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Abstract. Preprosomatostatin-I (PPSS-I) is processed 
in anglerfish islets to release a M-residue somatostatin 
(SS-14). However, very little is known regarding other 
processing events that affect PPSS-I. This is the first 
study to identify and quantify the levels of non- 
somatostatin products generated as a result of process- 
ing of this somatostatin precursor in living islet tissue. 
The products of PPSS-I processing in anglerfish islet 
tissue were identified in radiolabeling studies using a 
number of criteria. These criteria included im- 
munoreactivity, specific radiolabeling by selected 
amino acids, radiolabel sequencing, and chromato- 
graphic comparison to isolated, structurally character- 
ized fragments of anglerfish PPSS-I using reverse- 
phase high performance liquid chromatography. Intact 
prosomatostatin-I (aPSS-I) was isolated from tissue in- 
cubated with [3H]tryptophan and [14C]leucine. 
Significant '4C radioactivity was observed in the prod- 
ucts of 11 of the first 44 sequencer cycles in positions 
consistent with the generation of a 96-residue proso- 
matostatin. These results indicate that signal cleavage 

occurs after the cysteine located 25 residues from the 
initiator Met of PPSS-I, resulting in a signal peptide 
25 amino acids in length. 

Nonsomatostatin-containing fragments of the precur- 
sor were also found in tissue incubated with a mixture 
of 3H-amino acids. Only a small quantity of the 
dodecapeptide representing residues 69-80 in the pro- 
hormone was found (10 nmol/g tissue). Two other 
fragments of aPSS-I, also observed to be present in 
low abundance, were found to correspond to residues 
1-27 (16 nmol/g tissue) and to residues 1-67 (7 nmol/g 
tissue) of aPSS-I. No evidence for the presence of the 
fragment corresponding to residues 29-67 was found. 
However, large quantities of SS-14 were observed (287 
nmol/g tissue), indicating that the major site of aPSS-I 
cleavage is at the basic dipeptide immediately preced- 
ing SS-14. Recovery of much lower levels of the non- 
somatostatin fragments of aPSS-I suggests that prohor- 
mone processing at the secondary sites identified in 
this study occurs at a low rate relative to release of 
SS-14 from aPSS-I. 

S 
OMATOSTATIN-14 (SS-14) 1 is synthesized as part of a 
larger precursor, preprosomatostatin. This has been 
demonstrated by results from experiments using pulse- 

chase incubations or chemical characterization of products 
from intact tissue (1, 18, 25, 26, 28, 38, 39). In addition, use 
of recombinant DNA methodologies has provided the de- 
duced amino acid sequences for prosomatostatins from a 
number of sources (13-17, 20, 21, 32-35, 40-43). Prosomato- 
statins or prosomatostatin cleavage products have been 
identified in pancreatic islets of anglerfish (15, 17, 25, 26, 34, 
35, 43), catfish (1, 20, 21, 41), and rats (8, 28); in hypothala- 
mus of mouse (18), rat (4, 6-8, 19, 38), sheep (10, 39), and 
pigs (30); gut of pigs (29); and from diverse tissues such as 
a medullary thyroid carcinoma cell line (2, 3, 13, 14, 16) and 

1. Abbreviations used in this paper: aPSS-I, anglerfish prosomatostatin-I; 
HPLC, high performance liquid chromatography; PPSS-I, (anglerfish) 
preprosomatostatin-I; R/A, radioimmunoassay; SS-14, somatostatin-14. 

a phaeochromocytoma (45). Additionally, both the human 
(33) and rat (40) genes that code for preprosomatostatins 
have been characterized. For purposes of comparison, the 
basic structures of human preprosomatostatin (PPSS) and 
the two known forms of anglerfish PPSS are depicted in Fig. 
1. All mammalian PPSS species that have been characterized 
share a structure very similar to that of human PPSS. 

The preprosomatostatins are cleaved co-translationally to 
remove the signal peptide and yield prosomatostatin (14, 34, 
43). One aspect of somatostatin production that is not com- 
pletely understood is the nature of the posttranslational pro- 
cessing events leading to cleavage of the prohormone to 
products. It is known that prosomatostatin processing in 
mammals is tissue-specific with SS-28 being the predomi- 
nant product in the gut and SS-14 in the pancreas and brain 
(27). In addition, a multiplicity of fragments of prosomato- 
statins of varying size have been isolated from diverse tissue 
sources (2-10, 27, 29-31, 38, 39, 45). Except for SS-14, SS- 
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28, and SS-281_m it is not clear whether any of these frag- 
ments ofprosomatostatin are metabolic cleavage products. In 
most cases, it cannot be excluded that these peptides are ran- 
dom degradation products of the somatostatin precursor. To 
ascertain whether any of these peptides are metabolic cleav- 
age products, it is necessary to perform biosynthetic studies. 

Recently, several fragments of prosomatostatin-I (aPSS-I) 
have been isolated from anglerfish islets and characterized 
by Andrews and Dixon. 2 The fragments of aPSS-I were ini- 
tially identified by amino acid analysis of peptides from an- 
glerfish islet extracts that had previously been purified to 
homogeneity by ion-exchange chromatography and high per- 
formance liquid chromatography (HPLC). The primary 
structure of each peptide was determined by microsequenc- 
ing or Fast Atom Bombardment mass spectrometry. The 
availability of these peptides has made it feasible to study 
their production in intact islet tissue. The purified natural 
product peptides were used as retention time markers in 
HPLC runs to identify the peptides in biosynthetic studies. 
We report here the results of experiments designed to quanti- 
tate the amounts of these peptides that are synthesized and 
stored in islets along with data that confirm the cleavage site 
for the signal peptide of PPSS-I. 

Materials and Methods 

Materials 
A 3H-L-amino acid mixture containing 15 amino acids ranging in specific 
activity from 7 to 50 Ci/mmol was purchased from ICN Biochemicals Inc., 
Irvine, CA. [3H]Tryptophan (8.0 Ci/mmol) and [~C]leucine (340 mCi/ 
mmol) were purchased from New England Nuclear, Boston, MA. Bio Gel 
P-2 (100-200 mesh) and P-30 (100-200 mesh) were obtained from Bio-Rad 
Laboratories, Richmond, CA. Monofluor scintillation cocktail was from 
National Diagnostics, Inc., Somerville, NJ. HPLC grade acetonitrile was 
purchased from Fisher Scientific Co., Pittsburgh, PA, and sequanal grade 
trifluoroacetic acid used in the HPLC solvent system was obtained from 
Pierce Chemical Co., Rockford, IL. The 30-K antiserum to mammalian 
glueagon was obtained from the laboratory of Dr. R. H. Unger, the Univer- 
sity of Texas Southwestern Medical School, Dallas, TX. [1251]Glucagon 
was purchased from Cambridge Isotope Laboratories, Woburn MA. The 
R141 antiserum to SS-14 was a girl of Dr. R. P. Elde, University of Min- 
nesota, Minneapolis, MN. [ml]Tyr-SS-14 was purchased from New En- 
gland Nuclear, Boston, MA. 

Incubation of Islet tissue 
Decapsulated islets were prepared and incubated as described previously 
(23, 25). After a 30-rain incubation in buffer alone, islets were incubated 
5 h in the presence of either [3H]Trp (100 ~Ci) plus [~C]Leu (50 gCi), or 
500 o.Ci of the 3H-amino acid mix. 

Extraction and Gel b~ltration 

Labeled tissue was homogenized and extracted in 2 M acetic acid. The 
crude extracts were desalted by filtration through 2.5 x 17-cm columns of 
Bin-Gel P-2 in 2 M acetic acid, and the desalted extracts were subjected to 
gel filtration on 1.6 x 95-cm columns of Bio-Gel P-30, also in 2 M acetic 
acid. Radioactivity in the column eluates was monitored by taking aliquots 
from eluate fractions. The remainder of each eluate was separated into three 
pools containing Mr 1,000-2,500, Mr 2,500-9,000, or Mr 9,000-15,000 pep- 
tides, and lyophilized. The concentrated material was solubilized in freshly 
prepared 3 M acetic acid, and the samples were filtered through 0.22-gm 
filters before subjecting aliquots to reverse-phase HPLC. 

HPLC 
The HPLC system consisted of a Perkin-Elmer (P-E) series 3B liquid chro- 

2. Andrews, P. C., and J. E. Dixon. Manuscript submitted for publication. 

matograph linked to a P-E LC-75 spectrophotometer and a P-E Sigma 10 
chromatography data station (Perkin-Elmer Corp., Instrument Div., Nor- 
walk, CT). Reverse-phase HPLC was performed using a Vydac C-18 
column (0.46 x 25 cm; 300/~ pore size, 5 gm bead size, end-capped with 
C-2). Elution of peptides was accomplished using a mixture of solutions A 
and B. Solution A was 60% acetonitrile in 0.1% trifluoroacetic acid. Solu- 
tion B was 0.1% trifluoroacetic acid. Samples were run at 23°C with a flow 
rate ofO.8 ml/min and a column pressure of 1,400 psi. Gradient elutinn was 
used in all runs. The acetonitrile content of the eluant is given in the figure 
legend or shown on the figures. Ultraviolet absorbance was monitored at 
210 nm. Small amounts of the aPSS-I fragments (0.5-1.0 gg of the purified 
natural product peptides), used as column eluate markers, were always run 
on the same day under identical elution conditions to those applied to sam- 
ples being analyzed. 

Radioimmunoassay for Glucagon and Somatostatin 

Determination of glucagon-like immunoreactivity in HPLC eluate fractions 
was achieved by radioimmunoassay (RIA) as described previously (23, 24) 
using the 30-K antiserum which has been shown to be COOH-terminally 
directed (11). Determination of SS-14-1ike immunoreactivity in HPLC elu- 
ates was performed by SS-14 RIA as previously described (12). The assay, 
as used, detects only SS-14-1ike irnmunoreactive components in anglerfish 
islet extracts and not [Tyr 7, Gly~SS-14 containing peptides (22). 

Radiosequencing 
Direct micro-sequence analysis was accomplished in a Wittmann-Liebold 
modified (44) Beckman 890C sequencer. Anglerfish PSS-! was isolated by 
HPLC. Preparation of the peptide for sequencing included reduction and 
carboxymethylation (39). Introduction into the cup and sequencer program- 
ming were as previously reported (36, 37). The products from each se- 
quencer cycle were monitored by liquid scintillation counting. 

Results 

Identification and Isolation of aPSS-I 
From the predicted amino acid sequence data of Goodman 
et al. (15, 16) and Hobart et al. (17), it is known that leucine 
is found only in the 1-80 region of aPSS-I and that trypto- 
phan is found only in SS-14 (or aPSS-I83-96; See Fig. 1). Is- 
let tissue (111 rag) was incubated 5 h in the presence of 
[3H]tryptophan and [14C]leucine. The tissue extract was 
subjected to gel filtration, and the Mr 9,000-15,000 portion 
of the eluate was pooled and lyophilized. The peptides recov- 
ered were subjected to reverse-phase HPLC as indicated in 
Materials and Methods and in the legend to Fig. 2. Aliquots 
of the eluate were taken to determine the distribution of 3H 
and ~4C radioactivity as well as glucagon- and somatostatin- 
like immunoreactive components. In the resulting chromato- 
gram (Fig. 2), only one of the products monitored was 
doubly labeled with 3H and 14C and exhibited SS-14-1ike im- 
munoreactivity with a complete absence of glucagon-like 
immunoreactivity. This was a component that eluted at a 
retention time of 51 rain. The material eluting at retention 
time 59 min in Fig. 2 was heterogeneous. As it had been 
demonstrated previously that the RIA used for SS-14 does not 
detect [Tyr7,GIy~]SS-14 or other peptides containing this 
analogue of SS-14 (22) the material eluting at 51 min was ten- 
tatively identified as aPSS-I. The portion of the eluate indi- 
cated by the bar on Fig. 2 was pooled, lyophilized, and sub- 
jected to reduction and S-carboxymethylation as described 
previously (39). 

Radiosequencing of aPSS-I 
The results from radiosequencing of the peptide prepared as 
indicated in Fig. 2 are shown in Fig. 3. Significant [~4C]Leu 
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Figure 1. Size and cleavage site 
comparisons between anglerfish 
islet and human preprosomato- 
statins. Numbering of residues 
assigns the N-terminal amino 
acid of prosomatostatin as +1; 
residues of signal peptides (SP) 
are assigned negative numbers. 
Known sites of posttranslational 
endopeptidase and exopeptidase 
cleavage are indicated by down- 
ward pointing solid arrows. Pos- 
tulated sites of endopeptidase 
cleavage are indicated by upward 
pointing dashed arrows. Positions 
where arginine residues are lo- 
cated are indicated by solid rec- 
tangles; lysines are indicated by 
open rectangles. These diagrams 
were developed from data in ref- 
erences 15-17, 32, 33, and 43. 

radioactivity was observed in Edman cycles 10, 12, 13, 14, 
19, 31, 34, 35, 36, 39, and 40. The positions of  each of these 
leucine residues correspond precisely with the positions of  
U leucine residues in the sequence of PPSS-I as determined 
by Hobart  et al. (17) and Goodman et al. (15, 16). Given this 
distribution pattern of the N-terminal 11 leucine residues 
over 44 sequencer cycles, the absence of any significant 3I-t 
labeling in these cycles, and considering the observation that 
the peptide exhibits SS-like immunoreactivity (Fig. 2), it is 
highly probable that the leucine residues found in the radio- 
sequence analysis were part of  aPSS-I. As it would be ex- 
pected that signal sequences would be removed from any 

prohormones extracted from the islet tissue, these results 
then indicate that the N-terminal amino acid of  aPSS-I is lo- 
cated nine positions N-terminal to the first leucine residue 
observed. It follows that the signal cleavage site occurs just 
before this amino acid. According to the sequence of PPSS-I 
(15-17), the signal cleavage site would be at a Cys-Ser bond, 
indicating a signal peptide 25 amino acids in length (Fig. 1). 

Examination of  Itssue Extracts for 
Potential Posttranslational Cleavage Products 

Andrews and Dixon have isolated and characterized several 
peptides that are potential metabolic cleavage products of  
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Figure 2. Reverse-phase HPLC of anglerfish islet Mr 9,000-15,000 peptides labeled with [3H]tryptophan and ["C]leucine. See Materials 
and Methods for column and solvent system. The column was equilibrated at 22% CH3CN. After sample injections, a linear gradient 
reaching 35% CH3CN in 35 min was instituted. This was followed by a 10-min isocratic elution at 35% CH3CN. Then a 2-min gradient 
to 60% CH3CN was instituted followed by a 10-min elution at 60% CH3CN. Fractions of 0.4 ml (0.5 min) were collected and aliquots 
were removed for assay of radioactivity and for the RIAs. The region of the eluate indicated by the bar, containing a peptide doubly labeled 
with 3H and ~4C which exhibited somatostatin-like but not glucagon-like immunoreactivity, was removed and the peptide was subjected 
to radiosequencing (Fig. 3). 
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Figure 3. Radiosequencing of a SS-14 containing polypeptide from 
anglerfish islets. The material (,,o14 nCi; 24,000 cpm; 0.4-0.6 pmol) 
recovered as indicated in Fig. 2 was subjected to repetitive Edman 
degradation in the modified Beckman 890 sequencer. The products 
of each sequencer cycle were collected and assayed for 3H and 14C 
radioactivity. No appreciable 3H label was monitored through the 
first 44 cycles. Significant ~4C label was recovered from the cycles 
indicated by the numbered arrows. The positions of these 11 leucine 
residues align precisely with the placement of 11 leucines in aPSS-I 
(references 15-17). 

aPSS-I. 2 These are aPSS-I~_~, aPSS-II~7, and aPSS-I69-so 
(Fig. 1). These investigators also prepared aP5S-I29-67 by 
tryptic digestion of the 1-67 peptide. It might be predicted 
that each of these peptides is a potential cleavage product of 
aPSS-I because each is flanked by basic amino acids in the 
precursor (Fig. 1). Moreover, it was found that the C-termi- 
nal basic residues had been removed in the 1-27, 1-67, and 
69-80 peptides isolated by Andrews and Dixon, suggesting 
the action of a carboxypeptidase in the final processing of 
these potential products. 

We have performed biosynthetic studies to determine 
whether, and in what amounts, each of these peptides is pro- 
duced during the processing of aPSS-I. Extracts of tissue in- 
cubated for 5 h in the presence of a 3H-amino acid mixture 
were subjected to gel filtration and peptides of varying 
molecular size were then separated by reverse-phase HPLC. 
The distribution of radioactivity incorporated was compared 
to the absorption profile of the eluted peptides generated 
by monitoring at 210 gm. Representative examples of typical 
elution patterns obtained from Mr 1,000-2,500 and Mr 
2,500-9,000 peptide pools are shown in Figs• 4 and 5, 
respectively. Presentation of the data in this format allows 
comparison of the relative amount of each peptide synthe- 
sized during incubations (A) with amounts of each peptide 
accumulated and stored in the tissue (B). The data in Fig. 
4 demonstrate that the predominant peptide in the Mr 
1,000-2,500 pool is SS-14 (B) which is also by far the most 
heavily labeled peptide in this pool (A). The label appearing 
in the void volume (RT 3-5 min; Fig. 4 A) can be attributed 
to unincorporated amino acids that were not removed during 
the desalting procedure. Of the other products of aPSS-I 
available for testing, only aPSS-I69_g0 would be expected in 
the M, 1,000-2,500 pool. Under the conditions used, this 
peptide, which is analogous to SS-281-12 purified from 
mammalian species, was found to have a retention time of 
18.2 min. It is clear from the data in Fig. 4 that, relative to 
the amounts of SS-14 produced, the quantity of aPSS-I69-8o 
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Figure 4. HPLC analysis of Mr 1,000-2,500 peptides labeled with 
3H-amino acids. Islet tissue (100 mg) was incubated 5 h with a 3H- 
amino acid mix. The Mr 1,000-2,500 and Mr 2,500-9,000 pep- 
tides were separated by gel filtration and pooled. (A) HPLC chro- 
matogram of one fourth of the Mr 1,000-2,500 peptides. Fractions 
of 0.8 ml (1.0 min) were collected. (B) Corresponding absorbance 
pattern obtained at 210 nm. The elution positions of aPSS-I69-so 
and SS-14 as determined in separate runs are shown by arrows on 
the chromatograms. AUFS, absorbance units full scale; RT, reten- 
tion time; ...... CH3CN gradient. 

synthesized and stored in the tissue is either very small, or 
that this fragment is not produced at all. 

All of the other potential cleavage products of aPSS-I that 
were tested in the present study are found in the Mr 
2,500-9,000 pool• The chromatograms in Fig. 5 illustrate the 
relative amounts of each of these peptides recovered and the 
relative radiolabeling of each. It was found that, when com- 
pared with the amounts of SS-14 recovered, the quantities of 
aPSS-I~_27 and aPSS-II_67 were very low. No aP8S-I29-67 was 
detected (Fig. 5). 

To quantitate more accurately the relative amounts of each 
of these potential cleavage products of aPSS-I that are stored 
in islet tissue, data from the Sigma 10 computing integrator 
were used. From a series of runs such as those depicted in 
Figs. 4 and 5, each of the peptides was identified in chro- 
matograms by its retention time, and the peak area from the 
integrator was used to calculate nanomoles of peptide recov- 
ered per gram of islet tissue. The results were very consistent 
from all samples tested and are tabulated in Table I. These 
data indicate that SS-14 is by far the predominant cleavage 
product of aPSS-I, whereas the other peptides are minor 

The Journal of Cell Biology, Volume 103, 1986 1208 



31.0 

I 
?A 24 .8  
o 

~ 18.6 

'~ 12.4 

6.2 

0.0 

AUFS 
1.28 

e~Ns A 

............ [ ....... 1.,,,-,._ 

alNS 
- -  B 

80 

s° i 
4o  z 

o 

,o~ 
2O 

10 

aPSS-Ii-er 
a P S S - I  1-2r RT-49.9 

RT=55.5 

5 10 15 20 25 30  35 40  45 50 55 
MINUTES 

Figure 5. HPLC analysis of Mr 2,500-9,000 peptides labeled with 
3H-amino acids. One fourth of the Mr 2,500-9,000 peptides ob- 
tained from the tissue sample indicated in Fig. 4 was subjected to 
HPLC. (A) Distribution of 3H radioactivity in the eluate. (B) Cor- 
responding absorbance pattern observed at 210 nm. To enhance 
resolution, 0.4-ml (0.5 min) fractions of the HPLC eluates were col- 
lected for determination of radioactivity. The elution positions of 
aPSS-It-27, anglerfish insulin (alns), aPSS-I]-67, and aPSS-I26-67 as 
determined in separate runs are indicated by arrows on the chro- 
matograms. AUFS, absorbance units full scale; RT, retention time; 
...... CH3CN gradient. 

cleavage products of this precursor. None of the "pro-peptide 
fragments" was found in quantities >5.5 % of the amount of 
SS-14 present. 

Discussion 

The partial radiosequencing of aPSS-I (Fig. 2) indicates that 
the position of signal cleavage in PPSS-I lies within the 
dipeptide Cys-Ser, yielding a signal peptide 25 amino acids 
in length (Fig. 1). This is the first identification of the amino 
terminus of aPSS-I extracted from islet tissue. These results 
confirm data from previous work of Warren and Shields (43) 
who demonstrated signal cleavage at this site by performing 
cell-free translation of PPSS-I mRNA in the presence of dog 
pancreatic microsomes. Our results are also consistent with 
the fact that two of the peptides isolated and characterized 
by Andrews and Dixon 2 were aPSS-II_~ and aPSS-I1-67, both 
potential cleavage products of aPSS-I. The fact that these 
peptides are present in islet extracts suggests that they might 
be natural cleavage products derived from the N terminus of 
aPSS-I. Taken together, the results of the present and these 
other studies establish the signal cleavage site for PPSS-I in 
anglerfish islets at the position after the 25th residue C-ter- 
minal to the initiator Met of PPSS-I. 

The examination of a wide variety of tissue extracts from 
different species for peptides contained within the structure 
of prosomatostatin-I has led to the identification of a number 
of peptides in addition to SS-14 and SS-28, which may be 
cleavage products of this precusor. Prominent among these 
peptides derived from mammalian tissues are SS-28H2 (hu- 
man PSS65_76 in Fig. 1) (4, 6-9) and a 32-residue peptide, 
corresponding to human PSS~-32 (31) (Fig. 1). A peptide 

Table L Comparison of the Amounts of Prosomatostatin-l- 
related Peptides Recovered from Islet Tissue Extracts 

Nmol/g Peptide as percent 
Peptide tissue* of SS-14 

SS-14 287.1 + 20.1 100.0 
aPSS-I69_so 10.4 5: 3.5 3.6 
aPSS-I29qs7 ND 0.0 
aPSS-L_67 6.9 :t: 1.5 2.4 
aPSS-II_27 16.0 + 1.1 5.5 

* Data are mean + SD from five determinations. ND, none detected. 

similar to PSSl-32  has been found in rat medullary thyroid 
carcinoma (3) and can be inferred to be present from work 
in which prosomatostatin cleavage products in rat brain were 
characterized (5). Other fragments of mammalian proso- 
matostatin have been described as well (5, 7, 9). However, 
just the fact that these peptides can be extracted from 
somatostatin-producing tissues is not sufficient to demon- 
strate that they are normal metabolic cleavage products of 
prosomatostatin. Whether a peptide is an actual processing 
product cleaved from prosomatostatin or an artifact of non- 
specific proteolysis can be determined accurately only by 
quantitating the amount of each peptide produced in biosyn- 
thetic studies and by monitoring the amount of each of these 
peptides accumulated and stored in somatostatin-producing 
tissues. After comparing the amounts of the proposed prod- 
uct synthesized and stored with the quantity of SS-14, which 
is synthesized and stored in the same tissue, estimates can 
then be made regarding the relative abundance of other PSS 
cleavage products. 

In the present study, we have made this type of comparison 
for SS-14 and several potential cleavage products of aPSS-I 
which have been isolated from islet tissue and characterized. 
The data in Figs. 4 and 5 and Table I indicate that SS-14 is 
a major cleavage product of aPSS-I. This observation, to- 
gether with our finding that relatively low levels of aPSS- 
IJ-27, aPSS-II-67, and aPSS-I69_so are recovered, su~ests that 
the major site of aPSS-I cleavage occurs at the basic dipep- 
tide, Arg-Lys, which immediately precedes SS-14 in the 
precursor (Fig. 1). The results also indicate that secondary 
cleavages occur but appear to be minor, resulting in the 
production of the small amounts of the nonsomatostatin- 
containing fragments that were recovered. It is possible that 
these peptides are not normal metabolic cleavage products of 
aPSS-I at all. It cannot be excluded that each may be gener- 
ated by random basic residue-specific endopeptidase activity 
combined with a carboxypeptidase B-like activity. It should 
be noted, however, that in the study of Andrews and Dixon 2 
the relative proportions of each of these peptides recovered 
from tissue extracts differed slightly from those reported 
here. These differences may relate to differential extraction 
and/or recovery of each of the peptides as a result of the 
procedures used in each laboratory. It is also possible that 
the larger peptides are not as readily extracted as the smaller 
peptides. However, in both laboratories the levels of the "pro- 
peptide" fragments recovered were found to be significantly 
lower than the amounts of SS-14 recovered. Andrews and 
Dixon found that the quantities of aPSS-I~_27, aPSS-I~_67, 
and aPSS-I69_s0 were 2.6, 17.2, and 20.2%, respectively, of 
the amounts of SS-14 that were monitored in extracts of fresh 
tissue. This is consistent with the argument that none of the 
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"pro-peptide fragments" is a major cleavage product of 
aPSS-I. 

In view of the data from both of these studies, a question 
remains regarding the nature of the major cleavage prod- 
uct(s) of aPSS-I other than SS-14. Considering the observa- 
tion that aPSS-I29-67 was not detected at all in tissue extracts 
in the present study, one possible cleavage product other than 
SS-14 is aPSS-I29_8o (See Fig. 1). If aPSS-I29_s0 were a cleav- 
age product, then the other major cleavage product would be 
aPSS-I~_27. However, since the recovered levels of aPSS-I~_27 
were significantly lower than those of SS-14 (Figs. 4 and 5 
and Table I), this is considered unlikely. Thus, in accordance 
with the observation that recovery of aPSS-I69_s0 was also 
quite low (Fig. 4, Table I), it is proposed that the major cleav- 
age product of aPSS-I other than SS-14 may be aPSS-I~_8o. 
This peptide has not yet been identified in extracts of an- 
glerfish islets. While it is possible that this may be the result 
of poor recovery of this peptide relative to the other aPPS-I- 
related products, it is more likely that it reflects lack of an 
appropriate probe to identify the peptide. An alternative ex- 
planation is that all nonsomatostatin-containing portions of 
aPSS-I are subjected to random degradation or processing at 
sites other than Arg 28, Arg 6s, and Arg81-Lys 82, resulting in 
either complete breakdown, or in generation of cleavage 
products different from those identified to date. If this were 
the case, it could explain the observation of such low levels 
of the other potential cleavage products relative to SS-14 
(Table I). 

Although the evidence available indicates that many sim- 
ilarities exist, it is clear that the characteristics of prosomato- 
statin processing in mammalian somatostatin-producing tis- 
sues cannot be completely deduced from the results of the 
present study. To examine prosomatostatin processing in 
mammalian tissues rigorously, the methodology used here 
should be applied. Application of these procedures would es- 
tablish the relative amounts of the various putative cleavage 
products of prosomatostatin which are actually produced and 
stored in the tissue. This information, in turn, could then be 
used to determine which, if any, of the prosomatostatin frag- 
ments found in these tissues might possibly play a biological 
role. It is possible that varying amounts of specific cleavage 
products may be produced in the same tissue under differing 
physiological conditions as a result of differential cleavage. 
This is a possibility that can readily be tested in the anglerfish 
islet system and probably in mammalian systems as well. 
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