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Abstract

Lung cancer is the most common cancer and the leading cause of cancer deaths worldwide. We previously showed that solamargine, one
natural phytochemicals from traditional plants, inhibited the growth of lung cancer cells through inhibition of prostaglandin E2 (PGE2)
receptor EP4. However, the potential downstream effectors of EP4 involving in the anti-lung cancer effects of solamargine still remained to
be determined. In this study, we further verified that solamargine inhibited growth of non-small-cell lung cancer (NSCLC) cells in multiple
cell lines. Mechanistically, solamargine increased phosphorylation of ERK1/2. Moreover, solamargine inhibited the protein expression of
DNA methyltransferase 1 (DNMT1) and c-Jun, which were abrogated in cells treated with MEK/ERK1/2 inhibitor (PD98059) and transfected
with exogenously expressed DNMT1 gene, respectively. Interestingly, overexpressed DNMT1 gene antagonized the effect of solamargine on
c-Jun protein expression. Intriguingly, overexpressed c-Jun blocked solamargine-inhibited lung cancer cell growth, and feedback resisted
the solamargine-induced phosphorylation of ERK1/2. A nude mouse xenograft model implanted with lung cancer cells in vivo confirmed
the results in vitro. Collectively, our results show that solamargine inhibits the growth of human lung cancer cells through reduction of
EP4 protein expression, followed by increasing ERK1/2 phosphorylation. This results in decrease in DNMT1 and c-Jun protein expressions.
The inter-correlations between EP4, DNMT1 and c-Jun and feedback regulation of ERK1/2 by c-Jun contribute to the overall responses of
solamargine in this process. This study uncovers an additional novel mechanism by which solamargine inhibits growth of human lung can-
cer cells.
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Introduction

Lung cancer is the most common cancer and the leading cause of
cancer mortality worldwide [1]. Most patients with lung cancer are
diagnosed with an advanced, unresectable disease resulting in a poor
prognosis. Among them, more than 80% of lung cancers are non-
small-cell lung cancer (NSCLC) with little changes of low 5-year
survival rate [1]. Although recent advances in understanding of the
biological characteristics of this illness and multidisciplinary thera-
peutic approaches, such as individuated chemotherapy, targeted ther-
apies, immune approaches and improved supportive care, have been
reported [2, 3], the outcome remains dismal for patients with
advanced disease. The choice of treatment for patients with advanced

NSCLC still remains a significant challenge [4]. This largely affects
the quality of life and patient survival. Therefore, searching for more
effective adjuvant strategies with maximizing efficacy and minimizing
adverse effects is highly desired.

Natural compounds, such as solamargine (SM), the component of
solanum lycocarpum fruit glycoalkaloid extract, demonstrated anti-
tumour properties in several cancer types [5–9]. Early study found
that combination of low concentrations of SM with low-toxic topoiso-
merase II inhibitor epirubicin synergistically accelerated apoptotic cell
death through up-regulation of Fas expression and down-regulated
the expressions of HER2 and topoisomerase II alpha (TOP2A) in
NSCLC A549 and H441 cells [10]. Recently, one study showed that
solamargine effectively inhibited the growth of melanoma cells, while
minimum effects were observed in normal and benign cells, through
triggering and disrupting both extrinsic and intrinsic apoptotic
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pathways [11]. We previously demonstrated that solamargine inhib-
ited the growth of NSCLC cells through inactivation of phosphatidyli-
nositol 3-kinase/Akt (PI3-K/Akt) signalling pathway, followed by
reduction of transcription factors, such as SP1 and p65, expressions.
In turn, this resulted in the inhibition of prostaglandin E2 receptor E-
prostanoid receptor 4 (EP4) gene expression [12]. However, the
detailed mechanisms underlying this, especially the role of potential
downstream effectors of EP4 in this process, still have not been well
elucidated.

DNA methylation is the most common epigenetic modification
in the mammalian genome. DNA methyltransferase 1(DNMT1), the
major epigenetic enzyme, maintains the epigenetic state of DNA
and genome stability by replicating CpG methylation signatures and
producing heritable methylation patterns through cell metabolism
[13, 14]. Through the interactions with transcription factors, non-
coding RNAs, oncogenes and tumour suppressors, DNMT1 influ-
enced cell survival, cell cycle arrest, senescence and cell death via
methylation-dependent and methylation-independent pathways,
which resulted in aberrant activation of the multiple downstream
signals and controlled expression of genes, leading to cancer
growth, progression and metastasis [15–17]. Thus, approaches for
inhibition of DNMT1 may become novel strategies for treating can-
cers [18, 19].

The transcription factor AP-1 (activating protein-1), a heterodi-
mer of the c-Jun and c-Fos proteins, plays an important role in
growth and metastasis of various tumours [20]. As a member of
the AP-1 family of transcription activating complex and proto-onco-
gene, overexpressed c-Jun showed to significantly enhance cell
growth and reduce apoptosis partly through regulation of AP-1 tar-
gets and other pro-invasion genes associated with resistance to
anti-cancer agents resulting in poor survival [21–24]. Thus, target-
ing c-Jun could be potential for the prevention and treatment of
cancer [23, 25].

The E-prostanoid receptor 4 (EP4) subtype for prostaglandin E2
(PGE2), the family members of G protein-coupled receptors,
involves in a variety of biological functions, such as inflammation,
allergy, parturition, tumorigenesis, growth and metastasis [26].
Studies demonstrated that highly expression of EP4 has been
found in several tumour types including lung and involved in
development and progression of several cancer types [26–30].
Thus, that targeting EP4 signalling demonstrated the therapeutic
potential in the prevention and treatment of cancer [26–32]. We
previously demonstrated the critical role of EP4 expression in
mediating the anti-lung cancer effects of solamargine [12]. As
such, the functional role of EP4 and its downstream signalling in
lung cancer onset and progression remain to be determined. While
the information for the links of EP4 and c-Jun in lung cancer
development and progression has been reported [33, 34], the
association between EP4, c-Jun to DNMT1 remained largely
unknown [35].

In this study, we further explored the potential mechanism by
which solamargine inhibits growth of human lung cancer cells. Our
results demonstrated that the DNMT1 and c-Jun acted as the poten-
tial downstream effectors of EP4 in mediating the anti-lung cancer
responses of solamargine.

Materials and methods

Cell culture and chemicals

The human cancer lines H1650, H1975, PC9, A549 and H1299 were

obtained from the Chinese Academy of Sciences Cell Bank of Type Cul-
ture Collection (Shanghai, China). All cell lines have been tested and

authenticated for absence of Mycoplasma, genotypes, drug response

and morphology. Cells were grown in RPMI 1640 medium (obtained

from GIBCO, Life Technologies, Grand Island, NY, USA) with supple-
mented 10% foetal bovine serum. Lipofectamine 3000 reagent was pur-

chased from Invitrogen (Shanghai, China). The polyclonal antibody

against EP4 was obtained from Abcam (Cambridge, MA, USA). The anti-

bodies against DNMT1, c-Jun, the phosphor-form (Thr202/204) of
extracellular signal-regulated kinases 1/2 (ERK1/2), and MEK/ERK1/2

inhibitor PD98059 were purchased from Cell Signaling Technology Inc

(Beverly, MA, USA). Other chemicals unless indicated were obtained
from Sigma-Aldrich (St. Louis, MO, USA).

Cell viability assay

Cell viability was measured using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-
diphenyltetrazolium bromide (MTT) assay [36]. Briefly, lung cancer cells

were harvested and seeded in a 96-well microtiter plate followed by

treating with solamargine (6 lM) for up to 48 hrs. Afterwards, MTT
solution (20 ll, 5 g/l) was added to each well, and cells were incubated

at 37°C for an additional 4 hrs. Finally, the 200-ll solvent dimethyl sul-

foxide was added to each well for 10 min. The ELISA reader (Perkin

Elmer, Victor X5, USA) was used to detect the Absorbance at 490 nm.
Cell viability (%) was calculated as follows: (absorbance of test sample/

absorbance of control) 9 100%.

Cell cycle analysis

This procedure was reported previously [12, 36]. Briefly, NSCLC cells

were cultured in 6-well plates at 2 9 105 cells/well and treated with

increased doses of solamargine for 24 hrs. Afterwards, the cells were
harvested, washed and resuspended in cold PBS and ethanol for 2 hrs

at 4°C. The fixed cells were incubated in 1 ml of 0.1% sodium citrate

containing propidium iodide (PI) RNase for 30 min at room tempera-
ture. The cell cycle distribution was detected by flow cytometry

(FC500; Beckman Coulter, FL, USA), and the percentage of cells within

the G0/G1, S, and G2/M phases were analysed using the MultiCycle

AV DNA Analysis software (Phoenix Flow Systems, Inc., San Diego,
CA, USA).

Western blot analysis

The detailed procedure was reported previously [17, 36]. In brief, equal

amounts of protein from cell lysates were solubilized and separated on
SDS polyacrylamide gels. Membranes were incubated with antibodies

against EP4, DNMT1, c-Jun, total and phosphor-form (Thr202/204) of

ERK1/2, followed by incubating with a secondary antibody raised

against rabbit IgG conjugated to horseradish peroxidase (Cell Signaling
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Technology, Inc., Beverly, MA, USA). Afterwards, the membranes were
visualized and enhanced chemiluminescence (Immobilon Western; Milli-

pore, Billerica, MA, USA), followed by observing the signals under the

Molecular Imager ChemiDoc XRS Gel Imagine System (Bio-Rad, Her-

cules, CA, USA) and documenting the results.

Transient transfection assay

This procedure was reported previously [12]. The control or EP4,

DNMT1 and c-Jun overexpression constructs (pCMV6-AC-DNMT1,

pCMV6-AC-c-Jun, pCMV6-AC-EP4) were obtained from OriGene Tech-

nologies, Inc. (Rockville, MD, USA). Briefly, cells were seeded in 6-well
dishes and grown to 50–60% confluence. For each well, 2 lg of con-

trol, DNMT1, c-Jun and EP4 plasmid DNA constructs were separately

transfected into the cells using Lipofectamine 3000 reagent (Invitrogen,

Shanghai, China) for up to 24 hrs based on the instruction from the
provider, followed by treating with solamargine for an additional 24 or

48 hrs for other experiments.

In vivo xenograft animal model

Experiments were performed according to the guidelines for the care

and use of laboratory animals and were approved by the Animal Care
and Use Committee of Guangdong Provincial Hospital of Chinese

Medicine. A total of 33 eight-week-old female nude mice obtained

from Guangdong Provincial Research Center for Laboratory Animal

Medicine (Foshan, Guangdong, China) were maintained at the Animal
Center of Guangdong Provincial Hospital of Chinese Medicine in a

specific pathogen-free environment with food and water provided.

A549 cells carrying luciferase report gene (A549-Luc, obtained from
the Guangzhou Land Technology Co., Guangzhou, China) (1 9 106

cells) in 100 ll PBS were injected subcutaneously in nude mice and

allowed to grow for over 1 week when the initial measurement was

made with calipers. Mice were randomly divided into control, low
(4 mg/kg) and high doses (8 mg/kg) of solamargine group, which

given via gavages (once another day) for up to 30 days (n = 11/

group).

For bioluminescence imaging (BLI) procedure, mice were anes-
thetized by inhalation of 2% isoflurane. The D-luciferin (150 mg/kg in

approximately 100 ll; Caliper Life Sciences, Hopkinton, MA, USA) was

injected into the peritoneal cavity of nude mice. The IVIS-200 Imaging
System (Xenogen/Caliper, Alameda, CA, USA) was used to measure the

intensity of BLI signal. Tumour volume measurements were calculated

using the formula for an oblong sphere: volume = (width2 9 length).

Quantification of bioluminescence was reported as photons/sec. The
bodyweights of the mice were measured once a week. All mice were

killed on day 30 in accordance with the Guide for the Care and Use of

Laboratory Animals.

Statistical analysis

All experiments were repeated a minimum of three times. Statistical
analysis was performed with GraphPad Prism 5.0 software (GraphPad

Software Inc, San Diego, CA, USA) with the use of an unpaired Stu-

dent’s t-test (for comparison between two groups); a one-way ANOVA

with Tukey’s multiple comparison tests. The results in graphs were

presented as percentage of control. Asterisks shown in the figures indi-
cate significant differences in experimental groups in comparison with

the corresponding control condition. A value of P < 0.05 was regarded

as statistically significant.

Results

Solamargine inhibited growth in multiple lung
cancer cell lines and induced cell growth arrest
in H1299 NSCLC cells

We previously showed that solamargine inhibited the growth of lung
cancer cells [12]. Herein, we found that solamargine (6 lM) inhibited
growth in multiple NSCLC cell lines (Fig. 1A). By performing the cell
cycle experiment, we also observed that, compared with the untreated
control cells, solamargine significantly increased the proportion of
cells at G0/G1 phase, while the proportion of cells at S phase was
reduced at the 6 lM solamargine in H1299 NSCLC cells (Fig. 1B).
These results again indicated the inhibitory property of solamargine
for lung cancer cells.

Solamargine increased the phosphorylation of
ERK1/2

We next explored the signalling pathways that may be involved in the
inhibitory effect by solamargine in lung cancer cells. We showed that
solamargine increased the phosphorylation of ERK1/2 in a time-
dependent fashion with significant induction observed between 2 and
24 hrs in H1299 and A549 cells (Fig. 2A). Previously, we found that
solamargine decreased the protein expression of EP4 in lung cancer
cells [12]. Intriguingly, herein, we observed that exogenously
expressed EP4 significantly resisted the solamargine-induced phos-
phorylation of ERK1/2 in H1299 and A549 cells (Fig. 2B). The above
results indicated that solamargine reduced EP4 protein expression,
followed by increasing the phosphorylation of ERK1/2 although more
in-depth experiments underlying this are still required to better eluci-
dating this.

Solamargine inhibited protein expression of
DNMT1 through activation of ERK1/2

Next, we further searched for potential molecular targets that medi-
ated cell growth inhibitory effect of solamargine. Several lines of evi-
dence have demonstrated that high expression of DNMT1 was
found in several cancer types including NSCLC and that targeting of
DNMT1 suppressed cancer cell growth [36–38]. In this study, we
showed that solamargine reduced the protein expression of DNMT1
in H1299 and A549 cells (Fig. 3A). Interestingly, the inhibitors of
MEK/ERK1/2 (PD98059) significantly abrogated the effect of sola-
margine on DNMT1 protein expression suggesting that solamargine
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Fig. 1 Solamargine inhibited growth in multiple lung cancer cell lines and induced cell growth arrest in H1299 cells. (A) Lung cancer cell lines

(H1650, H1975, PC9, A549 and H1299) were treated with solamargine (6 lM) for up to 48 hrs. Afterwards, the cell viability was determined using

the MTT assay as described in the Materials and Methods section. (B) H1299 cells were treated with increased concentrations of solamargine for
up to 48 hrs. Afterwards, the cells were collected and processed for analysis of cell cycle distribution by flow cytometry after propidium iodide (PI)

staining. And the percentages of the cell population in each phase (G0/G1, S and G2/M) of cell cycle were assessed by Multicycle AV DNA Analysis

Software. Data are expressed as a percentage of total cells. Values are given as the mean � SD from three independent experiments performed in

triplicate. *Significant difference as compared with the untreated control group (P < 0.05).
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inhibited protein expression of DNMT1 through activation of ERK1/2
(Fig. 3B).

Solamargine inhibited c-Jun protein through
inhibition of DNMT1 expression; exogenously
expressed c-Jun resisted the solamargine-
inhibited cell growth

Moreover, to gain insight into the molecular mechanism by which
solamargine-inhibited cell growth, we examined the potential down-
stream effectors of DNMT1. We showed that solamargine inhibited
transcription factor c-Jun protein expression, which was abrogated in
cells transfected with exogenously expressed DNMT1 (Fig. 4A–B).
Interestingly, exogenous expression of c-Jun overcame the effect of
solamargine on cell growth inhibition in H1299 and A549 cells
(Fig. 4C). Note that overexpressed c-Jun had no effect on sola-
margine-reduced DNMT1 protein expression (Fig. 4D). Together, the
above results suggested that c-Jun acted as one of downstream

effectors of DNMT1 and that inhibition of c-Jun was involved in sola-
margine-inhibited lung cancer cell growth.

Overexpression of EP4 blocked the solamargine
inhibited c-Jun protein expression; exogenously
expressed c-Jun feedback reversed solamargine-
induced phosphorylation of ERK1/2

To explore the possible functional relevance of EP4 expression changes
following inhibition of c-Jun by solamargine, we determined the ability
of EP4 to regulate the c-Jun expression. To this end, we showed that
exogenously overexpressed EP4 blocked solamargine-inhibited c-Jun
protein expression (Fig. 5A). Intriguingly, exogenously expressed c-Jun
feedback antagonized in part solamargine-induced phosphorylation of
ERK1/2 (Fig. 5B), while it had no effect on EP4 protein expression
(Fig. 5C). These findings indicated that c-Jun could be one of down-
stream effectors of EP4 and that a negative feedback regulatory loop of
ERK1/2 by c-Jun was occurred in this process.
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Fig. 2 Solamargine increased the phosphorylation of ERK1/2. (A) H1299 and A549 cells were treated with solamargine (6 lM) in the indicated times,

and cell lysate was harvested, and the expression of the phosphorylated and total protein of ERK1/2 was measured by Western blot analysis using

corresponding antibodies. GAPDH was used as loading control. (B) A549 and H1299 cells were transfected with control and EP4 expression vectors

for 24 hrs before exposing the cells to solamargine for an additional 24 hrs. Afterwards, the EP4 protein, phosphor-ERK1/2 were determined using
Western blot. GAPDH was used as internal control. Values in bar graphs were given as the mean � SD from three independent experiments. *Sig-
nificant difference compared with the untreated control group (P < 0.05). **Significant difference from solamargine treated alone (P < 0.05). ERK1/2,

extracellular signal-regulated kinases 1/2.
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In vivo anti-cancer activity in lung cancer cell is
associated with reduction of EP4, DNMT1 and c-
Jun protein expressions and Induction of
phosphorylation of ERK1/2

We also tested the effect of solamargine in tumour growth and
expressions of EP4, DNMT1 and c-Jun in xenografted mouse model.
We found that, compared with the control group, the high-dose sola-
margine-treated mice showed a significant delayed tumour growth,
without any severe adverse events, as assessed by the Xenogen
IVIS200 System (Fig. 6A). In addition, we noticed a significant reduc-
tion of the tumour weight and sizes in the high doses of solamargine
treatment group as compared with the control group (Fig. 6B–D). By
Western blot, fresh tumours harvested from the experiment showed

that solamargine significantly decreased EP4, DNMT1 and c-Jun pro-
tein expression and induced phosphorylation of ERK1/2 in vivo in the
high-dose solamargine treatment group compared with the control
group (Fig. 6E).

Discussion

Although improvements in early diagnosis and clinical treatment
strategies have been made, the overall 5-year survival for NSCLC
patients still remains low [39], and the need to elucidate in-depth
mechanisms involved in the tumorigenesis of NSCLC and search for
potential therapeutic targets are much required [1, 40]. Thus, while
studying and developing novel and new therapeutics to augment cur-
rently available treatment regiments with less adverse effects are
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important, further understanding of the molecular mechanisms of
certain anti-cancer agents for the treatment of malignancies such as
lung cancer is also highly warranted.

We previously showed that solamargine, a steroidal alkaloid gly-
coside extracted from the traditional Chinese herb Solanum incanum,
inhibited the growth of lung cancer cells through inactivation of
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Fig. 4 Solamargine inhibited c-Jun protein through inhibition of DNMT1 expression; exogenously expressed c-Jun resisted the solamargine-inhibited

cell growth. (A) A549 and H1299 cells were treated with increased concentration of solamargine for 24 hrs. Afterwards, the expression of c-Jun pro-

tein was detected by Western blot. (B) A549 and H1299 cells were transfected with the control or expression construct of DNMT1 for 24 hrs before

exposing the cells to solamargine (6 lM) for an additional 24 hrs. Afterwards, the expression of DNMT1 and c-Jun proteins were determined by
Western blot and was expressed as percentage of control in the mean � SD of three separate experiments. GAPDH was used as internal control.

(C) A549 and H1299 cells were transfected with the control or expression construct of c-Jun for 24 hrs before exposing the cells to solamargine

(6 lM) for an additional 24 hrs. Afterwards, the expression of c-Jun protein and cell viability were determined by Western blot and MTT assays,

respectively. GAPDH was used as internal control. Values in bar graphs were expressed as percentage of control in the mean � SD of three sepa-
rate experiments. (D) A549 and H1299 cells were transfected with the control or expression construct of c-Jun for 24 hrs before exposing the cells

to solamargine (6 lM) for an additional 24 hrs. Afterwards, the expression of DNMT1 and c-Jun proteins were determined by Western blot and was

expressed as percentage of control in the mean � SD of three separate experiments. GAPDH was used as internal control. *Significant difference
compared with the untreated control group (P < 0.05). **Significant difference from solamargine treated alone (P < 0.05).
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PI3-K/Akt signalling pathway, followed by reducing SP1 and p65
expression. In turn, this resulted in inhibition of prostaglandin E2
receptor EP4 gene expression [12]. We previously found that EP4
overexpressing cells showed only a partial rescue from growth inhibi-
tion by solamargine [12], suggesting other additional players may be
involved in this process. In this study, we provided an additional

mechanistic evidence demonstrating that solamargine also affected
the EP4 downstream effectors (DNMT1 and c-Jun), thereby sup-
pressing lung cancer cell growth. Our results suggest that activation
of ERK played a role in this process. We reasoned that activation of
this signalling pathway could be part of the anti-tumour mechanism
of solamargine although more studies are needed to confirm this. The
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feedback regulation of ERK1/2 by c-Jun contribute to the overall responses of solamargine in this process. ERK1/2, extracellular signal-regulated
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activation of ERK axis has been reported to be involved in the anti-
tumour activities including lung cancer by different active compounds
in several other studies although no studies showed the link of ERK
signalling to the effects of solamargine [36, 41–43]. On the contrary,
opposite findings regarding the role of ERK signalling have been
reported in other studies, such as the overall survival was signifi-
cantly reduced in NSCLC patients with higher pERK1/2 expression
[44–48]. Thus, the possible dual roles of ERK in terms of tumour sup-
pressor or tumour promoter have been depended on the activity of
ERK signalling, feedback loops, interaction with other kinase sig-
nalling pathways, and different cell types studied [49].

Our results also implied that inhibition of EP4 expression was
required in solamargine-induced activation of ERK signalling, imply-
ing a possible upstream molecule of ERK signalling in this process.
Regulation of PGE2 receptor subtypes, such as EP4 gene expres-
sion, has been shown to be involved in the influencing activation
of several kinases including ERK in other studies demonstrating
the complicated signalling networks that affected the tumour
growth and progression, and the indispensable role of EP4 prosta-
noid receptor as a therapeutic target for the cancer treatment [50–
52]. Whether the effect of solamargine-induced activation of ERK
signalling was truly linked to EP4 expression or potential parallel
signalling pathways (EP4 versus ERK) affected by solamargine
existed still required to be determined.

Furthermore, our results suggested the critical role of DNMT1 in
mediating the effect of solamargine on inhibition of lung cancer cell
growth. Recent studies showed that, as critical epigenetic factors and
tumour promoters, targeting of DNMT1 controlled the growth of sev-
eral cancer cell types implying the important role of this molecule
[15, 16, 53, 54]. We believed that, as unfavourable tumour-promoting
role, DNMT1 could be a novel target in mediating the inhibitory effect
of solamargine in lung cancer intervention. Moreover, we demon-
strated a causative role of transcription factor c-Jun that may involve
in the effects of solamargine on lung cancer cell growth. Our findings
suggested that c-Jun may be one of downstream effecters of EP4 and
DNMT1 and that inhibition of c-Jun was required to mediate the effect
of solamargine on lung cancer cell growth. The associations and links
of EP4 and DNMT1 expressions to c-Jun signalling have been shown
in other studies [33, 34, 55]. Expression of EP4 expression was
involved in the PGE2-induced oncogenic gene, such as phosphoinosi-
tide-dependent kinase-1 (PDK1) and a7 nicotinic acetylcholine recep-
tor (nAChR), expression through inhibition of c-Jun in bronchial
epithelial and lung cancer cells [33, 34, 55]. Nevertheless, more
experiments are required to further elucidate the possible connections
between EP4 and c-Jun in this process. Of note, as the rescue effect
by ectopic c-Jun expression resistant to the growth inhibition by sola-
margine was only partial, we reasoned that potential molecules (e.g.,
STAT3, HER2, among others) other than c-Jun may also be involved
in the effect of solamargine-inhibited cell growth [7, 56], which need
to be determined.

In addition, we observed a novel feedback regulatory loop of
ERK1/2 by c-Jun. While the data of a direct feedback loop of ERK1/2
by c-Jun are scarce, the negative feedback regulatory axis of ERK1/2
signalling pathway in influencing other gene expressions and subse-
quently cellular functions have been reported in other studies

[57–59]. Our results have demonstrated complicated regulatory sig-
nalling cascades that may involve in the overall anti-cancer effects of
solamargine in this process. Nevertheless, the detailed mechanism
underlying this potential link in mediating the anti-lung cancer effects
of solamargine, or alternatively whether some parallel pathways have
also occurred, still required to be elucidated in the future study.

We also observed the involvement of c-Jun factor in mediating
the response of solamargine-inhibited lung cancer cell growth. The
roles of c-Jun signalling inter-correlated with or without EP4 pathway
in regulation of other gene expression, thereby influencing differentia-
tion, angiogenesis, metastasis and invasion, have been shown in sev-
eral cancer cell types [34, 60–62]. Oncogenic transcription factor AP-
1 is critical for the proliferation of cancer cells, one study showed that
histone deacetylase inhibitors (HDACIs), one of anticancer agents,
targeted the AP-1 c-Jun/Fra-1 dimer through transcriptional inhibition
of mitogen-activated protein kinase kinase 7 (MKK7) and RAF1 proto-
oncogene serine/threonine-protein kinase (RAF1), this resulted in
inhibition of growth in neuroblastoma cells [63]. Another report
showed that RNA-binding protein tristetraprolin (TTP) inhibited cell
proliferation in vitro and suppressed tumour growth in vivo through
inhibiting c-Jun expression and therefore increased Wee1 expression,
a protein kinase and a key mammalian cell cycle regulator, and block-
ing NF-jB/p65 nuclear translocation in breast cancer cells [64].

More importantly, our in vivo data were consistent with the find-
ings from that in vitro, confirming the effect of solamargine on lung
cancer growth inhibition and regulation of EP4 expression [12]. The
doses of solamargine used were based on our series of preliminary
experiments in vivo and other study [65]. In fact, there was scarce
information available for the use of solamargine in vivo. We reasoned
that more studies are required to confirm this. Moreover, additional
studies are needed to further determine the critical role of EP4,
DNMT1 and c-Jun in this process using cells stable transfected with
shRNAs and exogenous expression vectors of EP4, DNMT1 and c-
Jun genes in nude mice model.

In conclusion, our results show that solamargine inhibits the
growth of human lung cancer cells through reduction of PGE2 recep-
tor EP4 protein expression and induction of ERK1/2 signalling. This in
turn results in decrease in DNMT1 and c-Jun protein expressions.
The inter-correlations between EP4, DNMT1 and c-Jun, and novel
feedback regulation of ERK1/2 by c-Jun contribute to the overall
responses of solamargine in this process (Fig. 6F). This study uncov-
ers an additional novel mechanism by which solamargine inhibits
growth of NSCLC cells and suggests involvement of additional down-
stream signalling and targets of EP4 in lung cancer prevention and
treatment.
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