomography (CT) and MRI studies in the past 40 years
and confirmed by several meta-analytic reviews (Olabi et al.,
2011; Fusar-Poli et al., 2013; Haijma et al., 2013; Vita et al., 2015).
These are predominantly evident in some cerebral regions, such
as the ventricular system, cortical GM and subcortical regions
(Shenton et al., 2001). Reductions in whole brain measures (3%)
and GM volume (2%), primarily in the frontal and temporal
lobes, and enlargement of the lateral ventricles (16%) are among
the most replicated findings. A small but significant reduction
was also found in the WM (1%) (Haijma et al., 2013). A more
exhaustive examination of regional brain structural abnormalities
has been accomplished by voxel-based morphometry (VBM)
studies, which confirmed earlier observed patterns of distributed
GM reductions in the bilateral medial frontal and temporal
regions, inferior parietal lobe, limbic and striatal regions, insula,
thalamus, and basal ganglia (Bora et al., 2011; Palaniyappan et al.,
2012). In their VBM meta-analysis, Bora et al. (2011) indicated
a reduction in GM density in the dorsal and rostral anterior
cingulate cortex (ACC), left lateral prefrontal areas, superior
frontal gyrus, and orbitofrontal and fusiform regions.

Additionally, studies of WM tracts showed evidence of
disorganization and an absence of alignment in white fiber
bundles in frontal and temporoparietal brain regions and
a reduction in WM diffusion anisotropy in schizophrenia
subjects (Burns et al., 2003; Davis et al., 2003). More
recently, diffusion tensor imaging (DTI) studies have identified
several regions with decreased fractional anisotropy, reflecting
altered WM connections and supporting the “disconnection
model of schizophrenia” (Ellison-Wright and Bullmore, 2009;
Crossley et al., 2017).

Regarding functional neuroimaging, this technique has been
used to study patterns of increased or decreased activity within
the brains of subjects with and without schizophrenia during
rest and various assigned behavioral tasks; these studies have
revealed that the affected parts of the central nervous system
(CNS) are not contained within a single brain region but
rather lie within neural networks that include numerous brain
regions (Gur and Gur, 2010). Functional brain abnormalities
in schizophrenia include alterations in information storage and
retrieval by the dorsolateral prefrontal cortex (dlPFC), alterations
in inhibitory responses to sensory stimuli by the ACC, deficits in
memory encoding and retrieval by the hippocampus, alterations
in sensory information reception and integration by the thalamic
nuclei, primary sensory cortices and multimodal cortices and
impairments in performance of cognitive tasks associated with
the basal ganglia, thalamus, and cerebellum (Wright et al., 2000;
Davis et al., 2003; Glahn et al., 2005). fMRI studies showed
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patterns of widespread alterations in task-induced activity, which
overlap with patterns of GM findings leading to one consistent
results that is a decreased activation of frontal regions during
cognitive tasks (Glahn et al., 2005; Minzenberg et al., 2009).
However, this finding surprisingly was not consistently replicated
when SPECT semiquantitative assessments were replaced by
fMRI (Callicott et al., 2003). Furthermore, functional studies
of social cognition and emotional processing suggested altered
responses of the amygdala and hippocampus, potentially with
respect to aversive stimuli (Li et al., 2010). The pathogenesis
of structural and functional alterations in schizophrenia is still
poorly understood, and only an ongoing integration of structural
data with functional imaging may offer more insight in this field
(Gur and Gur, 2010). Several longitudinal and cross-sectional
MRI studies examined the meaning of such brain abnormalities,
their static or progressive nature and their time of occurrence
(van Haren et al., 2008). Finally, some recent studies have been
reported that brain changes appear to be especially relevant in
the first years of illness (Schnack et al., 2016; van Haren et al.,
2016), although other studies have not confirmed these findings
(Roiz-Santiañez et al., 2015).

Brain Abnormalities in Schizophrenia:
Are They Reversible or Not?
In the last two decades, several studies have been conducted
for understanding if reported abnormalities could reversible or
not with some interventions. Among the first investigations,
Keshavan and collaborators have shown an ameriolation of GM
volume deficits in the superior temporal cortex and hippocampus
in schizophrenia patients (Keshavan et al., 1998). In a more
recent longitudinal study in a subgroup of first-episode psychosis
patients who presented a remitting course after approximately
18 months, has been obtained a reversal of temporal lobe GM
deficits (Schaufelberger et al., 2011). These results are consistent
with other findings about the brain volume deficits reversibility
in association with schizophrenia symptom improvement (de
Castro-Manglano et al., 2011; Roiz-Santiáñez et al., 2015;
Torres et al., 2016).

The longitudinal MRI studies further suggest that the degree of
progression of brain structural abnormalities over the course of
schizophrenia partially occurs with of the chronic antipsychotic
usage. However, according to Vita et al. (2015) the class of
antipsychotic is a key variable, because of more progressive GM
loss correlates with higher mean daily antipsychotic intake in
patients treated with at least one FGA, whereas less progressive
GM loss correlates with higher mean daily antipsychotic intake
in patients treated with SGAs only.

In addition, several neuroimaging studies on non-
pharmacological intervertions in schizophrenia, indicated
that cognitive remediation improves brain activation in two
main areas: the prefrontal and thalamic regions. Accordingly,
it has been suggested a positive effect of cognitive remediation
on brain functioning in terms of the functional reorganization
of neural networks, and structural changes were described
both in GM and WM, confirming a neuroprotective effect of
cognitive remediation (Penadés et al., 2017, 2019). Promising

results have been also obtained with cognitive behavioral
therapy (Mason et al., 2016, 2017) and physical aerobic exercise
(Svatkova et al., 2015; Malchow et al., 2016).

On the other hand, several well-conducted MRI investigations
have provided evidence that structural brain abnormalities
associated with the diagnosis of schizophrenia may progress
from the first psychotic episode to chronic disease stages,
particularly during the initial few years after illness onset, even
if these irreversible brain changes are restricted to subgroups of
patients with an unremitting disease course and poorer outcome
(Andreasen et al., 2013; Cannon et al., 2015).

Overall, literature data are controversial and further studies
will be needed to better understand if brain abnormalities are
reversible and which are not, at which stage of illness and with
which type of intervention. Despite these limitations, most robust
results demonstrate a reversibility of some brain abnormalities,
particularly in the early stages of the illness, in relation to
schizophrenia outcome.

Brain Structural Abnormalities in
Treatment-Resistant Schizophrenia
Ventricular enlargement is one of the variables most studied
in TRS. Early CT studies showed an inverse relationship
between degree of ventricular enlargement and antipsychotics
treatment response (Weinberger et al., 1979; Friedman et al.,
1992; Mitelman and Buchsbaum, 2007). These findings were
confirmed by subsequent CT studies, using also morphometric
techniques, such as ventricular brain ratio (VBR). Over the
last three decades, CT and then MRI cross sectional studies
including chronic patients have found an association between
ventricular enlargement and poor outcome (Friedman et al.,
1992; Mitelman and Buchsbaum, 2007). In particular, studies in
patients whose illness is progressive and resistant to treatment
have shown abnormalities such as ventricular enlargement and
decrease in GM (Mitelman and Buchsbaum, 2007; Mitelman
et al., 2010). Many subsequent studies tried to replicate these
findings, but a first meta-analysis of these early studies as
well as a critical review of this subject found no relationship
between ventricular enlargement and treatment response in
schizophrenia patients (Borgio et al., 2010). Several longitudinal
studies conducted on chronic patients (Davis et al., 1998) or
first psychotic episode patients (Mitelman and Buchsbaum,
2007) confirmed these structural changes in the brain and
found that they were progressive over the course of illness. In
particular, in the first study just mentioned, it has been shown
that “Kraepelinian patients” manifested left-sided ventricular
enlargement compared to treatment responsive patients followed
over the same 5-year follow-up period (Davis et al., 1998).

In an early ROI MRI study, Lawrie et al. (1995) found that
poorly responsive patients had lower volumes of most brain
structures than treatment responders, but no brain-imaging
variables were statistically related to the outcome. In a later
MRI study performed by the same research group, TRS patients
showed a tendency to greater atrophy than those were treatment
responsive (Lawrie et al., 1997). In this study, patients were
selected as dichotomous groups (matched for age, sex, and
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illness duration) of treatment-responsive and TRS patients using
a descriptive criteria: responsive patients showing a marked
reduction of symptoms and being able to return to the same social
situation; resistant cases showing severe residual symptoms and
requiring long-term institutional care.

In addition, in the MRI study performed by Buchsbaum
et al. (2003), schizophrenia patients with a good outcome had
larger relative mean putamen size, most marked for the dorsal
putamen and right hemisphere, than poor outcome patients or
normal controls. The authors suggested that the expansion of
putamen size may be a physiological correlate of antipsychotic
responsiveness and that small putamen size at disease onset may
be a predictor of poor outcome (Buchsbaum et al., 2003).

The GM decrease in total volume or localized reductions
in certain regions, such as the frontal, temporal and occipital
cortexes and ventral thalamus were identified in very poor
outcome schizophrenia patients (Mitelman and Buchsbaum,
2007). Overall, TRS showed a GM reduction particularly in
frontal, temporal, and occipital regions (Molina et al., 2008;
Quarantelli et al., 2014; Ahmed et al., 2015; Anderson et al., 2015)
compared with healthy subjects and a GM reduction particularly
in frontal regions (Lawrie et al., 1995; Mitelman et al., 2005;
Zugman et al., 2013; Quarantelli et al., 2014; Anderson et al.,
2015) compared with responders.

Recent studies using the VBM technique found significant
differences between TRS patients and non-TRS patients. Zugman
et al. (2013) showed that TRS patients showed a decrease
in cortical thickness in all brain regions in comparison to
healthy controls, with a marked decrease in dlPFC thickness
when compared to responder patients. Quarantelli et al. (2014)
showed more pronounced degrees of GM atrophy in TRS
patients, both compared to healthy controls and to responders
schizophrenic patients. Moreover, in an MRI cross-sectional
study, Anderson et al. (2015) found GM reductions both in TRS
and in clozapine-resistant schizophrenia (“ultra-TRS”) patients
(Anderson et al., 2015). In a longitudinal MRI study of TRS
patients switched to clozapine, Ahmed and colleagues found
a progressive regional brain volume loss in the prefrontal
cortex (PFC) and in the periventricular area and a global
cortical thinning, compared with healthy controls (Ahmed et al.,
2015). However, due to the heterogeneity of these studies, two
recent systematic reviews showed contrasting results concerning
reductions in GM in TRS patients (Nakajima et al., 2015;
Mouchlianitis et al., 2016).

Abnormalities of WM have been reported in the frontal,
parietal and temporal regions and have been associated with
poor outcomes (Mitelman and Buchsbaum, 2007; Molina et al.,
2008). Moreover, in a DTI study, TRS patients showed an
enlargement of the posterior corpus callosum, particularly the
splenium, and widespread disruptions to WM tract integrity
compared with healthy subjects (Holleran et al., 2014) and
enlarged WM volumes compared with treatment-responsive
patients (Molina et al., 2008; Anderson et al., 2015). In
addition, connectivity in TRS patients, compared to non-
TRS patients, showed a reduction in ventral striatum and
substantia nigra connections, and an alteration in the distribution
of corticostriatal connections (White et al., 2016). A recent

systematic review (Mouchlianitis et al., 2016) showed an increase
in basal ganglia WM in TRS, compared to schizophrenia patients
who were responsive to treatment.

In summary, TRS patients show greater GM reduction,
especially in frontal regions, and an increase in WM volume.
Despite these findings have been replicated, more research is need
to identify a neuroimaging profile able to recognize subject with
higher risk to not respond to antipsychotics and consequently
with higher vulnerability to develop TRS.

Brain Functional Abnormalities in
Treatment-Resistant Schizophrenia
Functional neuroimaging techniques offer indirect ways of
investigating brain activity in vivo. Functional neuroimaging data
showed that a lower striatal metabolism before antipsychotics
treatment was a predictor of a good clinical response and
that responders patients showed a greater increase in striatal
metabolism after antipsychotics therapy (Buchsbaum et al.,
1992a,b; Bartlett et al., 1998). A recent extensive review
(Nakajima et al., 2015) pointed out a pattern of hypometabolism
in the PFC and hypermetabolism in the basal ganglia. Similar
results support these findings; for example another recent
systematic review (Mouchlianitis et al., 2016) showed decreased
metabolism in frontotemporal regions and increased perfusion
in the basal ganglia in TRS. Moreover, some research groups
investigated whether disruptions in resting-state functional
connectivity were associated with TRS (Paul and Sharfman, 2016;
McNabb et al., 2018). Recently, in a fMRI study, Ganella et al.
(2017) assessed functional brain networks abnormalities in TRS
patients in comparison with healthy subjects, showing a global
brain functional connectivity reduction in patients. In particular,
this study revealed a decrease in temporal, occipital, and frontal
region (Ganella et al., 2017). Other studies focusing con brain
connectivity performed with different paradigms lead to similar
conclusion of a general functional connectivity decrease (Wang
et al., 2015; White et al., 2016; Vanes et al., 2018).

Neurotransmission in
Treatment-Resistant Schizophrenia:
Findings From Molecular Neuroimaging
Studies
Molecular neuroimaging provides a direct way of investigating
brain activity. In addition, various levels of evidence have
shown that treatment response and resistance in schizophrenia
can be associated genetic factors influencing gene involved in
the pharmacokinetics and pharmacodynamics of anti-psychotic
drugs. Indeed, a single nucleotide polymorphism (SNP), can
introduce a missense substitution, thus altering the encoded
protein and its function, or can affect non-coding regulatory
regions (promoter, 3′UTR, intronic regions), influencing RNA
transcription and splicing. Additionally, alterations in the
number of gene copies (CNV) can result in increased or
decreased levels of active protein present in the cells. Thus, the
combination of SNPs and/or CNVs in each individual determines
a unique profile for the activity of genes with an impact on the
response to different drugs.
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To understand the possible causes of brain changes in TRS,
genetics and neuroimaging, i.e., “imaging genetics,” provides
an integrated point of view. These studies suggest that TRS
is related to a variety of alterations and pathophysiological
mechanisms that implicate different neurotransmitter systems.
In particular, dopaminergic, serotonergic, glutamatergic, and
GABAergic dysregulation, as well as numerous other alterations
affecting other neural systems, have been demonstrated to play a
relevant role in treatment resistance.

Dopaminergic System
The dopaminergic system has been studied for a long time in
schizophrenia, since the dopamine hypothesis was formulated
in the 1960s after the discovery of the antipsychotic actions of
chlorpromazine, and it was enormously useful as a heuristic
principle for the interpretation of the phenomenology features
of schizophrenia. The dopamine hypothesis assumes that
hyperactivity of dopamine D2 receptor neurotransmission
in subcortical and limbic brain regions contributes to the
positive symptoms, while negative and cognitive symptoms can
be attributed to hypofunctionality of dopamine D1 receptor
neurotransmission in the prefrontal cortex (Nakata et al.,
2017). Indeed, antipsychotic (D2 antagonistic) treatment reduces
positive psychotic symptoms in most patients but there is
considerable heterogeneity in treatment response with roughly
one-third of patients showing insufficient clinical response
(Lindenmayer, 2000). Furthermore, there is variability regarding
the time to clinical response after antipsychotic treatment onset
(Emsley et al., 2006) and variability regarding the re-emergence
of symptoms despite sufficient D2-receptor blockade (Rubio and
Kane, 2017). In this context, dopamine receptors are among
the main targets of antipsychotic drugs and TRS patients have
shown reduced striatal dopamine synthesis capacity compared
who had responded to antipsychotic treatment (Demjaha et al.,
2012). The same research group found that patients with high
levels of glutamate in the ACC (as measured by MRS) and
with normal presynaptic dopamine synthesis (as measured by
PET) showed a poor antipsychotic treatment response (Demjaha
et al., 2014). Taken together, these results allow to hypothesize
a “non-dopaminergic” subtype of schizophrenia (Howes and
Kapur, 2014). As compared to the “hyperdopaminergic” subtype,
characterized by prominent striatal dopamine synthesis and
release capacity, the “non-dopaminergic” subtype exhibited
normal dopaminergic function, and the disorder symptoms were
not related to dopaminergic transmission. This classification
based on a neurobiological mechanism shows several advantages:
it could lead to the identification of PET scanning tests that
guide treatment choice at illness onset and could provide a basis
for research in order to develop new treatment options (Howes
and Kapur, 2014). Some studies suggested that glutamatergic
alterations may underlie the “non-dopaminergic subtype” of
schizophrenia. More specifically, treatment responders seem to
have more marked dopaminergic aberrations, whereas treatment
non-responders seem to have more marked glutamatergic
abnormalities (Howes et al., 2015).

Moreover, Roberts et al. (2009) examined dopaminergic
synapses at the electron microscopic level in postmortem caudate

of non-TRS and TRS patients. Despite the results of this study
should be confirmed by replication, because of the small sample
size, a good treatment response has been correlated with higher
density of dopaminergic synapses, which supports a biological
basis for TRS (Roberts et al., 2009).

Given the central role of the dopaminergic neurotransmitter
system in the antipsychotic response, related genes have been
widely investigated in studies on treatment response/resistance in
schizophrenia, focusing in particular on gene variations encoding
the dopamine D2 (DRD2) and D3 (DRD3) receptors (Arranz
et al., 2011; Reynolds, 2012a; Brandl et al., 2014). Among
the single SNPs in the DRD2 gene, the most investigated is
rs1800497 (Taq1A). The A1 allele of the TaqIA polymorphism,
has been shown to reduce gene expression and therefore
has also been hypothesized to influence treatment response
(Brandl et al., 2014). However, studies performed to date have
reported inconsistent findings (Schäfer et al., 2001; Lencz et al.,
2006; Kohlrausch et al., 2008). In addition, subsequent studies
demonstrated that TaqIA is located in exon 8 of ankyrin
repeat and kinase domain containing 1 (ANKK1) gene, located
close to DRD2, where it causes a non-conservative amino acid
substitution (Neville et al., 2004; Lucht and Rosskopf, 2008). It
is not clear if ANKK1 gene plays any role in neuropsychiatric
disorders and drug response variability previously associated with
Taq1A or if this polymorphism is in linkage disequilibrium (LD)
with some other variants in DRD2 gene actually responsible
for the effects on the dopamine transporter. For other DRD2
polymorphisms, such as TaqIB, Ser311Cys, or A-241G, few
studies have described associations (Lane et al., 2004; Hwang
et al., 2005; Lencz et al., 2006; Zhang et al., 2010), but
contrasting data and an absence of replication make further
investigations necessary.

In the DRD3, the Gly9 variant of the Ser9Gly polymorphism
changes D3 receptor density (Jeanneteau et al., 2006; Prieto,
2017). Consequently, the impact of this variant concerning
antipsychotics response has been widely investigated (Arranz
et al., 2011; Reynolds, 2012a; Brandl et al., 2014), but as with
other receptor genes, such as DRD1, DRD4, DRD5, inconclusive
findings have been obtained (Hwang et al., 2010; Brandl et al.,
2014; Lally et al., 2016).

With a more complex approach, Pergola et al. (2017) studied
genetic variants in relation to the DRD2 gene co-expression
pathway in association with working memory behavior, the
related brain activity and the response to treatment. This study
showed that a DRD2 co-expression gene set enriched for protein-
coding genes associated with schizophrenia modulates PFC
function during working memory and response to D2 antagonist
antipsychotics. These data revealed important findings; DRD2
co-expression can parse schizophrenia risk genes into biological
pathways associated with intermediate phenotypes as well as with
clinically meaningful information.

Another interesting and well-characterized DRD2
polymorphism is the rs1076560 since it was associated with gene
function and response to treatment. This SNP is a regulatory
variant that decreases the expression ratio of DRD2 short isoform
relative to the long isoform (Zhang et al., 2007). Moreover,
it has also been associated with response to antipsychotic
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treatment, both alone and in interaction with another functional
polymorphism rs1130233 within the serine/threonine kinase 1
(AKT1) gene pertaining to a cAMP independent D2 signaling
pathway (Blasi et al., 2011). Furthermore, it has also been
associated with several schizophrenia-related phenotypes in
healthy individuals, such as increased activity of striatum
and prefrontal cortex and reduced performance in working
memory and attentional control tasks (Blasi et al., 2011;
Colizzi et al., 2015).

In conclusion, pharmacogenetic studies carried out on genes
involved in the dopaminergic system to date, have moderate
sample sizes and examined single or few polymorphisms in
selected candidate genes. Overall, most results remain conflicting,
and most associations fail to be replicated in large Genome
Wide Association Studies (GWAS) and meta-analyses (Liou et al.,
2012; Gressier et al., 2016; Hettige et al., 2016; Terzić et al.,
2016; Koga et al., 2017). The reported effect sizes for genetic
variants associated with antipsychotics are modest, and none of
them effectively predict the treatment response (Pouget et al.,
2014). However, such modest effect sizes are not surprising, given
the complexity and polygenicity of this endophenotype. Rare
variants in dopamine-related genes also seem to influence the
response to antipsychotics, as suggested by a recent analysis of
whole exome sequencing data in a large cohort of TRS patients
(Ruderfer et al., 2016).

Serotonergic System
A plethora of serotonin receptors, as well as transporter gene
polymorphisms, have been suggested as being involved in the
mechanism of action of antipsychotic responses in schizophrenia.
Although several studies have reported significant associations,
these results have not been consistently replicated. Of the 5-
HT receptors, the 5-HT2A receptor has been the most studied
in schizophrenia and relative treatments. The greatest number
of studied were focused on two polymorphisms, that are the
102T/C (rs6313), a synonymous coding region SNP, and 1438A/G
(rs6311), a promoter SNP that is in complete linkage with
102T/C and reportedly has functional effects on gene expression.
Moreover, several studies have investigated a further functional
non-synonymous coding region SNP, 452His/Tyr (rs6314). This
SNP has been found associated with response to antipsychotic
treatments, either alone (Arranz et al., 2011) or in combination
with the DRD2 polymorphism rs1076560 described above in
the dopaminergic system section (Blasi et al., 2015). A better
response to antipsychotics is reported for schizophrenia patients
with the combination of rs1076560 T and rs6314 CC genotypes,
in two small cohorts. This results suggest that the effect of 5-
HT2A variants on treatment response could be influenced by
a complex interaction with D2 receptor variants, given that
both receptors share the same intraneuronal molecular pathway
(de Bartolomeis et al., 2013).

In general, contrasting results have emerged; consequently,
there are no clear findings regarding the pharmacogenetics
of antipsychotics and 5-HT2A receptors. In detail, functional
variants of the serotonin 5-HT2A receptor gene were associated
with less amelioration in psychotic symptoms following the
treatment with clozapine (Arranz et al., 2011), olanzapine

(Ellingrod et al., 2002) and risperidone (Lane et al., 2002), but
negative associations were also reported for the same drugs
(Masellis et al., 1995; Malhotra et al., 1996a; Lin et al., 1999;
Thomas et al., 2008).

In early studies, the 5-HT2C receptor has also been shown
to have some associations of potentially functional SNPs with
antipsychotic response with inconclusive findings (Masellis et al.,
1995; Sodhi et al., 1995; Malhotra et al., 1996b; Rietschel et al.,
1997; Ellingrod et al., 2002; Thomas et al., 2008; Liu et al., 2010).
However, most part of pharmacogenetic studies of 5-HT2C gene
have reported positive associations with the metabolic side effects.
Concerning the remaining 5-HT receptor genes, sparse data and
unsettled conclusions are available in relation to the clinical
consequences of antipsychotic treatment (Yu et al., 1999; Masellis
et al., 2001; Houston et al., 2007; Gu et al., 2008; Wei et al., 2009;
Takekita et al., 2016).

The great majority of pharmacogenetics studies performed
to date in psychiatric field, investigated the neuronal 5-HT
transporter gene (HTT; SLC6A4). This mutation has a functional
ins/del promoter polymorphism (HTTLPR) in which the short
allele (del) leads to a reduction of transporter activity of the
HTT protein due to lower expression. However, during the
last decade, it has been critically noted that the analysis of
5-HTTLPR is incomplete because other polymorphisms have
been identified in the proximity of the Ins/Del locus, such
as rs25531, rs25532, rs2020933, and a 17-bp variable tandem
repeat in the second intron (STin2) (Bonvicini et al., 2010).
SLC6A4 polymorphisms have been extensively examined in
mood disorders and antidepressant treatment, while little work
has been performed in relation to antipsychotic response, with
few significant results (Arranz et al., 2000; Bozina et al., 2007;
Wang et al., 2007; Dolzan et al., 2008; Kohlrausch et al., 2010).

Although there are inconsistent results concerning
TRS/response to antipsychotics and serotonin system
polymorphisms, there are some exciting data coming from
neuroimaging genetic studies that have confirmed the crucial
role of serotonergic signaling in the antipsychotic treatment
response. A study by Blasi et al. (2013) showed that rs6314 of
the 5-HT2A gene affects 5-HT2AR expression and functionally
contributes to the genetic modulation of endophenotypes of
schizophrenia, such as higher-level cognitive behaviors and
related prefrontal activity, as well as to olanzapine response.
In particular, this functional brain imaging study (Blasi et al.,
2013) indicated that individuals carrying the T allele have
overstated prefrontal responses during working memory and
attentional control tasks and also impaired cognitive behavioral
performance. Moreover, schizophrenia patients who carry the
T allele, compared to those who do not, have an attenuated
improvement in negative symptom scores after 8 weeks of
olanzapine treatment.

Glutamatergic/GABA Systems
The contribution of glutamatergic/GABA systems to the
development of schizophrenia has been hypothesized for many
years. To date there has been a growing body of evidence showing
alterations in glutamatergic neurotransmission in relation to
several aspects of the disorders. This evidence led to several
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studies investigating the role of these systems in antipsychotic
treatment outcomes.

In a proton MRS (1H-MRS) study in first-episode psychosis,
Egerton et al. (2012) found elevated glutamate levels in the
ACC in patients who had persistent psychotic symptoms despite
antipsychotic treatment, relative to responders (Egerton et al.,
2012). In the same year, in a (18F-DOPA) PET study, Demjaha
et al. (2012) showed that TRS patients were characterized by
elevated ACC glutamate levels. In a later 1H-MRS study they
also found that patients with high levels of glutamate in the
ACC (as measured by MRS) and with normal presynaptic
dopamine synthesis (as measured by PET) showed a poor
antipsychotic treatment response (Demjaha et al., 2014). In
authors opinion, these data suggest that treatment resistance
in schizophrenia is associated with a combination of relatively
normal striatal dopamine synthesis and elevated ACC glutamate
levels (Demjaha et al., 2014).

Taken together, these studies suggest that neuroimaging
measures of dopamine and glutamate function might provide a
means of stratifying patients with psychosis according to their
response to treatment. Therefore, it could be argued that in some
patients with schizophrenia, antipsychotic treatment may be
ineffective because they do not exhibit the elevation in dopamine
synthesis capacity that is classically associated with the disorder.

A recent review summarized that TRS compared to responder
patients have more regions with decreased GM and show
glutamatergic but no dopaminergic abnormalities (Gillespie
et al., 2017). A more recent systematic review has taken in
consideration all longitudinal proton MRS studies investigating
antipsychotic treatment effect on brain glutamate levels in
schizophrenia patients (Egerton et al., 2017). The main finding
reported from the authors is that most part of studies described a
significant decrease in glutamate metabolites after antipsychotic
treatment in at least one brain region. Because of schizophrenia
is related with an increase in glutamate metabolites, this
data provides some indications that antipsychotics can reduce
glutamatergic levels. However, to date the results have shown that
this effect are quite small and/or limited to subgroups of patients
(Egerton et al., 2017).

Glutamatergic neurotransmission takes place through
metabotropic and ionotropic glutamate receptors. The
metabotropic receptor (mGluR) family is subdivided into
3 groups, with a total of eight identified subtypes, and
the ionotropic receptor family is made of α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA),
N-methyl-D-aspartate (NMDA) and kainate receptors
(Nakanishi, 1992). While ionotropic receptors mediate fast
excitatory transmission at the glutamatergic synapse, ligand
binding at metabotropic receptors leads to conformational
changes directly or indirectly influencing neurotransmission by
second messenger pathways (Kew and Kemp, 2005).

On this basis, glutamate-related genes have been investigated
in relation to antipsychotic treatment in schizophrenia. The
glutamate metabotropic receptor 3 (GRM3) gene has been
widely investigated since it modulates signaling through NMDA
receptors which are a relevant contributor to the cognitive
and negative symptoms of schizophrenia (Maj et al., 2016).

Several studies have found an association between GRM3 and
antipsychotic response or treatment resistance (Bishop et al.,
2005, 2011, 2015; Fijal et al., 2009; Kaur et al., 2014). The GRM3
gene was found associated to schizophrenia in large GWAS
analysis (Schizophrenia Working Group of the Psychiatric
Genomics Consortium, 2014) and it encodes for the mGluR3
receptor, with a prominent role in the glutamate signaling in
the brain (Cartmell and Schoepp, 2000). Two SNPs in GRM3
(rs1989796 and rs1476455) resulted associated to TRS in a cohort
made mainly of Caucasian individuals with the rs1476455_CC
and rs1989796_CC genotypes associated to higher BPRS scores
(Bishop et al., 2011). Polymorphisms in this gene were also
found associated to worsening after antipsychotic treatment
(rs1468412) and improvement in negative symptoms (rs6465084)
in first-episode schizophrenia patients (Bishop et al., 2015).
Moreover, the SNP rs1468412 showed a synergistic effect with
the SNP rs165854 within phosphatidylinositol 4-Kinase Alpha
(PI4KA) gene influencing antipsychotic response in low-severity
schizophrenia patients of Indian origin (Kaur et al., 2014).

Two recent studies have supported the glutamate system as
a potential mechanism of the response to risperidone, showing
interesting evidence concerning the glutamate metabotropic
receptor 7 (GRM7) gene (Stevenson et al., 2016; Sacchetti
et al., 2017). In particular, Stevenson et al. (2016) identified
an association between two SNPs in GRM7 (rs2069062 and
rs2014195) and an antipsychotic treatment response by a
candidate gene analysis in a sample of first episode psychosis
patients. In contrast, our group (Sacchetti et al., 2017) has
shown a relevant role of rs2133450 as a predictor of an early
(2 weeks) response to risperidone in a sample of schizophrenia
patients through an original GWAS and a confirmatory
analysis carried out on the Clinical Antipsychotic Trials of
Intervention Effectiveness (CATIE) schizophrenia study sample
(Stroup et al., 2003).

Spurious and contrasting results are available for other genes
in the glutamatergic system, such as the glutamate ionotropic
receptor delta type subunit 2 (GRID2) (Stevenson et al., 2016)
and the glutamate ionotropic N-methyl-D-aspartate receptor 2B
subunit (Hong et al., 2001; Taylor et al., 2016).

Interestingly, a recent analysis of whole exome sequencing
data revealed an enrichment for singleton disruptive mutations
in 347 gene targets of antipsychotics in a large cohort of
TRS patients (Ruderfer et al., 2016). These genes also included
genes of the GABAergic/glutamatergic system, such as gamma-
aminobutyric acid (GABA) A receptor alpha 5 (GABRA5),
gamma-aminobutyric acid receptor subunit beta 2 (GABRB2),
and glutamate ionotropic receptor NMDA type subunit 2A
(GRIN2A). Finally, NMDA receptor-mediated signaling genes,
such as D-amino acid oxidase (DAO), protein phosphatase 3
catalytic subunit gamma isoform (PPP3CC), and dystrobrevin-
binding protein 1 (DTNBP1) genes, were associated with both the
pathogenic mechanisms of and antipsychotic treatment response
in schizophrenia (Reynolds, 2012b; Sacchetti et al., 2013).

The future development of drugs capable of supporting the
glutamatergic functions would be of great interest (Carlsson et al.,
1999). Based on the N-Methyl-D-aspartate receptor (NMDAR)
hypofunction hypothesis of schizophrenia (Coyle, 2006;
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Moghaddam and Javitt, 2012), the setting of pharmacological
agents that enhance NMDAR function could provide therapeutic
benefits in patients with schizophrenia. Unfortunately, direct
activation of NMDARs using traditional orthosteric agonists
induces adverse effects such as excitotoxicity and seizures
(Puddifoot et al., 2012). Furthermore, treatments with NMDAR
obligate co-agonists such as glycine or serine failed to have
consistent efficacy across multiple clinical trials (Iwata et al.,
2015). More recently, selective NMDAR positive allosteric
modulators (PAMs) that enhance receptor function in the
presence of the endogenous agonists but are devoid of intrinsic
activity have been reported (Hackos et al., 2016). It is possible
that NMDAR PAMs could avoid the adverse effects associated
with direct activation of NMDARs. The recent development
of NMDAR PAMs such as GNE-6901 and GNE-8324 provide
proof-of-principle for the development of allosteric modulators
of NMDARs, however their poor pharmacokinetic properties
and low CNS exposures hinder their uses for in vivo studies
(Hackos et al., 2016).

In addition to NMDARs all three groups of mGlu receptors
have been pursued as putative targets for novel antipsychotics
due to their ability to directly alter NMDAR function or other
aspects of glutamatergic signaling. The metabotropic glutamate
receptors represent a large group of promising targets for novel
therapeutics to treat all three symptom domains of schizophrenia
(positive, negative, and cognitive symptoms). While many
discovery efforts are still in preclinical phases of development,
they have yielded several subtype-selective tool compounds with
minimal adverse effect profiles and promising preclinical efficacy.

In conclusion, on one hand several data evidenced that
glutamatergic drugs are effective for the treatment of
schizophrenia, however on the other hand conclusions are
somewhat mixed and, where supported by meta-analyses, the
effect size is unfortunately modest.

Other Systems
Only a few studies have investigated candidate genes not
belonging to the major neurotransmission systems and the
relationship to antipsychotic responses. Some association studies
have focused on genes involved in the transport of various
drugs through the blood-brain barrier and multi-drug resistance
(e.g., the ATP-binding cassette, ABC, transporter proteins).
In particular, ABCB1, ABCC1 and ABCB11 were significantly
associated with the efficacy of or response to different
antipsychotic drugs, including clozapine (Gonzalez-Covarrubias
et al., 2016; Mi et al., 2016; Piatkov et al., 2017). Going
beyond the candidate gene approach, recent studies have used
GWA approaches for hypothesis-free investigation of common
genetic factors.

Several GWA studies on TRS failed to identify significant
associations (Hettige et al., 2016; Martin and Mowry, 2016; Koga
et al., 2017; Wimberley et al., 2017), probably due to small sample
sizes. Indeed, when GWA studies were performed in larger
cohorts, suggestive associations emerged for various genomic loci
involving genes related to immune responses (Liou et al., 2012) or
genes involved in neuronal transmission and neurodevelopment
(Yu et al., 2018).

Another investigative approach is the use of polygenic risk
scores (PRSs) that summarize genome-wide genotype data into
a single variable that measures genetic vulnerability to a disorder
or a specific trait. Currently, the PRS is also frequently used to
follow up a GWAS, testing the prediction of a drug response. To
date, no significant results have emerged for TRS (Hettige et al.,
2016; Martin and Mowry, 2016; Wimberley et al., 2017). Based
on these findings, the use of the PRS for schizophrenia to classify
individuals with TRS to date is scarce to be of clinical utility.

Finally, recent advances in sequencing technologies have
opened the way for GWA studies and TRS for rare variants.
A large sequencing analysis on coding regions (exome) in
TRS patients found an excess of disruptive mutations in 347
genes involved in antipsychotic mechanisms of action (Ruderfer
et al., 2016). Interestingly, some of these genes, such as calcium
voltage-gated channel subunit alpha1 C (CACNA1C), glutamate
ionotropic receptor NMDA type subunit 2A (GRIN2A), AKT
serine/threonine kinase 3 (AKT3), hyperpolarization activated
cyclic nucleotide gated potassium channel 1 (HCN1), solute
carrier family 1 member 1 (SLC1A1) were previously associated
with schizophrenia pathogenesis or a specific antipsychotic
response (Ryu et al., 2011; Liu et al., 2015; Pers et al., 2016; Kabir
et al., 2017; Yu et al., 2018).

Finally, in addition to common genetic variants, rare variants
indexed by deletion and duplication burden genomewide,
can increase the understanding and clinical management
of TRS patients; however, to date, little data are available
(Martin and Mowry, 2016).

Table 1 summarizes the literature main findings about
structural, functional, molecular and neurochemistry brain
abnormalities in TRS.

Clozapine in Treatment-Resistant
Schizophrenia
To date, clozapine is unique as it is the only evidence-based
treatment for TRS with 60–70% of those treated showing a
response and it appears superior to all antipsychotics, including
other atypical antipsychotics, in treating this population (Chakos
et al., 2001; Lally et al., 2016).

The pioneering CT study by Friedman et al. (1991) showed
that the degree of prefrontal cortex reduction was inversely
related to clozapine response. Subsequent CT and MRI studies
replicated this finding, demonstrating that a lower level of
prefrontal atrophy was associated with clozapine treatment
response compared with clozapine non-responders (Honer
et al., 1995; Konicki et al., 2001; Arango et al., 2003; Molina
et al., 2003). However, others were unable to replicate these
results (Bilder et al., 1994; Lauriello et al., 1998). Only the
study performed by Molina et al. (2003) showed a correlation
between psychotic symptoms improvement and temporal GM
volume in TRS patients treated with clozapine, whereas
disorganization symptoms improvement was inversely related
to pretreatment hippocampal volume (Molina et al., 2003).
Moreover, a longitudinal study (Chakos et al., 1995) showed
that, over the course of 1-year, patients started on clozapine
showed a reduction in caudate nucleus volume, whereas an
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TABLE 1 | Brain abnormalities in TRS: literature main findings.

Structural abnormalities

Greater GM reduction, especially in frontal regions, compared to responders

Decrease in dlPFC thickness compared to responders

Greater GM reduction, particularly in frontal, temporal and occipital regions,
compared to HC

Decrease in cortical thickness in all brain regions, compared to HC

Widespread increase in WM volume (frontal, parietal, occipital), compared to HC

Increase in basal ganglia WM volume, compared to responders

Enlargement in posterior sections of the corpus callosum (splenium), compared
to HC

Widespread disruption in WM tract integrity, particularly in the corpus callosum,
compared to HC

Functional abnormalities

Decreased metabolism and perfusion in frontal areas, compared to HC

Increased perfusion in the basal ganglia, compared to HC

Global brain functional connectivity reduction, particularly in frontal, temporal
and occipital regions, compared to HC

Molecular and neurochemistry abnormalities

Reduced striatal dopamine synthesis compared to non-TRS, but no difference
from HC

Elevated glutamate concentration in ACC, compared to responders

Increased glutamate and glutamine concentrations in the putamen and
decreased in the dlPFC in TRS clozapine responders, compared to first-line
antipsychotic responders

ACC, anterior cingulate cortex; dlPFC, dorsolateral prefrontal cortex; GM,
gray matter; HC, healthy controls; TRS, treatment-resistant schizophrenia;
WM, white matter.

increase was showed in those remaining treated with typical
antipsychotics. These findings were replicated by two studies
showing that clozapine use led to caudate nucleus volume
reductions over 24 weeks (Scheepers et al., 2001a) and 52 weeks
(Scheepers et al., 2001b).

Concerning functional neuroimaging, SPECT or PET studies
showed a correlation between prefrontal and thalamus metabolic
activity reductions and clozapine treatment, but it is uncertain
whether these findings were related to clinical response (Molina
Rodríguez et al., 1996; Molina et al., 2003, 2005). Nakajima
et al. (2015) extensively reviewed these studies, showing no
association between brain changes and clozapine response.
Furthermore, in an MRS study, clozapine-responsive TRS
patients showed that glutamate and glutamine concentrations
were increased in the putamen and decreased in the dlPFC
(Goldstein et al., 2015).

Several studies have investigated the relationship between
genetic variants and response to clozapine, and several significant
associations were reported with genes that are mainly involved
in the dopaminergic, serotonergic and inflammation/immune
systems. However, even with all of these relevant results,
only three genetic variants, the Ser9Gly polymorphism
of the DRD3 gene previously cited in the dopaminergic
system section, the functional non-synonymous coding
region SNP 452His/Tyr (rs6314) of the 5-HT2A gene, and
the C825T variant of the G protein subunit beta 3 (GNB3)
gene, have had significant findings independently replicated
(Samanaite et al., 2018).

Moreover, a recent study has suggested the existence of a more
severe, genetically based schizophrenia subgroup, for whom early
intervention with clozapine can be considered. If confirmed from
further research this finding may have important implications for
clinical practice (Frank et al., 2015).

Despite all these demonstrations and the efficacy of clozapine
in TRS, it is underprescribed in most countries (Lally et al.,
2016). The explanations for this include worries of side
effects, the inconvenience of therapeutic blood monitoring,
and all potential fatal outcomes associated to clozapine
use (Li et al., 2018). This means that the levels of use
are far less than the about 50–60% of TRS patients who
could benefit from it, although several studies highlight
that clozapine remains the gold-standard treatment for TRS
(Taylor, 2017).

CONCLUSION AND FUTURE
PERSPECTIVES

Although interesting data have come from pharmacogenetics,
neuroimaging and the interaction of both fields of study,
few converging findings are available that describe the
antipsychotic treatment response and resistance mechanisms
in schizophrenia (DeLisi and Fleischhacker, 2016). Based on
the available evidence, the results from both neuroimaging and
pharmacogenetic/pharmacogenomic studies point to an overlap
in the neurobiological vulnerability risk factors influencing the
antipsychotic drug response in schizophrenia and the risk factors
underlying schizophrenia itself. Currently for TRS, not a single
biological marker, both coming from neuroimaging or genetic
studies, is available. Indeed, all researches carried out to date did
not provide findings with strong requisites of reproducibility,
specificity, robustness as well as clinical feasibility and cost-
effectiveness. Consequently, it is difficult to delineate a model
of pharmaco-resistance and a clear pathogenetic hypothesis.
Several reasons are to address: (1) the definition of resistance
for schizophrenia is still lack of a definitive consensus; (2) few
studies are available on TRS and most are on clozapine. As in
our review, we refereed mainly to non-response mechanisms
that could be partly overlying the aetiopathogenesis of resistance;
(3) most data come from a priori hypotheses studies focused
on well-known pathways; (4) several methodological limitations
in the existing literature, including lack of reliability data,
clinical heterogeneity among studies, and inadequate study
designs and statistics.

More investigations are necessary on this important
topic, and future direction should be focused on GWAS
on TRS that will permit to obtain results regarding the
involvement of other pathways/systems rather than the
usual to date investigated, allowing further targets of future
neuroimaging studies.

We hope that technology development and the opportunity
to carry out studies in clinically homogeneous patient
samples could represent the opportunity to obtain predictive
genetic testing for use in clinical practice. Moreover, drug
repositioning associated to GWAS data and drug expression
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profiling (So et al., 2017), could be applied to severe psychiatric
disorders as TRS. Regarding neuroimaging results to be
clinically translatable, upcoming investigations require to
be adequately powered and integrated with other biological
markers. Further studies with large cohorts are needed
for a better evaluation of the genetic contribution to the
mechanisms underlying antipsychotic treatment response
and resistance, hopefully in combination with non-biological
markers, such as childhood trauma, which represent a
clinically relevant factor for the development of TRS
(Koga et al., 2017).
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