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Mushrooms are a group of fungi with great diversity and ultra-accelerated metabolism. As a consequence,
mushroomshave developed a protectivemechanismconsisting of high concentrations of antioxidants such
as selenium, polyphenols, b-glucans, ergothioneine, various vitamins and other bioactive metabolites. The
mushrooms of the Pleurotus genus have generated scientific interest due to their therapeutic properties,
especially related to risk factors connected to the severity of coronavirus disease 2019 (COVID-19). In this
report, we highlight the therapeutic properties of Pleurotus mushrooms that may be associated with a
reduction in the severity of COVID-19: antihypertensive, antihyperlipidemic, antiatherogenic, anticholes-
terolemic, antioxidant, anti-inflammatory and antihyperglycemic properties. These properties may inter-
act significantly with risk factors for COVID-19 severity, and the therapeutic potential of thesemushrooms
for the treatment or prevention of this disease is evident. Besides this, studies show that regular consump-
tion of Pleurotus species mushrooms or components isolated from their tissues is beneficial for immune
health. Pleurotus species mushrooms may have a role in the prevention or treatment of infectious diseases
either as food supplements or as sources for pharmacological agents.
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1. Introduction

Mushrooms are fungi belonging to the divisions of Ascomycetes
and Basidiomycetes, and constitute a group of organisms with a
great diversity of forms, colors and sizes. They were among the
foods first harvested by pre-historical people and may have
become an important food source due to their flavor and their
nutritional and medicinal properties [1–3].

The order Agaricales is in the division Basidiomycetes and com-
prises 300 genera and approximately 5000 species [4]. Among
them, the genus Pleurotus, defined by Paul Kummer in 1871, is
notable. Of the 40 Pleurotus species, about 20 are commercially
grown for their ability to flourish on agro-industrial waste, which
facilitates their low cost of production in a variety of regions
[5,6]. In fact, commercial mushrooms of this genus are the second
most common among edible mushrooms, surpassed only by
Lentinula [7]. In addition, Pleurotus production is aligned with cur-
rent regenerative economic practices, as they grow well on regio-
nal lignocellulosic waste [8,9].

The genus Pleurotus has attractive culinary characteristics, such
as high fiber and protein content and low fat content [10]. Unlike
other protein-rich foods, such as meats and chicken, mushrooms
do not contain the steroid cholesterol, but rather contain ergos-
terol. Ergosterol has been associated with several biological activ-
ities and can be converted by irradiation into vitamin D for dietary
supplementation or use as a food additive [10–13].

Besides their high nutritional value, the mushrooms of the
genus Pleurotus have aroused scientific interest due to their thera-
peutic properties. In the last decade, the number of patents and sci-
entific articles concerning this genus has increased exponentially.
Research has shown that mushrooms in this genus have therapeu-
tic properties, including antihypercholesterolemic, antihyperten-
sive, antidiabetic, antiobesity, antiaging, antimicrobial,
antioxidant and hepatoprotective activities [14–19]. This can be
an important alternative to changing patients’ diet in the preven-
tion of heart disease (Fig. 1) [15]. Considering all of these potential
Fig. 1. Areas of Pleurotus mushroom bioactivity that could help to reduce risk factors f
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benefits, the potential uses for Pleurotusmushrooms are numerous,
and it is possible that they could even be used to attenuate risk fac-
tors that affect the severity of coronavirus disease 2019 (COVID-
19) [20–24].

COVID-19 has affected about 200 territories across theworld and
is considered by the World Health Organization to be a pandemic
disease. At the time of writing, COVID-19 has infected 37,728,386
people and caused the death of 1,078,446 worldwide. The agent
behind this disease is a novel coronavirus, named severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2). The concerns about
the comorbidities anddeaths caused by this virus are of global inter-
est, so it is important to understand the risk factors that can con-
tribute to the severity of the disease [20,25]. As other works
suggest, identifying the major risks and how they can be mitigated
canbedecisive in the treatmentof COVID-19andmaybeable tohelp
us to understand future treatments for another pandemic disease
[19]. One of the largest studies about these risks is the report by
theChinaCenter forDiseaseControl andPrevention,whichobserved
that advanced age, cardiovascular disease, hyperglycemia/diabetes,
hypertension, cancer, and chronic respiratory disease were associ-
atedwith an increased risk of COVID-19-related death [20]. Further-
more, it has been suggested that obesity is also a risk factor for the
severity of COVID-19 [21]. Since these factors appear to be the big-
gest determinants of the severity of coronavirus infection, we con-
ducted a database review based on them.

We searched for scholarly articles and patents published in the
PubMed and Google Patent databases from their inception until
December 2020. The search terms used in the search were: Pleuro-
tus coronavirus, mushroom coronavirus, Pleurotus COVID, Pleurotus
SARS-CoV-2, mushroom COVID, mushroom SARS-CoV-2, Pleurotus
antihypertensive, Pleurotus antihypercholesterolemic, Pleurotus
antiatherogenic, Pleurotus antihyperlipidemic, Pleurotus antioxi-
dant, Pleurotus anti-inflammatory, Pleurotus antihyperglycemic
and Pleurotus antiviral.

Thus, this review explores the properties (based mainly on
in vitro and in vivo investigations) of Pleurotus mushrooms that
or COVID-19. COVID-19: coronavirus disease 2019; ROS: reactive oxygen species.
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may be associated with the mitigation of poor prognosis in COVID-
19 (Fig. 1). Mechanisms of protection from extracts and prepara-
tions of these mushrooms are shown in Fig. 2.

2. Properties of Pleurotus mushrooms

2.1. Antihypertensive effects

Systemic arterial hypertension is among the most important
risk factors for cardiovascular diseases and affects 25%–30% of
the world’s adult population [22]. Since cardiovascular disease
Fig. 2. Mechanistic diagrams of how different extracts or isolates from the tissues of Pl
with regulation of vascular tone; (B) antihypercholesterolemic, antiatherogenic and
(D) regulating inflammatory damage, (E) antihyperglycemic effects; (F) antiviral activi
system; HMG-CoA: 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase; ROS: reactiv
transporter type 4.
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has been consistently identified as a major risk factor for COVID-
19 severity, it is important to control blood pressure [19].

Factors that contribute to the development of systemic arterial
hypertension include lifestyle, rapid urbanization, racial differ-
ences, malnutrition, and diet imbalances [23]. Non-
pharmaceutical antihypertensive treatments are based on exercise
and diet, while the most commonly used classes of drugs are
angiotensin-converting enzyme inhibitors, angiotensin receptor
blockers, calcium channel blockers and diuretics [24]. A strong
connection has been found between eating habits (such as high
sodium intake), lifestyle and hypertension [25].
eurotus reduce risk factors for coronavirus disease 2019. (A) Mechanism associated
antihyperlipidemic responses; (C) protection against oxidative stress damage,

ty. NO: nitric oxide; ACE: angiotensin-converting enzyme; SRA: renin-angiotensin
e oxygen species; IL: interleukin; TNF: tumor necrosis factor; GLUT 4: glucose
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In this context, edible mushrooms, due to their low sodium con-
tent, appear to provide excellent food options for people with high
blood pressure. Moreover, mushrooms have a rich nutritional com-
position, containing a variety of compounds such as polysaccha-
rides, dietary fiber, terpenes, peptides, glycoproteins, alcohols,
mineral elements, unsaturated fatty acids, and antioxidants [26].

Edible mushrooms may also act as antihypertensives due to the
presence of bioactive compounds capable of inhibiting
angiotensin-converting enzyme, blocking calcium channels, and
providing antioxidant capacity. In fact, previous studies have
shown the hypotensive activity of extracts of Pleurotus species in
rats, which included vasodilation through the decrease of total
peripheral resistance induced by the inhibition of angiotensin-
converting enzyme [27,28].

Another report showed that Pleurotus nebrodensis (Inzenga)
Quél. had a protective effect against hypertension, which may have
been linked to the metabolic pathway of blood lipids, renal func-
tion or the renin-angiotensin system [29]. The influence of P.
tuber-regium (Fr.) Singer extract in attenuating systolic blood pres-
sure and mean arterial pressure in rats has also been demon-
strated. This hypotensive effect was attributed to the properties
of flavonoids and phytosterol [30]. Therefore, edible mushrooms
present interesting therapeutic applications for the prevention
and treatment of hypertension, contributing to a lower risk of
COVID-19 severity.

Table 1 summarizes the protective effects in terms of the anti-
hypertensive response induced by different substances derived
from Pleurotus fungi. Fig. 2A shows the mechanisms of protection
associated with the regulation of vascular tone.
2.2. Antihypercholesterolemic, antiatherogenic and antihyperlipidemic
effects

In addition to systemic arterial hypertension, hypercholes-
terolemia and high plasma concentrations of homocysteine are
important risk factors for severity of COVID-19. Low-density
lipoprotein (LDL) content and obesity were found to be risk factors
for disease severity with moderate consistency [19]. Hypercholes-
terolemia is associated with increased accumulation of lipids and
fibrous elements in the blood vessels and thus accelerates the
development of atherosclerotic lesions, especially in the coronary
arteries [33]. In addition, LDL-cholesterol may accumulate in the
subendothelial space of the arteries to form oxidized LDL, which
is highly atherogenic and toxic to vascular cells [34]. Therefore,
properties that reduce these risk factors are considered important
to the prevention of many diseases.

Mushrooms can attenuate these risk factors, possibly reducing
the severity of infection. Bobek et al. [35] found that long-term
dietary supplementation with 5% basidioma of dry P. ostreatus
(Jacq.) P. Kumm. was able to effectively suppress diet-induced
hypercholesterolemia in rats by inhibiting cholesterol absorption
and very low-density lipoprotein biosynthesis. Such influences on
cholesterol levels were associated, respectively, with the ability
to inhibit the formation of mixed micelles in the intestinal lumen
Table 1
Antihypertensive responses to different substances derived from the mycelium and basidi

Research product Species Dosage
emplo

Aqueous extract P. sajor-caju (Fr.) Singer 25 mg
Polysaccharide fraction and protein fraction P. nebrodensis (Inzenga) Quél. 9 g/d i
Aqueous extract P. tuber-regium (Fr.) Singer 200 m
D-mannitol P. cornucopiae (Paulet) Rolland 10 mg
Aqueous extract P. cornucopiae (Paulet) Rolland 600 m

SBP: systolic blood pressure.
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by binding to bile acids and by inhibiting the 3-hydroxy-3-methy
l-glutaryl-coenzyme A reductase (HMG-CoA) enzyme [36].

Other studies reinforce the potential of mushrooms to provide
protection through antihypercholesterolemic mechanisms, since
dietary supplementation was able to promote an increase in the
excretion of steroids and bile acids [37,38]. In fact, Ikewuchi
et al. [39] found that treatment with the extract of P. tuberregium
(Fr.) Singer significantly attenuated the serum levels of triglyc-
erides and total cholesterol. These levels are implicated in the
reduction of cardiac risk, thus showing the ability to attenuate
the comorbidities of COVID-19.

Another way to use P. sajor-caju (Fr.) Singer is in combination
with drugs to increase their solubility. Mehra et al. [40] used oyster
mushroom (P. sajor-caju [Fr.] Singer) to prepare nanoparticles of
statins and investigated whether this led to better solubility.
Results of the antioxidant assay showed that nanoparticles synthe-
sized from lovastatin and from mushroom had 76.57% and 73.83%
inhibition of diphenylpicrylhydrazyl (DPPH) radicals, respectively,
while the lovastatin showed only 16.77% inhibition.

Notably, lovastatin, a medication used frequently in the treat-
ment of hypercholesterolemia, due to its competitive inhibition
of HMG-CoA activity, is also produced by fungi of the genus
Pleurotus [41].

This protective activity may also be associated with the pres-
ence of coumaric acid, a compound known to have antiatherogenic
properties and the ability to increase serum levels of high-density
lipoprotein (HDL) [42–46]. Increases in the concentration of HDL
are beneficial to the body due to that HDL could absorb cholesterol
present in the walls of the arteries and transport it to the liver to be
reused or excreted [43]. In addition, it is estimated that with every
1% increase in HDL concentration, the risk of cardiovascular dis-
eases is reduced by 2% [44]. Some authors have demonstrated that
P. ostreatus (Jacq.) P. Kumm. mushrooms exert an antihyperlipi-
demic effect by improving antioxidant levels [46]. Therefore, edible
mushrooms have therapeutic potential for the prevention and
treatment of hypercholesterolemia, contributing to a lower risk
of COVID-19 severity.

Table 2 summarizes the literature reports that support the anti-
hypercholesterolemic, antiatherogenic and antihyperlipidemic
responses associated with the different substances derived from
Pleurotus fungi. Fig. 2B shows schematic diagrams of the same
responses.
2.3. Antioxidant effects

In addition to their known antihypertensive and antihyperc-
holesterolemic properties, the mushrooms of different Pleutorus
species also have antioxidant properties. In the literature, many
findings highlight the association of oxidative stress with several
cardiovascular diseases, such as atherosclerosis, ischemia, hyper-
tension, cardiomyopathy, cardiac hypertrophy, and heart failure
[48,49]. Since these diseases appear to be related to the severity
of COVID-19, we believe that their management is also relevant
to combatting COVID-19.
omes of Pleurotus.

yed
Quantitative data Reference

/kg Reduction of 36% in the mean systemic blood pressure [27]
n humans At week 16, reduction of 21% in the SBP [29]
g/kg Reduction of 24.9% in the SBP [30]
/kg Reduction of 11.4% in the SBP [31]
g/kg Reduction of 27.7% in the SBP [32]



Table 2
Antihypercholesterolemic, antiatherogenic and antihyperlipidemic responses exerted by different substances derived from the mycelium and basidiomes of Pleurotus.

Research product Species Dosage employed Quantitative data Reference

Aqueous extract P. ostreatus (Jacq.) P. Kumm. 500 mg/kg 53.6% reduction of the cholesterol levels in serum [34]
Dry powder P. ostreatus (Jacq.) P. Kumm. 10% of the diet 65% reduction of the cholesterol levels in serum [35]
Dry powder P. eryngii (DC.) Quél. 3% of the diet 30% reduction of the cholesterol levels in serum [37]
Aqueous extract P. tuber-regium (Fr.) Singer 200 mg/kg 41.7% reduction of the cholesterol levels in serum [39]
Dry powder P. ostreatus (Jacq.) P. Kumm. 5% of the diet 45.7% reduction of the cholesterol levels in serum [47]
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Many processes in the body can make free radicals and reactive
oxygen species (ROS) as by-products [50]. ROS is a group of mole-
cules that contain oxygen and are highly reactive due to their
unpaired valence electrons. At physiological levels, ROS has a sig-
naling function and contributes to the maintenance of homeosta-
sis. However, elevated levels of ROS induce cell membrane
damage by lipoperoxidation, changes in protein structure and
function, and structural damage to DNA [51–53]. As a mechanism
of counter-regulation of these oxidative processes, antioxidant sys-
tems respond to stabilize the ROS and minimize the damage [53].
An antioxidant can be defined as any substance that is present in
low concentrations when compared to the concentration of an oxi-
dizable substrate and slows or inhibits the oxidation of that sub-
strate. They can also be defined as molecules that donate
electrons or hydrogen atoms to oxidants, thus stopping chain reac-
tions [54,55]. When antioxidant systems are not effective in stabi-
lizing ROS, these molecules accumulate, and the system can be said
to be in a state of oxidative stress. Endogenous defenses maintain
the redox balance in normal situations. Among the most important
antioxidant defenses are thioredoxin (TRX), glutaredoxin (GRX),
catalase (CAT), superoxide dismutase (SOD) and glutathione perox-
idase (GPx). TRX can act as an antioxidant enzyme by donating
hydrogen to oxidized proteins. GRX can catalyze the reduction of
disulfides, regenerating important activities of the cellular mole-
cules. SOD catalyzes the dismutation of superoxide into oxygen
and hydrogen peroxide. CAT acts on the decomposition of hydro-
gen peroxide into water and oxygen, and GPx acts on reduced glu-
tathione, which is oxidized to oxidized glutathione [56]. In
addition to the enzymes that are part of the antioxidant reserve,
there are also non-enzymatic antioxidants, such as tocopherols,
carotenoids, flavonoids, ascorbic acid, and uric acid [57].

Over the years, many studies have explored the role of oxidative
stress in the pathogenesis of various diseases, including neurode-
generative, pulmonary, inflammatory, renal, ocular, and cardiovas-
cular diseases [58,59].

Experimental and clinical data have shown that oxidative dam-
age, widely studied in neurological diseases such as Alzheimer’s
disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral
sclerosis, memory loss and depression, can trigger neuronal losses
and release toxic peptides, thus leading to the progression of neu-
rodegenerative processes [60,61].

In pulmonary diseases, oxidants increase inflammation through
the activation of different kinases and redox-sensitive transcrip-
tion factors, aggravating other conditions, such as asthma [59–69].

In autoimmune diseases such as rheumatoid arthritis, it has
been possible to verify the influence of oxidative damage due to
the high level of isoprostanes and prostaglandins [65]. In addition,
oxidants may play crucial roles in renal diseases such as nephritis
and chronic renal failure, with the damage mainly caused by
lipoperoxidation in the renal cells [62,70]. In addition, in ocular
diseases, oxidative stress can contribute to protein aggregation,
cellular structural alterations, and damage to the photoreceptors
by lipoperoxidation [71–73].

Therefore, considering that the imbalance between the forma-
tion of ROS and the antioxidant capacity is one of the main mech-
anisms involved in cardiovascular disease, together with the fact
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that cardiovascular disease is among the leading causes of death
in the world, studies that seek to ameliorate oxidative stress are
promising. Several studies have been carried out in this field
[60,67–76].

Some of these studies have used extracts of mushrooms of the
genus Pleurotus as a possible treatment or pre-treatment to combat
oxidative damage. In in vitro studies, extracts from different species
of Pleurotus demonstrated free radical-scavenging activity and
ferric ion reduction power, as well as having a metal-chelating
effect and partially inhibiting lipoperoxidation [74–81]. In this
way, the treatment with P. eryngii (DC.) Quél. extract increased
antioxidant defenses in vitro, increasing the viability of baby
hamster kidney cells (BHK 21) that had been exposed to oxidative
stress by 1 mmol/L hydrogen peroxide [76]. Similarly, Khatun
et al. [82] showed the nutritional and nutraceutical values of three
different species of Pleurotus and found that P. florida Singer was
superior, due to its CAT, phenolics and peroxidase contents.

In in vivo studies, rats that received carbon tetrachloride (CCl4)
and treatment with P. ostreatus (Jacq.) P. Kumm. mushroom
extracts had CAT, SOD and GPx activities significantly higher than
rats that did not receive mushroom extract. In addition, the levels
of malondialdehyde (MDA) and reduced glutathione (GSH) were
restored to normal. The hepatoprotective effect and protective
effect against oxidative stress were probably due to the reduction
in the generation of free radicals that had been induced by CCl4
[71–73].

The administration of Pleurotus mushroom extract to elderly
mice increased their levels of antioxidant defenses, such as CAT,
SOD, GPx, vitamin C, vitamin E and glucose-6-phosphate dehydro-
genase, to the same levels as found in young rats. In addition, the
extract restored the levels of GSH, MDA and glutathione trans-
ferase, and reduced the levels of lipoperoxidation, xanthine dehy-
drogenase and carbonyls. Thus, the extract appears to have a
protective effect on oxidative stress, reducing the lipoperoxidation
and increasing the levels of enzymatic and non-enzymatic antiox-
idants [16,50,83–87].

In other studies involving liver diseases, carcinoma, diabetes,
hypercholesterolemia and hyperlipidemia, mushroom extracts
from the genus Pleurotus also showed antioxidant effects, restoring
MDA levels, and increasing antioxidant defenses such as GSH, SOD,
CAT, GPx, vitamin C and vitamin E. Thus, they protect the tissues
against oxidative damage [34,42,88–94].

In a study involving acute myocardial infarction, it was shown
that the infarct caused a large increase in the MDA content of the
cardiac tissue. However, treatment with 100 mg/kg of an extract
from P. nebrodensis (Inzenga) Quél., prepared by using dry mush-
rooms twice degreased with CHCl3 (chloroform)/MeOH (metha-
nol), extracted in distilled water and fractionated by
chromatography, was able to significantly decrease the MDA con-
tent in the myocardial ischemia–reperfusion model group [70]. In
addition, the activity of SOD, CAT and GSH in the cardiac tissue
decreased dramatically in the infarcted group, but the treatment
was able to prevent this. There was also a potential inhibitory
effect of the extract on myocardial apoptosis, as pre-treatment
with the extract significantly inhibited the increase in cells show-
ing DNA fragmentation [70].
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P. nebrodensis (Inzenga) Quél. extract also efficiently reduced
the oxidative damage caused by ischemia–reperfusion in hepatic
tissue. In addition, a decrease in the expression levels of pro-
apoptotic markers, such as Bax, caspase-3 and cytochrome c, was
observed in the group treated with the extract. There was also an
increase in the expression of the anti-apoptotic marker Bcl-2 in
the treated rats compared to the ischemia–reperfusion group [71].

According to the literature, oxidative stress is connected to
most of the risk factors for COVID-19 severity. Therefore, we think
that antioxidant activity is relevant to the attenuation of the sever-
ity of COVID-19.

Table 3 shows data supporting the antioxidant responses and
protective effects of different substances from the mycelium and
basidiomes of Pleurotus. The mechanisms associated with these
protective effects are illustrated in Fig. 2C.
2.4. Anti-inflammatory effects

Systemic inflammation is an important factor in the develop-
ment and progression of many diseases. Many inflammatory mark-
ers are used in clinical studies to demonstrate the risks of
cardiovascular diseases, such as hypertension, atherosclerosis and
stroke [72]. Studies have demonstrated the role of inflammation
in SARS-CoV-2 infection, which can cause a systemic cytokine
storm and widespread inflammation, leading to tissue damage
[73]. In view of these factors, it has been suggested that anti-
inflammatory properties may be of interest in the treatment and
prevention of severe COVID-19.

Research has shown that extracts from different species of the
genus Pleurotus can modulate the synthesis and release of pro-
inflammatory mediators and reduce in the migration of total
leukocytes. Therefore, it has been suggested that these extracts
Table 3
Antioxidant responses to different substances from the mycelium and basidiomes of Pleur

Research product Species Dosage
employe

Alcoholic extract P. ostreatus (Jacq.) P. Kumm. 200 mg

Aqueous extract P. ostreatus (Jacq.) P. Kumm. 500 mg
Polysaccharides P. eryngii (DC.) Quél. 500 mg
Alcoholic extract P. ostreatus (Jacq.) P. Kumm. 200 mg
Polysaccharide-peptide

complex
P. abalonus Y.H. Han, K.M. Chen & S.
Cheng

30 mg/k

Hydroalcoholic extract P. albidus (Berk.) Pegler 10 mg/m
Polysaccharide P. nebrodensis (Inzenga) Quél. 400 mg
Polysaccharide P. nebrodensis (Inzenga) Quél. 400 mg
Polysaccharides P. eryngii (DC.) Quél. 1 mg/kg
Hydroalcoholic extract P. eryngii (DC.) Quél. 1 mg/m
Alcoholic extract P. ostreatus (Jacq.) P. Kumm. 200 mg
Alcoholic extract P. ostreatus (Jacq.) P. Kumm. 200 mg
Alcoholic extract P. pulmonarius (Fr.) Quél. 2 mg/m
Polypeptide P. eryngii (DC.) Quél. 1 mg/m
Polysaccharides P. tuber-regium (Fr.) Singer 20 mg/k
Polysaccharides P. eryngii (DC.) Quél. 600 mg
Alcoholic extract P. ostreatus (Jacq.) P. Kumm. 200 mg
Polysaccharides P. cornucopiae (Paulet) Rolland 150 mg
Extract P. florida 200 lg/
Extract P. ostreatus (Jacq.) P. Kumm. 50 mg/m
Polysaccharides P. abalonus Y.H. Han, K.M. Chen & S.

Cheng
180 lg/

Extract P. pulmonarius (Fr.) Quél. 9.3 mg/
Alcoholic extract P. ostreatus (Jacq.) P. Kumm. 600 mg
Acetonitrile extract P. djamour (Rumph. ex Fr.) Boedijn 500 mg
Polysaccharides P. geesteranus Singer 6000 m
Supercritical CO2 extract P. ostreatus (Jacq.) P. Kumm. 15 mg/m

GPx: glutathione peroxidase; GSH: glutathione; MDA: malondialdehyde; SOD: supero
dehydrogenase.
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have anti-inflammatory properties, reducing nociception and
oedema [78,83–89].

Other studies have shown that b-glycan extracted from mush-
rooms of the genus Pleurotus exerts an immunostimulatory effect
by modulating the activity of neutrophils, macrophages, mono-
cytes, and natural killer cells [80,88]. This compound also stimu-
lates cytokines such as interleukin-1 and tumor necrosis factor-a,
resulting in an increased immune response. Another study verified
that the ability of Pleurotus mushroom extracts to inhibit neu-
trophil accumulation, operated via a reduction in pro-
inflammatory cytokine gene expression [85,88].

Another report showed the anti-inflammatory activity of P. flor-
ida extract; however, the mechanisms by which this activity
occurred are unknown [89]. It is believed that a large number of
phenolic compounds present in the extract may have been respon-
sible for its activity [89].

Since the COVID-19 pandemic began, several doctors reported a
cytokine storm as one of the stronger factors affecting the outcome
of the infection. Since these data show the importance of inflam-
mation in the severity of COVID-19, agents with anti-
inflammatory activity may be able to reduce its severity.

Anti-inflammatory data related to Pleurotus are shown in Table 4
and in Fig. 2D, alongside the mechanisms associated with these
protective effects.
2.5. Antihyperglycemic effects

Diabetes mellitus is an endocrine disorder characterized by
hyperglycemia, resulting from a deficiency in insulin secretion,
insulin action, or a combination of both [90]. It is estimated that
there are 284 million people living with diabetes worldwide [91].
In many studies involving the severity of coronavirus infection,
otus.

d
Quantitative data Reference

/kg 33% increase in GSH concentration, 26% increase in
SOD concentration, and 24% increase in GPx
concentration

[16]

/kg 39% reduction in MDA concentration [34]
/kg 58% reduction in TBARS concentration [42]
/kg 47% reduction in MDA concentration [47]
g 60% reduction in MDA concentration [50]

L 51% reduction in TBARS concentration [58]
/kg 44% reduction of infarct size [70]
/kg 66% reduction in MDA concentration [71]

35.1% scavenging ability [74]
L 20% scavenging ability [76]
/kg 23% reduction in MDA concentration [77]
/kg 18.6% increase in XDH activity [80]
L 92.7% scavenging ability [83]
L 41.8% scavenging ability [86]
g 50% increase in SOD activity [92]
/kg 54% reduction in MDA concentration [93]
/kg 20% increase in GSH concentration [95]
/kg 66% reduction in MDA concentration [96]
mL 60% lipid peroxidation inhibition [97]
L 30 lmol Trolox equivalent/g dry extract [98]

mL 75.4% scavenging ability [99]

mL 33% lipid peroxidation inhibition [100]
/kg 33% reduction in TBARS concentration [101]
/L 33% scavenging ability [102]
g/kg 80% reduction in MDA concentration [103]
L 80.83% scavenging ability [104]

xide dismutase; TBARS: thiobarbituric acid reactive substances; XDH: xanthine



Table 4
Anti-inflammatory responses to different substances from the mycelium and basidiomes of Pleurotus.

Research
product

Species Dosage
employed

Quantitative data Reference

b-Glucan P. pulmonarius (Fr.) Quél. 3 mg/kg 82% inhibition of leukocyte infiltration [83]
Glucans P. pulmonarius (Fr.) Quél. 20 mg/d 62% reduction in secretion of TNF-a mRNA transcript levels [84]
Glucans P. albidus (Berk.) Pegler 200 lg/mL 85% increase in cell viability [85]
Glucans P. citrinopileatus Singer 10 lg/mL Inhibition of the expression of the pro-inflammatory cytokines TNF

and IL-6
[88]

Alcoholic
extract

P. florida Singer 1000 mg/kg 60% reduction in carrageenan-induced acute inflammation [89]

Aqueous extract P. ostreatus (Jacq.) P. Kumm. 100 lg/mL 61% reduction in TNF-a concentration [105]
b-Glucan P. ostreatus (Jacq.) P. Kumm. 1 mg/kg 15% reduction in the arthrogram score [106]
Extract P. florida Singer 500 mg/kg 60% reduction in carrageenan-induced oedema in Wistar rats [107]
b-Glucan P. sajor-caju (Fr.) Singer 10 mg/kg 77% reduction in TNF-a gene expression [108]
Mannogalactan P. sajor-caju (Fr.) Singer 30 mg/kg 63% reduction in oedema level [109]
Aqueous extract P. ostreatus (Jacq.) P. Kumm. 4 mg/ear 94% inhibition of auricular oedema [110]
Alcoholic

extract
P. giganteus (Berk.) S.C. Karunarathna & K.D.
Hyde

100 lg/mL 75% reduction in nitric oxide production [111]

Protein P. eryngii (DC.) Quél. 200 lg/mL 81% reduction in IL-6 concentration [112]

IL: interleukin; TNF: tumor necrosis factor.
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diabetes and hyperglycemia were indicated as major risk factors
for death or severe symptoms [19]. In fact, in a review based on
risk factors for this disease, it was stated that diabetes has been
highly consistently shown to be a risk factor for the severity of
coronavirus infection [19].

The antihyperglycemic effects of Pleurotus mushrooms may be
due to the healing of damaged pancreatic b cells, partially restoring
their hormonal activity [45,89]. Increased peripheral sensitivity to
insulin as well as the modulation of its synthesis and release has
also been observed in response to treatment with extracts from
different mushrooms of the genus Pleurotus [89,90–93,113–117].

Extracts from P. ostreatus (Jacq.) P. Kumm. and P. cystidiosus O.K.
Mill. may also promote an increase in glucose utilization by the
muscles, thus reducing serum glucose levels [90]. Rats treated with
Pleurotus mushroom extracts showed increased glucose tolerance,
in addition to an increase in expression and translocation of glu-
cose transporter type 4 (GLUT 4). It has been shown that ergosterol
present in the extract of these mushrooms can promote GLUT 4
translocation, increase GLUT 4 expression, and increase uptake of
glucose through the phosphoinositide 3-kinase, protein kinase B
and protein kinase C pathways [31,32,47,94–111,118–120].

Mushrooms of the genus Pleurotus had hypoglycemic activity in
mice with drug-induced diabetes. It is believed that this hypo-
glycemic activity is associated with the antioxidant activity of
the extract. The polysaccharides from these mushrooms have ben-
eficial effects on non-insulin-dependent diabetes mellitus, reduc-
ing blood glucose, reducing glucose and ketones in urine, and
restoring normal levels of antioxidant enzymes. Thus, these com-
pounds reduce the severity of diabetes and correct some biological
parameters impacted by diabetes [112,121]. The work of Khatun
et al. [122] showed that consumption of P. florida Singer in the diet
Table 5
Antihyperglycemic responses to different substances from the mycelium and basidiomes

Research product Species

Aqueous extract P. ostreatus (Jacq.) P. Kumm.
Polysaccharides P. sajor-caju (Fr.) Singer
Polysaccharides P. tuber-regium (Fr.) Singer
Polysaccharides P. eryngii (DC.) Quél.
Polysaccharide-protein complex P. abalonus Y.H. Han, K.M. Chen & S. Cheng
Polysaccharides P. ostreatus (Jacq.) P. Kumm.
Ergosterol P. ostreatus (Jacq.) P. Kumm.
Polysaccharide-peptide complex P. abalonus Y.H. Han, K.M. Chen & S. Cheng
Polysaccharides P. florida Singer
Polysaccharide P. citrinopileatus Singer
Aqueous extract P. pulmonarius (Fr.) Quél.
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of alloxan-induced diabetic rats had hypoglycemic and hypoc-
holesterolemic effects; thus, mushrooms may provide low-cost
prevention for these diseases.

Other studies have shown that the use of extracts of Pleurotus
mushrooms exerted inhibitory activities on a-amylase and a-
glycosidase, resulting in a hypoglycemic effect [92,123]. Diabetes
and hyperglycemia have consistently been identified as risk factors
for COVID-19 severity; therefore, edible mushrooms with a hypo-
glycemic effect may attenuate the severity of this disease.

Data describing the antihyperglycemic responses to different
substances extracted from the mycelium and basidiomes of Pleuro-
tus are summarized in Table 5 and Fig. 2E.
2.6. Antiviral effects

Alongside the influences on the risk factors for COVID-19 sever-
ity, the literature also reports information about bioactive com-
pounds in mushrooms with antiviral activity. Although few
studies have looked at the antiviral effects of mushrooms against
SARS-CoV-2, we evaluated the activity of these compounds against
other viruses.

Krupodorova et al. [124] tested several mushroom extracts
against influenza virus type A (H1N1) and herpes simplex virus
type 2. Among the mushrooms tested, P. ostreatus (Jacq.) P. Kumm.
showed a therapeutic index (maximum tolerated concentration/
half maximal effective concentration) of 6 against H1N1 and
80.64 against herpes simplex virus type 2. Other authors, such as
Hetland et al. [125], cited antiviral activities of mushrooms against
poliovirus, influenza virus, Dengue virus, enterovirus, hepatitis
virus B and C, and others.
of Pleurotus.

Dosage employed Quantitative data Reference

1250 mg/kg 39% reduction in blood glucose [90]
240 mg/kg 37% reduction in blood glucose [91]
20 mg/kg 26% reduction in blood glucose [92]
5 mg/mL 50% reduction in blood glucose [93]
300 lg/mL 16% reduction in blood glucose [113]
400 mg/kg 46% reduction in blood glucose [114]
120 mg/kg 40% reduction in blood glucose [115]
1 mg/kg 16% reduction in blood glucose [116]
400 mg/kg 57% reduction in blood glucose [117]
400 mg/kg 41% reduction in blood glucose [121]
500 mg/kg 50% reduction in blood glucose [123]
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In research on herpes virus, Urbancikova et al. [126] showed
that a b-glucan from P. ostreatus (Jacq.) P. Kumm. caused a reduc-
tion in the duration of herpes symptoms and also caused a reduc-
tion in the duration of the acute respiratory symptoms and
intercurrent diseases. This reduction in acute respiratory symp-
toms may be interesting in the context of COVID-19 treatment.
One of the most promising glucans from P. ostreatus (Jacq.) P.
Kumm. is pleuran, an insoluble polysaccharide isolated from the
fruiting bodies of these mushrooms. A dietary supplement called
Imunoglukan P4H� has been formulated, consisting of pleuran
associated with vitamin C, and has been investigated in several
clinical studies involving respiratory tract infections, showing
promising results [127].

Another antiviral factor associated with mushrooms is the reg-
ulation of the immune response. Several natural derivatives have
been described in clinical trials, showing the capacity to enhance
the immune response to viruses. Molecules derived from edible
mushrooms are expected to be safe and can optimize the host
immune function to possibly prevent secondary infections during
SARS-CoV-2 infection [128].

The identification of bioactive compounds from natural sources
that can act as inhibitors of the SARS-CoV-2 protease is considered
a possible approach to combat COVID-19, reducing the viral repli-
cation. Mushrooms are excellent candidates for this research, since
they are a rich source of bioactive compounds with antiviral activ-
ity. These compounds have been shown to inhibit human immun-
odeficiency virus protease, so they may also act against the
proteases of coronaviruses [129]. Evidence suggests that mush-
rooms may be an alternative treatment that helps to attenuate
the severity of COVID-19.

The data on the antiviral response exerted by different sub-
stances from the mycelium and basidiomes of Pleurotus are sum-
marized in Fig. 2F.
3. Unknown aspects of the research and future research

At the time of preparation of this review, we could not find
papers in the literature that described the use of Pleurotus mush-
rooms to attenuate the risk factors for COVID-19 severity. As this
disease is a global concern, this review aims to provide a back-
ground on the use of Pleurotus as a protective agent to reduce
the severity of this disease. We think that these mushrooms may
have an indirect or direct effect on the risk factors associated with
COVID-19. However, clinical research data are required to support
this claim.
4. Conclusion

This review shows that mushrooms of the genus Pleurotus have
antihypertensive, antihypercholesterolemic, antiatherogenic, anti-
hyperlipidemic, antioxidant, anti-inflammatory, antihyper-
glycemic and antiviral properties. Since these properties interfere
significantly in the risk factors for COVID-19 severity, the pharma-
cological potential of these mushrooms is evident. Because they
are edible and widely produced in the world, they are easily acces-
sible and could easily be incorporated into the diet, acting as a food
supplement, or be used in the creation of pharmacological agents
for direct use in treatment. Among the mushrooms described in
this paper, we highlight the potential of P. ostreatus (Jacq.) P.
Kumm. and its constituents, as they are the most cited in the liter-
ature research. This body of work should be developed further for
verifying the efficacy of P. ostreatus products against diseases like
COVID-19. Larger studies will be necessary to verify the efficacy
of the treatment, especially in the context of food standards and
other treatment patterns.
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