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Large and complex intestinal microbiota communities in hosts have profound effects
on digestion and metabolism. To better understand the community structure of
intestinal microbiota in Przewalski’s horse (Equus ferus przewalskii) under different
feeding regimes, we compared bacterial diversity and composition between captive and
reintroduced Przewalski’s horses, using high-throughput 16S-rRNA gene sequencing
for identification. Reintroduced Przewalski’s horses were sampled in two Chinese nature
reserves, i.e., Dunhuang Xihu Nature Reserve (DXNR; n = 8) in Gansu Province and
Kalamaili Nature Reserve (KNR; n = 12) in Xinjiang Province, and compared to a captive
population at the Przewalski’s Horse Breeding Center in Xinjiang (PHBC; n = 11). The
composition of intestinal microbiota in Przewalski’s horses was significantly different
at the three study sites. Observed species was lowest in DXNR, but highest in KNR.
Lowest Shannon diversity was observed in DXNR, while in KNR and PHBC had a
moderately high diversity; Simpson diversity showed an opposite trend compared with
the Shannon index. Linear Discriminant Analysis effect size was used to determine
differentially distributed bacterial taxa at each study site. The most dominant phyla of
intestinal microbiota were similar in all feeding regimes, including mainly Firmicutes,
Bacteroidetes, Verrucomicrobia, and Spirochaetes. Differing abundances of intestinal
microbiota in Przewalski’s horses may be related to different food types at each study
site, differences in diversity may be attributed to low quality food in DXNR. Results
indicated that diet is one of the important factors that can influence the structure of
intestinal microbiota communities in Przewalski’s horse. These findings combined with
a detailed knowledge of the available and consumed food plant species could provide
guidelines for the selection of potential future reintroduction sites.

Keywords: bacterial community composition, diet quality, feeding regime, LEfSe analysis, symbiosis

INTRODUCTION

The Przewalski’s horse (Equus ferus przewalskii; recently identified as a feral descendant of wild
horses domesticated in today’s Kazakhstan, Gaunitz et al., 2018), was once considered extinct in
China and Mongolia (Mohr, 1971; Bouman and Bouman, 1994). In 1945, only 31 horses survived
in captivity but due to joint breeding efforts, their number had increased to over 1,500 individuals
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in the early 1990’s (Bouman and Bouman, 1994). In 2005, a
first cooperative venture between European zoos and Mongolian
scientists resulted in a successful reintroduction into their natural
habitat in Mongolia, and as of 2014 there is an estimated free-
ranging population of over 1,988 Przewalski’s horses (King et al.,
2015). In China, reintroduction efforts started in 1985 with
the establishment of the PHBC in Xinjiang. In 2001 the first
reintroduction was realized with a release of 206 horses into
the KNR in Xinjiang Province (Chen et al., 2008; Liu et al.,
2014), followed by a second reintroduction of 40 horses into
Dunhuang Xihu Nature Reserve (DXNR), Gansu Province, in
2010 (Wang et al., 2012; Liu et al., 2014). Concerns among
conservationists that captive horses have altered morphological,
behavioral, or genetic traits compromising fitness or changing
the species’ functional role in their original habitat (O’Regan
and Kitchner, 2005), were not verified (Ballou, 1994). At present,
the most urgent conservation actions to be considered are the
improvement of the population’s genetic diversity, to prevent
losses due to stochastic events (i.e., severe winter), to prevent
hybridization with domestic horses and to improve habitat
quality (e.g., pasture and water; King et al., 2015). Pasture is
one of the most important factors determining the survival of
reintroduced Przewalski’s horses in the wild (Burnik Šturm et al.,
2016; Kaczensky et al., 2017). Given that in captivity (i.e., prior
to reintroduction), Przewalski’s horses were fed a standardized,
but low variety diet, they encounter different habitats and a
variety of different food types after release into the wild. This
change of diet can cause adaptive responses of the intestinal
microbiota (Metcalf et al., 2017). Until recently, nutritional
research in Przewalski’s horse has mainly focused on dietary
preferences, food selection, and feeding behavior of captive and
reintroduced populations (Berger et al., 1999; Meng, 2007),
but more recently also on dietary requirements prior to their
extinction in the wild using stable isotopes (Burnik Šturm et al.,
2016; Kaczensky et al., 2017). Lately, comparative studies on the
dietary requirements of Przewalski’s horses extended their scope
to the role of intestinal microbiota during digestion (Laho et al.,
2013; Metcalf et al., 2017).

Intestinal microbiota have an important role in the hindgut
of equines during digestion (Costa and Weese, 2012). The host
provides a stable and nutritious environment to the microbiota,
while at the same time relying on the capabilities of the
microorganisms to break down structural carbohydrates such
as cellulose, hemicellulose and pectin (Yeoman et al., 2011;
Costa and Weese, 2012). Moreover, the intestinal microbiota
is vital to the host’s fitness, including the proliferation of
enterocytes, the protection against pathogens, and the production
of secondary metabolites (Flint et al., 2008; Walter et al.,
2011). The composition and abundance of intestinal microbiota
varies considerably between individuals, depending on intrinsic
factors such as age, physiological condition, life history and
genetic set-up, but also on environmental factors such as food
plants, dietary composition and other environmental parameters
(e.g., season, climate, soil composition; Jandhyala et al., 2015).
Environmental changes can sustainably modify the composition
and metabolic activity of intestinal microbiota, and thus affect the
host’s digestive ability and health (Conlon and Bird, 2014; Zhang

and Yang, 2016). Amongst those intrinsic and environmental
factors, diet is the most important aspect influencing intestinal
microbiota in hindgut fermenters such as the Przewalski’s horse
(Bäckhed et al., 2005; Turnbaugh et al., 2006). In recent years, a
remarkable diversity of microbiota was discovered in the hindgut
of equines, accumulating to about 750,000 high quality sequences
that could be clustered into 5689 unique operational taxonomic
units (OTUs; Dougal et al., 2014).

Research on intestinal microbiota is of great significance to
understand the dietary fitness and to monitor the health status
of host species. This applies particularly to species that were
reintroduced into new environments after being kept in captivity
for several generations. In this study, we focused on the intestinal
microbiota of Przewalski’s horses in relation to their diet by
comparing the diversity (richness and evenness) and community
composition of intestinal microbiota between captivity (site
PHBC) and two reintroduction sites (KNR and DXNR). Metcalf
et al. (2017) compared the fecal microbiomes of Przewalski’s
horses and domestic horses, showing that Przewalski’s horses
have a more distinct and more diverse community of bacteria
compared to that in domestic horses. This is likely due to
higher plant variety and thus a more diversified diet at the
reintroduction site of Przewalski’s horses, compared to the
enclosure in which domestic horses were kept. Since food quality
is higher, but dietary variety is lower in captivity, we predicted
the intestinal microbiota richness and diversity to be lowest
in the captive population of the PHBC, but higher at the two
reintroduction sites in DXNR and KNR. Between reintroduction
sites we expected microbiota richness and diversity to be higher
in the KNR than in the DXNR, where climatic conditions
(i.e., precipitation, evaporation) and soil composition (mineral
content) entail lower nutrient quality, less diet variety and
availability than in KNR (Meng, 2007; Chen et al., 2008; Wang
et al., 2012). To determine differentially distributed bacterial
taxa at each study site a Linear Discriminant Analysis (LDA)
effect size (LEfSe) analysis was performed. Finally, non-metric
multi-dimensional scaling (NMDS) and subsequent one-way
analysis of similarity (ANOSIM) was used to identify similarities
in OTU community composition between study sites. We
expected significant differences in OTU composition, with larger
variance between the PHBC population and the two reintroduced
populations. Given that the food availability and variety (plant
community structure), are higher in KNR (Meng, 2007; Chen
et al., 2008; Wang et al., 2012), we expected the bacteria
community to be more diverse than in the DXNR.

MATERIALS AND METHODS

Ethics Statement
This study was carried out in accordance with the
recommendations of the Institute of Animal Care and the
Ethics Committee of Beijing Forestry University. The Ethics
Committee of Beijing Forestry University also approved the
protocol. The management authority of KNR, DXNR and the
Xinjiang Przewalski’s Horse Breeding Center approved the
collection of Przewalski’s horse fecal samples.
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Study Areas
Fecal samples were collected at two reintroduction sites: i.e., the
KNR and the DXNR, as well as in the captivity of the PHBC.
The KNR is located in northern Xinjiang Province (89◦14′–
89◦36′E, 45◦49′–46◦4′N), with an average annual precipitation of
159.1 mm. Here, major food plants of Przewalski’s horses include
the bunchgrass (Stipa capillata), Pamirian winterfat (Ceratoides
latens), wormwood (Artemisia spp.) and Anabasis brevifolia,
a salt-tolerant, woody xerophyte (Meng, 2007). The DXNR is
located near Dunhuang City in western Gansu Province, (92◦45′–
93◦50′E, 39◦45′–40◦36′N) with an average annual precipitation
of 39.9 mm. Przewalski’s horses feed here on a relatively
simple variety of plants, mainly reeds (Phragmites australis)
and camelthorn (Alhagi sparsifolia) (Wang et al., 2012). The
PHBC is located near Urumqi City in Xinjiang Province (88◦45′–
88◦50′E, 44◦10′–44◦15′N), with an average annual precipitation
of 160.2 mm. Food (alfalfa, mixed feed-concentrates) and
drinking water were regularly supplied by the management. In
winter, small amounts of carrot and corn flour were added (Ji,
2013). In July, the average temperature is 17–33◦C and the
average precipitation is 12 mm in DXNR. The temperature and
precipitation are similar in KNR and PHBC, that is, the average
temperature is 19–30◦C and the average precipitation is 23 mm.

Sample Collection
A total of 31 fresh fecal samples was collected in July 2018; twelve
(6 males, 6 females) in KNR, eight (5 male, 3 female) in DXNR
and eleven in the PHBC (5 males, 6 female). Sampled individuals
were 4–8 years of age (for metadata see Supplementary Table
S1). In PHBC only healthy individuals were sampled, ensuring
that none of them was administered antibiotics or antiphlogistic
drugs during the past 3 months. Sample collection at the
two reintroduction sites was carried out from a vehicle whilst
following different family groups. We observed the Przewalski’s
horses at distances about 20–30 m waiting for a group member
to defecate. After the group had moved on, fecal samples with
similar consistency were collected into sterile centrifuge tubes,
sealed, labeled and retained in a mobile refrigerator until taken
to the laboratory for final storage at −80◦C. DNA extraction was
carried out within 1 week after sample collection.

DNA Extraction, Purification and
16S-rRNA Gene Sequencing
Bacterial DNA was extracted using the QIAamp DNA Stool
Mini Kit (QIAGEN, Hilden, Germany) according to the
manufacturer’s protocol. The integrity of the nucleic acids
was determined visually by electrophoresis on a 1.0% agarose
gel containing ethidium bromide. The concentration and
purity of each DNA extract were determined using a Qubit
dsDNA HS Assay Kit (Life Technologies, Carlsbad, CA,
United States). The extracted total DNA was preserved at
−80◦C. The V3-V4 region of the bacterial 16S-rRNA gene
was amplified with the universal bacterial primers 341F
(5′−CCCTACACGACGCTCTTCCGATCTG−3′) and 805R
(5′−GACTGGAGTTCCTTGGCACCCGAGAATTCCA−3′;
Jakobsson et al., 2014). PCR amplification was performed in

a total volume of 50 µL, which contained 10 µL PCR buffer,
0.2 µL Q5 High-Fidelity DNA Polymerase, 10 µL High GC
Enhancer, 1 µL dNTP, forward and reverse primers (1.5 µL
each, 10 µM), 60 ng genome DNA and the remaining volume
was ddH2O. Thermal cycling conditions were as follows: an
initial denaturation at 95◦C for 5 min, followed by 25 cycles
of 95◦C for 30 s, 50◦C for 30 s, 72◦C for 40 s, with a final
extension at 72◦C for 7 min. PCR products were mixed with
the same volume of 2 × loading buffer and were subjected
to a 1.8% agarose gel electrophoresis for detection. Samples
with a bright main band of approximately 450 bp were chosen
and mixed to reach equal ratios. Subsequently, the mixture of
PCR products was purified using a GeneJET Gel Extraction
Kit (Thermo Fisher Scientific, Waltham, MA, United States).
Sequencing libraries were validated using an Agilent 2100
Bioanalyzer (Agilent Technologies, Palo Alto, CA, United States)
and quantified with a Qubit 2.0 Fluorometer (Thermo Fisher
Scientific). Finally, paired-end sequencing (2 × 250 bp) was
conducted using an Illumina HiSeq 2500 platform (Illumina,
Inc., San Diego, CA, United States) at Biomarker Technologies
Corporation, Beijing, China.

Raw sequences were quality filtered under specific filtering
conditions to obtain high-quality clean tags based on the QIIME
(Version 1.8.0) quality control process. Sequences with less than
200 bp or that contained homopolymers longer than 8 bp were
discarded. Chimera sequences were detected by comparing tags
with the reference database [Ribosomal Database Project (RDP)
Gold database] using the UCHIME (Version 4.2) and then
removed. Only effective sequences were used in the final analysis.
Sequences were grouped into OTUs using the clustering program
UCLUST (Version 1.2.22) (Edgar, 2010) for de novo OTU picking
and matched with the SILVA bacterial database (Quast et al.,
2013) and pre-clustered at 97% sequence identity. Taxonomic
classification into hierarchical groupings was obtained using
the online RDP classifier with a confidence threshold of 80%
(Wang et al., 2007). All raw sequences obtained during this study
were submitted to the NCBI Sequence Read Archive (accession
number SRR9217496).

Statistical Analysis
Shannon and Simpson Indices were calculated from rarefied
samples (80,000 reads). Both indices are common measures
of diversity that reflect microbiota richness and evenness for
each individual Przewalski’s horse (The Shannon index stresses
the richness, whilst the Simpson index puts more weight on
the evenness; Nagendra, 2002). The Good’s coverage was used
to confirm the completeness of sequencing. Both diversity
indices (i.e., Shannon and Simpson) and Good’s coverage were
estimated using QIIME. Subsequently, both indices were tested
for significant differences between study sites using One-way
ANOVA (SPSS Statistics 17.0). LDA effect size (LEfSe) (Segata
et al., 2011) was performed to determine differentially distributed
bacterial taxa at each study site. A Kruskal–Wallis ANOVA,
including all identified OTUs, was used to test whether the
OTU abundance at different taxonomic levels was differentially
distributed between the three study sites. OTUs violating the
null hypothesis were further analyzed using a pairwise Wilcoxon
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test, testing whether all pairwise comparisons between subclasses
within different taxonomic levels significantly agree with the
taxonomic level trend. The resulting subset of vectors was used
to build a LDA model from which the relative difference among
taxonomic level is used to rank the OTUs. The final output thus
consists of a list of OTUs that are discriminative with respect
to the taxonomic level, consistent with the subclass grouping
within each taxonomic level, and ranked according to the effect
size with which they differentiate taxonomic levels. A size-
effect threshold of 3.5 on the logarithmic LDA scale was used
to identify microbiota OTUs that were specific at each study
site. The LEfSe analysis was performed online, using the Galaxy
workflow framework1. NMDS based on the Unweighted Unifrac
similarities of OTU composition was applied to rank the bacterial
communities using the ggplot2 in R (Version 3.5.2)2 (Clarke
and Gorley, 2006), and a one-way ANOSIM was performed
to determine differences among three study sites using the
vegan package in R.

RESULTS

Microbiota Composition, Richness and
Diversity
A total of 2,088,900 effective tags were obtained from 31
fecal samples (mean ± SD: 67,384 ± 1,701). Based on a
97% sequency-similarity level, sequences were assigned to 1,392
OTUs (mean ± SD: 1,047 ± 136; for sequencing data see
Supplementary Table S2). Resulting OTUs could be allocated
to 17 phyla, 29 classes, 35 orders, 51 families and 146 genera.
Rarefaction revealed that the number of OTUs for each sample
was sufficient to carry out further analysis (Figure 1). The

1http://huttenhower.sph.harvard.edu/galaxy/
2http://www.r-project.org

FIGURE 1 | Rarefaction curves. OTU rarefaction curves of 31 fecal samples
obtained from Przewalski’s horse at three study sites (reintroduced: KNR,
DXNR, captive: PHBC).

Good’s coverage approached 99%, suggesting that most bacteria
were detected in our samples. The relative abundance of the
ten most abundant phyla and genera of fecal bacteria recorded
in DXNR, KNR, and PHBC is shown in Figure 2. At all
study sites, Firmicutes (DXNR: 50.72%, KNR: 51.81%, PHBC:
66.29%) and Bacteroidetes (DXNR: 36.87%, KNR: 36.09%,
PHBC: 18.97%) were the most prevalent phyla, followed by
Verrucomicrobia (DXNR: 4.10%, KNR: 4.97%, PHBC: 6.35%)
and Spirochaetae (DXNR: 4.18%, KNR: 3.42%, PHBC: 5.46%;
Figure 2A). Uncultured bacteria f_Bacteroidales_S24-7 group
(DXNR: 12.92%, KNR: 14.54%) and Rikenellaceae RC9 gut group
were the most prevalent genera in KNR and DXNR (DXNR:
8.22%, KNR: 9.37%). In the PHBC the ten most common
taxa were almost equally abundant (Figure 2B). The relative
abundance of the ten most abundant phyla and genera of each
individual in DXNR, KNR, and PHBC is shown in Figures 2C,D.

The observed OTU richness (mean ± SD; Figure 3A) in the
DXNR was significantly lower than that observed in the KNR
(DXNR: 839.0 ± 56.25, KNR: 1134.0 ± 67.57; p < 0.01) or
in the captive population at the PHBC (DXNR: 839.0 ± 56.25,
PHBC: 1102.0 ± 39.40; p < 0.01). Moreover, OTU richness
at the PHBC was significantly lower than that recorded in the
KNR (PHBC: 1102.0 ± 39.40, KNR: 1134.0 ± 67.57; p < 0.05).
The Simpson diversity (mean ± SD; Figure 3B) in the DXNR
was significantly higher than that observed in KNR (DXNR:
0.022 ± 0.024, KNR: 0.011 ± 0.006; p < 0.05) or in the PHBC
(DXNR: 0.022 ± 0.024, PHBC: 0.0073 ± 0.001; p < 0.05),
while a negligible differences was detected between KNR and the
PHBC (KNR: 0.011 ± 0.006, PHBC: 0.0073 ± 0.001; p > 0.05).
The Shannon diversity (mean ± SD; Figure 3C) in the DXNR
was significantly lower than that observed in KNR (DXNR:
5.05± 0.35, KNR: 5.64± 0.24; p< 0.01) or in the PHBC (DXNR:
5.05 ± 0.35, PHBC: 5.77 ± 0.12; p < 0.01), while a negligible
differences was detected between KNR and the PHBC (KNR:
5.64± 0.24, PHBC: 5.77± 0.12; p > 0.05).

Differentially Abundant Taxa Between
Study Sites
The LEfSe analysis identified 21 OTUs that showed significantly
different abundance between the three study sites (Figure 4).
At phylum level, the relative abundance of Bacteroidetes was
significantly higher in DXNR (0.37 ± 0.03, LDA = 4.16)
compared to the other two study sites (KNR: 0.36± 0.08, PHBC:
0.19± 0.01; p < 0.001), while Firmicutes was significantly higher
in PHBC (0.66± 0.01, LDA = 4.10) than at the two reintroduction
sites (DXNR: 0.51 ± 0.04, KNR: 0.52 ± 0.02; p = 0.01). At the
genus level, Lactobacillus in DXNR (0.03 ± 0.01, LDA = 3.56)
was significantly higher than at the other two study sites (KNR:
0.003 ± 0.001, PHBC: 0.003 ± 0.001; p = 0.01). Relative
abundance of Ruminococcus 1 (0.05 ± 0.007, LDA = 3.51)
and Ruminococcaceae UCG-010 (0.05 ± 0.004, LDA = 3.52) in
PHBC were significantly higher than in the two nature reserves
(DXNR Ruminococcus 1: 0.01 ± 0.003, KNR Ruminococcus 1:
0.02 ± 0.003; Wilcoxon test: p = 0.002; DXNR Ruminococcaceae
UCG-010: 0.02 ± 0.002, KNR Ruminococcaceae UCG-010:
0.03± 0.007; Wilcoxon test: p = 0.001). Relative abundance of the

Frontiers in Microbiology | www.frontiersin.org 4 August 2019 | Volume 10 | Article 1821

http://huttenhower.sph.harvard.edu/galaxy/
http://www.r-project.org
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-01821 August 7, 2019 Time: 12:8 # 5

Li et al. Intestinal Microbiota of Przewalski’s Horse

FIGURE 2 | Bar chart of relative abundance. Relative abundance (%) of the ten most abundant bacteria phyla (A for groups, C for individuals) and genera (B for
groups, D for individuals) obtained from 31 fecal samples of Przewalski’s horse at three study sites (reintroduced: KNR, DXNR, captive: PHBC). Others: Bacteria taxa
with ≤1% abundance; Unclassified: Sequences which could not be classified.

Uncultured bacterium f Bacteroidales S24-7 group (0.15 ± 0.03,
LDA = 3.92) and the Rikenellaceae RC9 gut group (0.09 ± 0.02,
LDA = 3.69) in KNR were significantly higher than the other two
study sites (DXNR S24-7 group: 0.03± 0.02, PHBC S24-7 group:
0.05± 0.006; p = 0.002; DXNR RC9 gut group: 0.08± 0.02, PHBC
RC9 gut group: 0.03± 0.003; p = 0.001).

Beta Diversity
Operational taxonomic unit community compositions obtained
from NMDS showed a similar composition within each study
site but distinct compositions between study sites (Figure 5).
The ANOSIM analysis revealed significant differences in bacterial

communities between DXNR and KNR (R = 0.79, p = 0.001),
between DXNR and PHBC (R = 0.91, p = 0.001) and between
KNR and PHBC (R = 0.63, p = 0.001; Figure 6).

DISCUSSION

In this study, 16S-rRNA gene sequencing was used to
compare the diversity and composition of intestinal microbiota
of PHBC and reintroduction (DXNR and KNR). Previous
studies have shown that food and nutrition are major factors
affecting mammalian intestinal microbiota (Bäckhed et al., 2005;
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FIGURE 3 | Box plot of diversity indices at three study sites (reintroduced: KNR, DXNR, captive: PHBC). (A) OTU richness, (B) Simpson diversity and (C) Shannon
diversity. Boxes represent the interquartile range (IQR; between 25th and 75th percentiles), horizontal line inside the box defines the median,  outliers greater than
1.5 and less than 3 times the IQR, ∗ p < 0.05, ∗∗ p < 0.01.

FIGURE 4 | LefSe analysis. (A) Cladogram based on LefSe analysis showing the OTUs with significant differences between the three study sites. Taxonomic
hierarchies were arranged from the inside (lower taxonomic level) to the outside (higher taxonomic level). Red, green, and blue nodes in the phylogenetic tree
represent differentially abundant OTUs at the three study sites (KNR, PHBC, and DXNR, respectively). Yellow nodes represent OTUs with no significant difference.
(B) OTUs with significant difference that have an LDA score > the threshold value of 3.5; letters in front of OTUs represent taxonomic level (p = phylum, c = class,
o = order, f = family and g = genus).

Turnbaugh et al., 2006; Schwab et al., 2011; Navarrete et al.,
2012). Recent studies on hindgut fermenters have confirmed this
relationship, highlighting the importance of intestinal microbiota
for the health and wellbeing of horses (Costa et al., 2012; Laho
et al., 2013; Elzinga et al., 2016; Metcalf et al., 2017). In our
research, captive Przewalski’s horses in PHBC, were mainly fed
on high protein plants and mixed feed-concentrates, which have a
high nutritional value but a relatively low fiber content (Ji, 2013).
By contrast, reintroduced Przewalski’s horses foraged mainly on
plants with high fiber content, but with relatively low nutritional
value (Meng, 2007; Chen et al., 2008; Wang et al., 2012). We
therefore argue that the differences in the intestinal microbiota
observed during this study were most likely linked to different
feeding regimes encountered by Przewalski’s horses.

Lower Shannon diversity in DXNR compared to KNR and
PHBC, while Simpson diversity showed an opposite trend
compared with the Shannon index, which may be explained by
the two indices weighing their components, i.e., richness and
evenness, differently. This result was surprising since it stands
in stark contrast to our prediction. Since previous studies have
shown that intestinal microbiota diversity in wild populations is
usually more diverse and complex than in captivity (Guan et al.,
2017; Li et al., 2017; Metcalf et al., 2017), we expected to find
this pattern also in Przewalski’s horses. Low microbiota richness

at DXNR may be due to a shortage of highly nutritious food
items with high protein, but low fiber content, and a limited
number of preferred food plant species (Wang et al., 2012; Liu
et al., 2014). The relatively simple diet was here dominated by
reeds such as P. australis, and camelthorn, A. sparsifolia (Wang
et al., 2012). At the PHBC, food quality was very high but variety
was low, while in the KNR food plant quality and variety were
relatively high (Meng, 2007; Ji, 2013). This finding corresponds
to other studies (Wu et al., 2011; Yatsunenko et al., 2012),
indicating that not only plant variety matters, but a combination
of quality and variety determines the intestinal microbiota
diversity in Przewalski’s horse. Bacterial species diversity is thus
considered to represent important components of a healthy
intestinal microbiome (Tuddenham and Sears, 2015). Moreover,
the richness of intestinal microbiota recorded in KNR was
significantly higher than that in DXNR and the PHBC, which may
attributed to the variety of plant species.

LEfSe analysis showed that at the phylum level, the relative
abundance of Bacteroidetes was significantly higher in DXNR
than at the other two study sites, while Firmicutes was
significantly higher in PHBC compared to the two reintroduction
sites (Figure 4). In previous studies, researchers found that the
Firmicutes to Bacteroidetes (F/B) ratio was linked to body-weight
(Ley et al., 2005; Ley et al., 2006). Firmicutes can degrade complex

Frontiers in Microbiology | www.frontiersin.org 6 August 2019 | Volume 10 | Article 1821

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-01821 August 7, 2019 Time: 12:8 # 7

Li et al. Intestinal Microbiota of Przewalski’s Horse

FIGURE 5 | Non-metric multidimensional scaling (NMDS) analysis. NMDS
scatterplot of 31 samples representing the OTU community composition of
intestinal microbiota in Przewalski’s horse at three study sites (DXNR, KNR,
and PHBC). The distance between points indicates the degree of difference
based on Unweighted Unifrac similarities of OTU composition in each sample.

polysaccharides into short chain fatty acids, which will result in
a higher energy load than Bacteroidetes would do (Turnbaugh
et al., 2006). Thus the relatively lower F/B ratio in DXNR may
lead to weight loss of Przewalski’s horses. Firmicutes are the
key cellulolytic bacteria in herbivores (Fernando et al., 2010). In
wild ruminants, the abundance of Firmicutes in the intestine is
usually higher than in captive conspecifics (Guan et al., 2017; Li
et al., 2017). This is because of the relatively high fiber content
of wild food plants and the higher dietary variety, compared to
the relatively unbalanced diet in captivity. While ruminants are
foregut fermenters and the rumen can selectively retain food
particles to achieve a more thorough microbial hydrolysis, the
Przewalski’s horse is a hindgut fermenter that – especially when
consuming low-quality food – adopts a different strategy. This
nutritional strategy is best described as “eat quickly, excrete

quickly” (Duncan et al., 1990), meaning the retention time of food
particles in the digestive tract is short, and therefore the degree of
fiber glycolysis is low. This will result in fiber digesting bacteria
to not have enough nutritional substrates and therefore not
enough time to establish an effective population. Compared to
reintroduced Przewalski’s horse populations, captive populations
feed on high-quality forage with a relatively low fiber content.
The food retention time may be longer in captive Przewalski’s
horses, fiber can be well fermented and microorganisms that
digest cellulose may have sufficient time to grow and reproduce.

At the genus level, the relative abundance of Lactobacillus
is significantly higher in Przewalski’s horses from DXNR than
that recorded for horses in KNR and the PHBC. Yu et al.
(2018) reported that intestinal microorganism could use non-
protein nitrogen to synthesize proteins. Compared to Prezwalski’s
horses in the PHBC, the low quality diet in DXNR can be
attributed to a lack of protein. Therefore, Lactobacillus may
be involved in the biosynthesis of proteins to compensate for
the relatively low protein content of diet in DXNR. Besides,
previous studies described Lactobacillus to enhance the immune
response of the host (Cross, 2002; Azad et al., 2018), suggesting
that it may help Przewalski’s horses to withstand the relatively
harsh environmental conditions in DXNR. Ruminococcus 1
and Ruminococcaceae UCG-010 abundance in the PHBC were
significantly higher than those observed in DXNR and KNR.
These two taxa belong to the phylum Firmicutes, which
contribute to fiber digestion (Guan et al., 2017) and are thus
more abundant in horses that live in captivity. Moreover, the
Rikenellaceae RC9 gut group in KNR horses was significantly
higher than that recorded in horses roaming the DXNR and
kept in the PHBC. Although this group was recently identified
in a number of other large herbivores, including elephants,
horses, sheep and cattle (Ilmberger et al., 2014; Li et al., 2014;
Rodriguez et al., 2015; Huang et al., 2018), the function of these
microorganisms in the gut of herbivores remains unresolved.
At the order level, the relative abundance of Clostridiales is
significantly higher in Przewalski’s horses from PHBC than
horses in KNR and DXNR, there is a positive correlation between
Clostridiales and dietary protein content and protein digestibility
(Bermingham et al., 2013), which can be explained by the high
protein diet in captivity.

FIGURE 6 | Box plot of Inter-group and Intra-group Beta distance (ANOSIM Analysis). Intra-group versus inter-group differences between DXNR and KNR (A),
between DXNR and PHBC (B) and between KNR and PHBC (C). R-value range (0–1): R-values close to 0 represent no significant differences between inter-group
and intra-group, R-values close to 1 show that inter-group differences are greater than intra-group differences. Boxes represent the interquartile range (IQR; between
25th and 75th percentiles), horizontal line inside the box defines the median,  outliers greater than 1.5 and less than 3 times the IQR, ∗∗P < 0.01.
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Non-metric multi-dimensional scaling and ANOSIM clearly
indicated a distinct separation between the three study sites
(Figures 5, 6), suggesting that the composition of bacterial
communities was significantly different between DXNR, KNR,
and PHBC. Although diet plays the most important role in
altering the composition and structure of intestinal microbiota
communities, several other factors may also play an important
role. These include the age of the host, its body condition,
or environmental factors such as climate or soil composition
(Hill et al., 2005; Jandhyala et al., 2015). In order to keep
the impact of those factors at a minimum, we standardized
our sampling efforts by including only individuals of similar
age and by collecting all fecal samples in the same months
under similar weather conditions (i.e., in July). Overall, the
core microbiota of Przewalski’s horses at the three study sites
were very similar (Figure 2). Firmicutes and Bacteroidetes
represented the most abundant phyla, which are known to
constitute the bacterial community of many mammalian species
such as reindeer (Rangifer tarandus), Asian buffalo (Bubalus
arnee), and musk deer (Moschus spp.) (Sundset et al., 2007;
Pandya et al., 2010; Hu et al., 2017; Li et al., 2017). This
general pattern in intestinal microbiota composition indicates
that these phyla play an important ecological and functional role
in the intestine of mammals and that this symbiotic relationship
has developed relatively early during mammalian evolution
(Shanks et al., 2011).

Intestinal microbial communities should be considered as
vital factors that provide insights into a species’ nutrition and
digestion. Our study highlights the importance of diet in shaping
the intestinal microbiota of Przewalski’s horses under three
different feeding regimes and clearly indicates that reintroduced
individuals need to adapt to the higher fiber and roughage
content of food plants in the wild. This was particularly true
for the diet consumed in DXNR, which led to a high relative
abundance of the phylum Bacteriodetes. These taxa suggest that
food quality was relatively poor at DXNR with a high fiber
content and low nutritious value. Moreover, the relatively high
abundance of the genus Lactobacillus may help Przewalski’s
horses to withstand the harsh environmental conditions in
DXNR. We therefore propose that microbiota identified from
Przewalski’s horses at existing reintroduction sites – combined
with a detailed knowledge of consumed and available food
plants at those sites (e.g., Meng, 2007; Wang et al., 2012 in our

study) – could guide the selection of future reintroduction sites
for Przewalski’s horses.
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