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CIs, as this information is complementary to effect sizes.
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Varieties of Confidence Intervals

Error bars have an important role to play in describing results and 

their precision and, to a lesser extent, in assessing whether the results 

meet the researcher’s expectations or if they are at odds with them 

(Cumming, 2014; Loftus, 1993, 1996; Wilkinson & the Task Force on 

Statistical Inference, 1999). However, error bars come in many different 

types, and there is some confusion in the literature as to (a) when to use 

error bars, (b) which one to depict, and (c) how to interpret them. The 

answers to these questions are straightforward. Concerning the answer 

to question (a): Error bars should always be present on any plot show-

ing summary results. There should be no exception, and editors should 

request them prior to publication (Fidler, Thomason, Cumming, 

Finch, & Leeman, 2004). The answer to question (b) is: Error bars are 

meant to provide some representation of the magnitude of probable 

error around a result. Two simple statistics can be used to that end: 

the standard error (SE) or a confidence interval (CI). Other, more 

advanced statistics can also be used (based, e.g., on Bayesian credible 

intervals, tolerance intervals, or likelihood regions, see, e.g., Lee, 2012; 

Wiens & Nilsson, 2016). Which one is chosen ultimately rests on what 

the authors are trying to convey as a result. However, unless there is a 

specific reason to prefer a different measure, error bars should prefer-

ably represent 95% CIs, as argued by, among others, Baguley (2012b), 

Cumming (2014), Franz and Loftus (2012), and Loftus (1996). The last 

answer regarding question (c), the interpretation of CIs: CIs (unlike 

other types of error bars) must all be interpreted in the same fashion—if 

a given value is within the interval of a result, the two can be informally 

assimilated as being comparable. This is the golden rule of confidence 

intervals and all CIs should obey this rule. Although the name of the 

rule is my proposal, this rule is found in many sources (e.g., DeGroot, 

1989, p. 337; Neyman, 1937, p. 348).

Keep in mind that CIs are not magical wands. They are only 

meant to better qualify effect sizes, facilitate the detection of patterns 

of results, and, to a lesser extent, to attract attention to odd results or 

deviations that are surprisingly large. When they are correctly used, 

they are powerful tools to understand the results (Cumming & Fidler, 

2009). Sadly, there has been some confusion in the recent years on 

how to interpret them (e.g., Belia, Fidler, Williams, & Cumming, 2005; 

Cumming & Finch, 2005) or even if they should be interpreted at all 

(Hoekstra, Morey, Rouder, & Wagenmakers, 2014; Morey, Hoekstra, 
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Rouder, Lee, & Wagenmakers, 2016; but see Miller & Ulrich, 2016) to 

the point that they are sometimes reported in figures but ignored in the 

text (Fidler et al., 2004).

The truth is that CIs are reliable as long as they are (a) built from 

adequate assumptions, (b) given correct information (sample size, 

population size, experimental design, sampling mechanism), and (c) 

used for the purpose they were built for (estimation of a quantity or 

comparison with another estimate). Although CI formulas are derived 

using mathematical arguments, it is easy to validate a confidence in-

terval of the mean (CIM) using random number generators: Generate 

a dataset from a simulated population with a known mean and verify 

that the population mean is contained within the bounds of the γ-level 

CI (often, γ is 95%). Sometimes, it will not be within the bounds, but 

over many replications the proportion of times it is will be γ. 

Formally defined, a 95% CI is made in a way that in the long run, 

95 out of 100 replications will return an interval which indeed contains 

the true population mean. Remember, however, that for a given CI, a 

Type I error is always a possibility.

In this article, I concentrate mostly on CIMs. I argue that there are 

different types of CIMs to serve the researcher’s objective (compare a 

result to a fixed value or to other results), to match the experimental 

design (within-subject or between-groups), and to reflect the sampling 

mechanism used (simple randomized sampling or cluster randomized 

sampling). To avoid confusion, I propose specific names to distinguish 

the types of CIs. What is less known is that most CIMs are based on 

assumptions. I will highlight these assumptions and indicate how or 

if they can be assessed from visual inspection. I will briefly discuss the 

difference between the formula-based CIM and the bootstrap CIM. CIs 

are not just for mean results, they exist for any summary statistics, and 

I will present examples along with the relevant literature. 

This article is not about the aesthetic of plots and error bars. There 

are discussions as to whether summary statistics are better represented 

by histograms or by dots and whether the extremities of error bars 

should be signaled by a crossbar or not. In the present article, I chose 

to use dots and no crossbars (see, e.g., Baguley, 2012a, and discussions 

linked to that web page), but the quality of a good plot is ultimately 

evaluated by how well it reveals the important effects. Hence, it may 

be necessary to try various layouts and various aesthetics to find out 

which one works best.

Computing Confidence Intervals: 
Two Basic Adjustments

Most researchers know the usual CI of the mean given by

					     (1)

in which M is the mean of a set of observations, SEM is the SE of that 

mean, and tγ is a multiplier read from a Student t distribution with 

degrees of freedom given by n – 1 (n being the number of observations) 

and coverage level γ, where γ is commonly 95% (oftentimes noted in 

full as t(1-γ)/2, n-1). 

The SE of the mean is an indication of how much a sample mean 

is expected to vary from the population mean. All descriptive statistics 

have an SE (see later) and SEs are often used as a yardstick to compute 

CIs—as in Equation 1. The SE of the mean is given by 

	  		  SEM = s/
√

n 	 (2)

where s is an estimate of the population SD obtained by computing 

the sample SD.

What is less known is that this type of CI has a very limited scope: 

It cannot be easily used to compare a mean to another mean, and it is 

useless for that purpose in repeated-measures designs. In this section, 

adjustments to Equation 1 are presented so that CIM can be used for 

comparison purposes in between-group and within-subject designs.

Confidence Intervals and the 
Researcher’s Objective
The CIM of Equation 1 is based on the assumption that the mean will be 

examined in isolation. If it is compared, it is compared to fixed values—

to a hypothesized population mean, for example. This fixed value has 

no uncertainty attached to it; hence, there is just one source of error, 

the sampling error of the group.

If one group mean is compared to another group mean, both the 

position of each mean and the relative position of one mean with 

respect to the other mean are uncertain. Consequently, the SE of a 

difference between two means is larger than the SE of the difference 

between one mean and a fixed value. Expanding the length of the CIM 

compensates for the fact that both quantities are based on samples and, 

consequently, that their difference contains a larger amount of uncer-

tainty.

How much to expand the CI depends on the variances in each con-

dition to be compared. However, if the variances are fairly homogene-

ous across conditions, a simple solution exists because the sum of two 

identical variances amounts to multiplying a common variance by two. 

Consequently, the CI must be √2 ≈ 1.41 times wider (i.e., increased 

by 41%).1 Thus, when the purpose of a CI is to compare a mean to 

other means and variances are considered homogeneous, the CIM is 

given by 

					      	 (3)

Alternatively, if the variances are not homogeneous, use the SE of 

a difference (SED) instead of √2 × SEM , which is based on the pooled 

SD:

						      (4)

where �n  is the harmonic mean of the groups’ sample sizes; see Pfister 

and Janczyk (2013). If the variances are homogeneous, whether the 

pooled SD (sp) is used (as recommended by Loftus & Masson, 1994) or 

each group’s SD (s) is used (as recommended by Cousineau, 2005) is a 

matter of taste. If you choose both sp and     , all the error bars will be of 

the same length. On the other hand, if you take SDs and sample sizes 

from each group separately, the error bars will most likely be different. 

Note that Equation 3 is identical to Equation 1 in all points except for 

the adjustment factor √2 . Such a difference-adjusted CIM can only be 

interpreted with respect to differences between sample means using 

the golden rule.

Equation 1 is the CIM when it is meant to be compared to a fixed 

point; Equation 3 is the CIM when the researcher’s objective is to com-

SED =

√
2× sp/

√
�n

[M − tγ × SEM ,M + tγ × SEM ]

[M − tγ ×
√

2× SEM ,M + tγ ×
√

2× SEM ]

�n
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pare one mean to other means. This adjustment was used by Hollands 

and Jarmasz (2010) to rephrase the golden rule: “the difference be-

tween the means of two conditions is significant if it exceeds half the 

total length of the CI […] multiplied by a factor of √2” (p. 135; Loftus & 

Masson, 1994, report a similar rule). What truly differentiates the two 

types of CIMs in Equations 1 and 3 is the objective. This distinction was 

also present in Goldstein and Healy (1995), Franz and Loftus (2012), 

and Baguley (2012b), among others. When the term √2 is omitted, the 

proportion of CIM of future replications containing the true popula-

tion difference is not 95% but only 83.4%, as the error bars are too 

short. This problem was first raised by Estes (1997) and explored by 

Cumming, Williams, and Fidler (2004).

It may seem counterintuitive that the error bars for differences are 

longer than the error bars of each mean taken individually. If the ob-

server was to use such bars to estimate the population true mean, it is as 

if precision had been lost. However, remember that difference-adjusted 

CIMs are meant to assess differences, not single means in isolation. It is 

therefore important that the type of CIM pictured is clearly indicated.

As an example, suppose that one member of a research group is in 

charge of collecting the data from a treatment group, with the hope that 

this group’s mean score is different from 100. After collecting the data 

and generating a plot showing the 95% CIM as per Equation 1, she finds 

that the mean seems different from 100. Indeed, the observed mean is 

105.0; the 95% CIM ranges from 100.9 to 109.1 (the raw data for this 

example and most of the following ones are available as supplementary 

material so that readers can replicate the computations). If she runs a t 

test with the null hypothesis H0 : μ = 100, she finds that the null hypoth-

esis is rejected at the .05 level, Hedge’s g = 0.50, t(24) = 2.5, p = .02. 

A colleague measures the control group with the hope that it has 

a mean close to 100. He finds that the control group has a mean of 

precisely 100.0 (not significantly different from 100, needless to say). 

The CI obtained from Equation 1 is [95.8, 104.2] and does not include 

the mean of the treatment group.

If they merge the datasets, they will be surprised to find that a two-

sample t test indicates no significant difference at the .05 level, g = 0.50, 

t(48) = 1.76, p = .085. The left panel of Figure 1 shows the plot they 

produced (in both groups, the SDs are approximately 10.0). 

Because their objective is to compare both groups, they increase 

the length of both CIs by a factor of 1.41. Figure 1, middle panel, shows 

the results using CIM based on the SED (Equation 3). Here, because one 

mean is included in the CI of the other mean, the difference between 

them can informally be assimilated to an absence of difference, con-

gruent with the result of the t test. 

Alternatively, and as recommended by many, for example, 

Cumming (2014) and Franz and Loftus (2012), they could have made 

a plot of the difference in mean score, as shown in the last panel of 

Figure 1. This approach is explained fully in Pfister and Janczyk (2013). 

However, for designs with multiple groups, the number of pairwise dif-

ferences increases very rapidly. For three or four groups, it is still pos-

sible to show on a single plot all the pairwise differences; one example 

is illustrated in Figure 2. Beyond that, the benefit of the pairwise differ-

ence plot is dubious, as seen if you compare the left panels of Figure 2 

with the right panels.

One critique that can be addressed to these adjusted CIs is that they 

do not provide an estimate of the population mean for a given group. 

This critique is relatively correct. However, in Psychology, it can be 

argued that we are rarely interested in estimating a population mean in 

isolation. As Loftus and Masson (1994) put it, “in psychological experi-

ments, it is rare […] for one to be genuinely interested in inferring the 

specific value of a population mean. More typically, one is interested in 

inferring the pattern formed by a set of population means” (p. 480, the 

authors’ emphasis).

Because an absolute estimate of mean performance is utopian, psy-

chologists spend considerable time and resources measuring control 

groups, placebo groups, pre-treatment scores, and other forms of base-

line scores, separately for any new experiment. These design require-

ments should be mirrored by equivalent estimates meant to highlight 

patterns of results. This is the purpose of the adjusted CIs.

Figure 1.

Example mean plots from two independent groups. Left: The error bars show the 95% CI of the means (CIMs); middle: The error 
bars show the difference-adjusted 95% CIMs; right: The difference between groups is shown, with the 95% CI of the difference. 
The raw data are available in the supplementary material.
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Confidence Intervals and the 
Experimental Design
Experimental designs can be divided as to whether they are between-

groups or within-subject (mixed designs will be discussed in a later 

section). In a within-subject (or repeated-measures) design, the par-

ticipants’ scores are typically positively correlated. By considering such 

correlations in the participants’ scores, it is possible to evaluate differ-

ences between two means more precisely, a fact little known (Belia et 

al., 2005).

In a two repeated-measures design, the correction in length is equal 

to                   when the variances are homogeneous, in which r is Pearson’s 

correlation, such that the CIM for a repeated-measures design is

	 [ M− tγ ×
√

1− r ×
√

2×
s
√

n
,M+ tγ ×

√

1− r ×
√

2×
s
√

n
](5a)

An alternative way to understand the correlation adjustment is to 

note that in Equation 2, the square root of the sample size is replaced 

by        	   to obtain Equation 5a, so that the ratio              can be 

termed the effective sample size. The stronger the correlation is, the 

more accurate the regression slope is. Consequently, the difference 

between the two means is estimated as if we had measured a larger 

sample. With a sample size of 25 and a correlation of .8, for example, 

the effective sample size is five times larger than the true sample size (as  
n/1− r  = 25/0.2 = 125).

When there are more than two measurements, there is no univer-

sally accepted way to get a CIM adjusted to within-subject correlations. 

The difficulty owes to the fact that the variances are not perfectly iden-

tical between groups and the correlations are not perfectly identical 

between pairs of groups. One method (Bakeman & McArthur, 1996; 

Cousineau, 2005; see Morey, 2008, for the appropriate correction for 

bias) is to obtain a transformed dataset Z derived from the original 

data set, such that within-subject correlation is removed. Then, the CIM 

is obtained as usual using the SE from the transformed data set rather 

than from the original data set. 

Note that the correlation-adjusted CIM must always be difference-

adjusted as well, as implicitly, the two groups are compared in getting a 

correlation. Thus, the SE of Z must be increased by a √2 factor as well. 

In general, for two or more repeated measures, the CIM is given by 

		   [M− tγ ×
√

2× SEZ ,M+ tγ ×
√

2× SEZ ]	 (5b)

It is thus a correlation-adjusted as well as a difference-adjusted CI of 

the mean.

Cousineau and O’Brien (2014) give more details on how to compute 

the transformed data set Z. Masson and Loftus (2003; see also Loftus 

& Masson, 1994) provide an alternative approach. Both methods are 

identical when variances and correlation are truly homogeneous be-

tween measurements. Baguley (2012b) and Franz and Loftus (2012) 

evaluated these and other propositions.

As another example, a researcher gets data from a sample of 25 

participants in a repeated-measures design (for example a pre-post 

design). The mean of the first measurement is 105.0 and the mean of 

the second measurement is 100.0. Both SDs are near 15.0. The error 

bars obtained from Equation 1 are shown in the left panel of Figure 3. 

There does not seem to be any difference between the two measures, 

yet a paired t test indicates a strong and significant difference (Cohen’s 

dz = 0.58, t[24] = 2.90, p = .008). The researcher, remembering that his 

objective is to compare the two measures, may switch to a difference-

adjusted CIM (Equation 3), but things would get worse as CIMs for 

differences are √2 times longer as seen in Figure 3, second panel. The 

apparent inconsistency between the CI and the statistical test owes to 

the fact that this is a repeated-measures design: Participants’ scores are 

correlated. In the present dataset, the correlation between the pairs of 

scores is .84, so that                                  . Hence, in this case, the CIM taking 

into account correlation should be 40% the length of the error bars, 

based on independent samples (more than halved). The third panel of 

Figure 3 shows the resulting, correct CIM. If you prefer the paired dif-

ference CI, it is shown in the last panel of Figure 3.

Figure 2.

Example mean plots for a three-groups design (top) and a four-groups design (bottom) with error bars showing difference-
adjusted 95% CI of the means (CIMs) (left) and 95% CI of the difference for all pairwise differences (right).

√

1− r

√

n/
√

1− r n/1− r

√

1− 0.84 = 0.4
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When the data are correlated, the CIs are shortened as within-

subject correlation is used to better estimate the difference across 

means; the more positively correlated the data are, the shorter the CIM 

becomes. In the unlikely event that the data are negatively correlated, 

the CIM is expanded by the correlation adjustment. 

Naming Convention
At this time, the three types of CIM (unadjusted, difference-adjusted, 

and correlation- and difference-adjusted) have no distinct names. It is 

therefore difficult in a figure caption to figure out which type is plotted. 

A common statement is “the error bars are corrected for within-subject 

variability” followed by a reference, for example, “Loftus and Masson 

(1994).” I propose the following three labels:

•	 CIs of the means (Equation 1)

•	 Difference-adjusted CIs of the means (Equation 3)

•	 Correlation- and difference-adjusted CIs of the means (Equation 

5)

Loftus and Masson (1994), contrary to Baguley (2012b), recom-

mend the use of the pooled SE so that the label representing their ap-

proach could be correlation and difference-adjusted pooled 95% CIs of 

the mean. As typically, the purpose of mean plots is to compare means 

to other means, the difference-adjusted CIMs would be used most of-

ten. If unadjusted CIMs are used and there exists a conventional refer-

ence point, that point of reference could be present on the plot with a 

dashed line, for example, as was done in the first panels of Figures 1 

and 3; no reference point should be shown when difference-adjusted 

CIMs are depicted.

Rouder and Morey (2005) suggested the expressions arelational 

(unadjusted, Equation 1) and relational (all the other CIMs proposed 

here). These authors noted that “there are many advantages to arela-

tional CIs: They provide a rough guide to variability in data, a coarse 

view of replicability of patterns and a quick check of the heterogeneity 

of variances. Arelational CIs, however, do not reflect between-group 

information and cannot be used for direct comparisons” (p. 77).

Pfister and Janczyk (2013) also proposed a naming convention 

which applies when the difference between two means is plotted. They 

coined the expressions CI of means (unadjusted CIM), CI of differences 

(for between-group difference in means), and CI of paired difference 

(for within-subject difference in means). The naming convention 

is important so that the type of CI shown on plots can be identified 

unambiguously.

In addition to naming the CIMs, it is useful to have a uniform 

way of reporting them when the authors want to write down the 

CIM. Following Cumming (2014) and the American Psychological 

Association Publication Manual (2009), brackets should be used to de-

note 95% CIs. The notation M ± CIM should not be used, as CIs are not 

always symmetrical. CIs are symmetrical for central tendencies (the 

mean, the median, the geometric and the harmonic means) and some 

nonparametric statistics of dispersion (median absolute deviation and 

interquartile range). However, in general, they are not symmetrical, as, 

for example, the CI of the SD and the CI of the kurtosis. Conversely, 

SEs are always symmetrical, so the notation M ± SEM makes sense and 

should be used exclusively to report SEs. 

Finally, SE should not be used for the length of the error bars in 

plots. They are not easy to interpret (but see Cumming & Finch, 2001, 

2005) and the fact that SEs are always symmetrical may yield a false 

impression. For example, suppose a group of 20 data has an SD of 

12.33. The SE of the SD in that case is 2.00. The 95% CI of that SD is 

[9.38, 18.0]. There is no single number which added to and subtracted 

from 12.33 can yield this interval. Further, the asymmetry in precision 

would go unnoticed if SE were reported.

Confidence Intervals and Hidden 
Assumptions

CIs are well known (albeit not universally used). However, one thing 

that might be less known is that CI estimates are not assumption free. 

On the one hand, the use of the SE of the mean,SEM = s/
√

n , rests on 

few, quite general assumptions. CIs, on the other hand, are based on the 

assumption that the means are normally distributed. Indeed, to obtain 

a CI, the SE is multiplied by a t value which is based on this assumption. 

Owing to the central limit theorem, large-sample means should meet 

Figure 3.

Example mean plots for two repeated measures. First panel: The error bars show the 95%  CI of the means (CIMs); second panel: 
The error bars show the difference-adjusted 95% CIMs; third panel: the error bars show the correlation and difference-adjusted 
95% CIMs; fourth panel: paired difference and 95% CI of the paired difference. εHF is discussed later in the text. The raw data are 
available in the supplementary material.
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Field, 2013;  Tabachnick & Fidell, 1996, for more on this measure). The 

ε measure was originally created by Greenhouse and Geisser (1959); 

Huynh and Feldt (1976) provided a formula corrected for bias.2 Figure 

4, right panel, shows the means for three measurements (an example 

based on Baguley, 2004). Visually, the CIMs are of unequal length, but 

this information in not relevant as this is a repeated-measures design. 

The Huynh-Feldt ε is 1, which indicates that the sphericity assumption 

holds for this data set (and indeed, a Mauchly test of sphericity does not 

reject the null hypothesis of sphericity, W = 0.947, χ2[2] = 1.24, p = .55). 

Because it is possible to have a visually educated guess with regards 

to homogeneity of variances in between-subjects designs, I suggest 

that the Huynh-Feldt ε (εHF) be always visible on a mean plot showing 

repeated measures (when there are three or more repeated measures; 

with only two measures, sphericity always holds; Lane, 2016). 

If there is any problem with the assumptions (normality and either 

homogeneity of variances for between-group designs or sphericity for 

within-subject designs), the assumption-based CIMs might neverthe-

less be used as visual tools to provide rough intuitions on the results. 

However, if statistical inference is important, they should not be used. 

Alternatively, it is also possible to use bootstrap estimates of CIM (Efron 

& Tibshirani, 1993). The basic algorithm for bootstrap estimation is 

simple:4 

Given a sample of size n:

1. Subsample the sample, extracting n data with replacement from 

the original sample.

2. Compute on this subsample the statistic desired (e.g., the mean 

for a CIM). 

3. Repeat Steps 1 and 2 a very large number of times (e.g., 10,000 

times). 

4a. Finally, obtain the CIM by locating the bounds within which a 

proportion γ of the subsample statistics are located.

4b. Alternatively, if you want SE instead, compute the SD of all the 

subsample statistics. 

this assumption; for smaller samples, one safeguard, prior to drawing 

a mean plot, could be to run a test of normality (e.g., a Kolmogorov-

Smirnov test) or tests for null skewness and null kurtosis and fail to 

reject the null (if the sample size is small) or find mild deviations (if the 

sample size is moderate; Rochon, Gondan, & Kieser, 2012).

Likewise, and as we saw, the difference-adjusted CIM is based on 

the homogeneity of variances assumption. This assumption can be 

checked visually when the groups are of the same size: As a given CIM 

is based on the SD of that group of data only, the length of the error 

bars should all be of a comparable size. If there are important differ-

ences in length, then there is certainly a problem with the assumption 

of homogeneity of variances. Figure 4, left panel, shows an example 

with equal sample sizes. As the CIMs are of very different lengths, it 

can be inferred that the variances are not homogeneous, and therefore 

the difference-adjusted CIM should not be relied upon strongly. As a 

rule of thumb and for samples of moderate sizes, if the variance in one 

group is twice the variance in another group, Levene’s test will likely 

detect heterogeneity (and indeed it did in Figure 4, left panel: F = 6.72, 

p = .013). In terms of CIMs, as they are based on SDs (square roots 

of variances), a CIM which is 40% longer than another one suggests 

heterogeneity of variances. 

For repeated-measures designs, the correlation-adjusted CIMs are 

based on the sphericity assumption; loosely speaking, this is similar to 

a homogeneity of correlation assumption (Baguley, 2004; Lane, 2016, 

are more precise). This is true whether a method based on separate 

estimates (such as Cousineau, 2005; Morey, 2008) or based on a pooled 

estimate (such as Loftus & Masson, 1994) is used. Sadly, this assump-

tion cannot be verified visually with error bars. For example, the CIMs 

may be of very different lengths and yet sphericity still holds (Baguley, 

2004; Huynh, 1978). One solution is to compute epsilon (ε), a measure 

of sphericity whose value is between 1 / (J − 1) and 1, where J is the 

number of repeated measures; ε of 1 means that the data are perfectly 

spherical, that is, that the CIMs are accurate. Some authors consider 

that εs above .9 indicate a mild deviation from perfect sphericity (see 

Figure 4.

Example mean plots for two experiments with sample size 25 per condition. Left: means of two independent groups with error 
bars showing difference-adjusted 95% CI of the means (CIMs). The two groups have different variances, as evidenced by the 
error bars of unequal length. Right: means from three measures with error bars showing correlation- and difference-adjusted 
95% CIMs. Although the measures’ variances are different, the data do not violate the sphericity assumption, as evidenced by a 
Huynh-Feldt ε of 1. In the left panel, we can test the difference in means using the Welch test, a t test whose degrees of freedom 
are corrected to handle heterogeneity of variances; the difference is borderline not significant, g = 0.40, t(35.2) = 2.01, p = .052. 
In the right panel, the analysis of variance (ANOVA) is significant, η2 = 0.12, F(2, 48) = 3.34, p = .04. Post hoc analyses show that 
the difference between Measure 1 and Measure 3 (8 points of separation) is the only significant one (p = .026).
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Bootstrap estimates should be based on a large number of subsam-

ples (minimally 10,000, but more if your platform can run it); as a con-

sequence, they are slower to obtain than the formula-based intervals. 

Bootstrap CIs are based on fairly mild assumptions about the un-

derlying population distribution (e.g., Shao & Tu, 1995).3 The sample 

should be reasonably large, although there is no explicit prescription 

as to what large means precisely. One safe rule is to at least match the 

sample size recommended from power computations (Mayr, Erdfelder, 

Buchner, & Faul, 2007). When the assumptions are met, bootstrap CI 

returns on average the same interval as the formula-based CI. One 

disadvantage of bootstrap estimates is that their exact value is differ-

ent every time they are computed. This is why they must be based on 

a large number of subsamples. With 10,000 subsamples, the first two 

digits should be stable, so do not report bootstrap estimates with more 

than two significant digits or increase the number of subsamples. More 

sophisticated bootstrap algorithms have been developed (see, e.g., BCa; 

Efron, 1987; or ABC; DiCiccio & Efron, 1996).

Figure 5 shows simulated data with three groups, in which black 

lines show the formula-based CIM and gray lines show the bootstrap-

based CIM. The data were simulated from a normal distribution with 

means of 97, 100, and 103 and a common SD of 15. For a large sample 

(200 in Figure 5, right panel), the difference between the two types of 

approach to estimating CIM is immaterial.

Computing Confidence Intervals: 
Advanced Adjustments 

All the CI and SE formulas given in the present article are valid for 

experimental designs examining a population of infinite size using 

simple randomized sampling. Yet Little (2004) strongly encouraged 

researchers to incorporate the sampling mechanisms in their models. 

Consequently, this information should also be incorporated in the CI 

by using sampling adjustments. Here, I illustrate how this can be done 

when the population is not so large as to be considered infinite, when a 

different sampling mechanism is used, or both. 

Confidence Intervals and the 
Population Size
When the sample represents a sizeable proportion of the whole popula-

tion, it is not possible to consider the population as infinite. Examples 

where the population cannot be considered infinite include: a study of 

employees within a given company, the LGBT community in a linguis-

tic minority, or students’ achievements in public schools. Regarding 

the last example, the Austrian government aims to assess 20% of the 

population every year.

As discussed in Cochran (1953), when the sample size exceeds 5% 

of the population size, a finite population correction must be applied 

to the sample estimates of variability (see also Thompson, 2012). In 

the following example, let n denote the sample size and N denote the 

population size. The adjustment is based on the proportion of elements 

not sampled from the population, 1− n/N so that the CIM adjusted for 

population size becomes

		  [M− tγ ×

�

1−
n

N
× SEM,M+ tγ ×

�

1−
n

N
× SEM

]       (6)

in the case where there are no other adjustments. As n tends to N, there 

is less and less uncertainty in the estimated variance of the population 

so that the adjustment factor tends to zero and the CIs shrink to null.

The adjustments for finite sample size can be used jointly with the 

correlation adjustment and the difference adjustment.

Confidence Intervals and the 
Sampling Method
In simple randomized sampling, all the participants are chosen ran-

domly from the studied population with an equal chance of being 

selected. Other sampling techniques exist, such as cluster randomized 

sampling and stratified sampling (Kish, 1965; Thompson, 2012). 

Cluster randomized sampling is often used in educational psychology 

and consists, for example, of picking whole classes from schools. The 

children are not selected with equal chances; the classes are. Stratified 

sampling is often used for survey studies and consists in selecting in-

dividuals, such that the sample is representative of the population on 

certain control variable(s), on age categories, for example. 

Regarding cluster randomized sampling, Cousineau and Laurencelle 

(2015) provided a cluster-adjusted CIM. It requires an estimate of the 

intraclass correlation. The cluster adjustment can be used in conjunc-

tion with difference and correlation adjustments. Likewise, Lai, Kwok, 

Hsiao, and Cao (in press) argue that the correction for cluster rand-

omized sampling can be used in conjunction with the correction for 

finite population size. The detailed computation of this adjustment is 

given in Appendix A.

For stratified sampling techniques and other sampling techniques, 

the expression of SEs and CIs are not agreed-upon and most require 

numerical algorithms so that a simple adjustment does not seem pos-

sible at this time.

As seen, considerations related to sampling methods are easily 

handled using additional adjustments that are simply multiplied to the 

CI length.

Figure 5.

Example mean plots from three independent groups with 
error bars showing difference-adjusted 95% CI of the mean 
(CIMs) obtained from formula-based estimates (Equation 3; 
black bars) or from bootstrap estimates (gray bars). Left: a 
small sample (n of 20 per group); right: a large sample (n of 
200 per group). The raw data for the left panel are available 
in the supplementary material.
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Various Considerations

Visualizing Confidence Intervals in 
Mixed Designs

The fact that CIs are different in between-groups designs and in 

within-subject designs is problematic for mixed designs where both 

types of CIMs coexist. In this case, the researcher may choose to plot 

just one type of CIM, the one which captures the results he or she wants 

to concentrate on. If the researcher wants to show both types of CIMs, 

Baguley (2012b) proposed the use of two-tiered error bars. These error 

bars are drawn with two sets of aesthetics: The ones delimited with a 

cross-line (often the shortest) are correlation- and difference-adjusted 

CIMs (and related to the within-subject results); the ones without cross-

lines (often the longest) are the difference-adjusted CIMs (and related 

to the between-subjects results). Although this solution is ingenious, 

the plots are often harder to interpret. The CIs are meant to synthe-

tize results so that they are more easily apprehended. Multiplying the 

number of bars only achieves the opposite effect. As a general rule, the 

number of error bars should be kept to a minimum. If both between-

groups and within-subject CIs are important, consider presenting two 

distinct plots.5

Software for Computing 
Confidence Intervals for the Means 
and Other Statistics
Typically used summary statistics, not just means, all have SEs and 

CIs (see Harding, Tremblay, & Cousineau, 2014, for a review). Hence, 

all summary plots should be drawn with some measure of dispersion 

around them, the conventional measure being 95% CIs. As an exam-

ple, Figure 6 illustrates 95% CIs for nine descriptive statistics, including 

robust and nonparametric statistics (the median, the median absolute 

deviation, and the Pearson skew; Daszykowski, Kaczmarek, Vander 

Heyden, & Walczak, 2007; Harding, Tremblay, & Cousineau, 2015; 

Siegel & Castellan, 1988).

At this time, there is no statistical package that implements the ad-

justments to CIMs of the means. SPSS can only draw unadjusted CIs for 

many descriptive statistics; an extension to SPSS (O’Brien & Cousineau, 

2014) implements both correlation-adjusted and difference-adjusted 

CIMs. Likewise, R has no standard commands to draw adjusted CIMs, 

but Baguley (2012b) programmed commands to that end and Kelley 

(2017) made the MBESS R library with CIs for a few statistics such 

as effect sizes. A standalone application, MorePower, can compute CIs 

for a few within-subject and between-subjects designs (Campbell & 

Thompson, 2012). Finally, a Mathematica package, available from the 

author, is briefly described in Supplementary Material.

There are a number of references in which the computation of CIs 

are given and described. Beaulieu-Prévost (2006) reported how to com-

pute the unadjusted CIM as well as the difference-adjusted CIM; also, the 

CI of the Pearson’s correlation r is given. Finally, CIs for a proportion p 

and for difference-adjusted proportions are given. Cumming and Fidler 

(2009) reported some of the above, and also CIs for the Hedges’ effect 

size g. Harding et al. (2014) reviewed SEs and CIs for an exhaustive 

list of descriptive statistics: (central tendency) mean, median, geomet-

ric and harmonic means, (dispersion) variance, SD, median absolute 

deviation and interquartile range, (shape) Fisher skew, and kurtosis.  

Harding et al. (2015) gave SEs and CIs for the Pearson skew.

Bootstrap estimates are fairly easy to obtain in SPSS with the mod-

ule BOOTSTRAP, sold separately from SPSS (version 19 and above) 

or the module GSD (Harding & Cousineau, 2016). Otherwise, Weaver 

and Koopman (2014) showed how to bootstrap estimates of CIs for 

Pearson’s correlation with SPSS; Hallgren (2013) showed how to per-

form bootstrapping in general in the R environment. Finally, Hélie 

(2006) provided a general introduction to the topic of model selection 

using bootstrap.

Few commands provide the full flexibility needed to plot any sum-

mary statistics in conjunction with any type of CIs. I hope that this 

situation will change rapidly so that researchers are encouraged to plot 

adjusted CIs routinely.

General Discussion

All the CIs reviewed here are summarized in Algorithm 1. Also, the rel-

evant formulas are provided in Appendix A. They all obey the golden 

rule of interpretation for CIs: If a given value is within the interval of a 

result, the two can be informally assimilated as being comparable.

Figure 6.

Plots of various statistics from fictitious data as a function of 
group with error bars showing 95% CIs. The CIs are asym-
metrical for SD and kurtosis. The first six are difference-ad-
justed; the last three shows unadjusted CIs in which zero 
is the reference. The same data set is used in all panels and 
were used in Figure 5, left panel (so that the first panel shows 
the same results in both figures).
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By making all CIs follow the same and unique interpretative rule, 

researchers might start relying on these statistics more frequently, more 

consistently, and more confidently.

Algorithm 1

Steps to compute SEs and CIs of means

1- Are the data from a within-subject design or mixed design?

	 Yes: decorrelate the data within each group (Equation A4).

2- Compute SEs for each group and each measure (Equation 2).		

	 Do you want to pool the SEs? Yes: use Equation A5.

	 Do you want to pool the sample sizes? Yes: use harmonic mean.  

3- Do you want to show CI instead of SE?

	 Yes: Choose your confidence level (typically 95%) and get tγ 

 	  then multiply SE by the multiplier tγ (Equation A3).

4- Purpose: Will comparisons be made to other sample means?

	 Yes: Use difference adjustment (Equation A6).

5- Sampling mechanisms.

	 a- Is the population of finite size? Yes: Equation A7.

	 b- Is the sample obtained from cluster randomized sampling? 		

	 Yes: use Equations A8 and A9.

6- Place the CI about the mean (Equation A1).

Some have argued that Equations 1, 3, and 5 (5a or 5b) are not three 

different types of CIs, but just one type of CI for three different statistics 

(Equation 1 is the CIM of a single mean, Equation 3 is akin to the CIM 

for the difference between two independent means, and Equation 5b is 

the CIM for the within-subject difference in means). I do not object to 

this point of view and if it is more intuitive to the readers, please make 

these the labels by which you identify the intervals in your future com-

munications. The only thing that really matters is that anything having 

the name confidence interval should be interpreted in a consistent and 

universal fashion, that is, according to the golden rule.

CIs should be part of any plots or listed in tables of results whenever 

a summary statistic is reported. There exists a CI for any statistic you 

may want to report and many can be found in the literature. Although 

CIs are not always clearly understood in very formal ways (see Belia 

et al., 2005; Cumming et al., 2004; Hoekstra et al., 2014), I believe that 

they are more intuitive than other kinds of statistical information. 

See, among others, Loftus (1996) for a similar point of view. If we can 

agree on the golden rule and make sure that all CIs plotted conform 

to it consistently and systematically, intuition regarding them should 

improve. Previous texts have not sought to enforce uniformity by dis-

cussing error bars based on SE or by promoting half-length intervals. 

Half-length CIs were suggested by Baguley (2012b), Franz and Loftus 

(2012), and Goldstein and Healy (1995), by which the length of the 

difference-adjusted CIM is divided by 2. Such half-length CIs must be 

interpreted differently as it is the presence of overlap between error 

bars that signals comparable means. This is unfortunate; if we want 

researchers to develop the correct automatisms when facing error bars, 

we must devise intervals that are to be interpreted consistently (Shiffrin 

& Schneider, 1977).

CIs are the result of solid mathematical arguments. They provide 

an interval which likely contains the population means. Indeed, just 

to take an example, 95% of the 95% CIs of the means do contain the 

population mean. There is no guarantee that one specific CIM contains 

the population mean, but we may have a certain confidence that this is 

the case (Miller & Ulrich, 2016).

Note that a CI is accurate only if the assumptions are correct, only 

if the experimental design and sampling methods are inscribed in it, 

and only if it is used for the correct objective. If any of these elements 

are changed, the CI length will change accordingly (as was shown in 

Morey et al., 2016). It is not a demonstration that CIs are fallacious; 

it is a demonstration that CIs must be informed as accurately and as 

completely as possible.

The only arbitrary aspect of CIs is the coverage level γ used to com-

pute tγ. The purpose of this quantity is to provide a reasonably large 

coverage for the interval. On the one hand, too narrow an interval could 

yield the impression that a study is hardly replicable (even if replica-

tions are scarce within Psychology; see Cousineau, 2014; Jasny, Chin, 

Chong, & Vignieri, 2011; Makel, Plucker, & Hegarty, 2012; Pashler & 

Wagenmakers, 2012). On the other hand, too wide an interval would 

bring little information with respect to the true characteristic(s) of a 

population. A conventional level is required; Cumming (2014; also 

see publication policy of the Psychological Science journal regarding 

statistics) argued that a 95% coverage level is a reasonable position 

(Marmolejo-Ramos & Cousineau, 2016).

Finally, keep in mind that ultimately, good science should return 

short CIs. Being able to assess patterns of means is important, as ar-

gued in the Introduction. However, being able to assess results with 

high precision is also, if not more, important. 

Along this document, I made a few recommendations that I reiter-

ate here:

1.	always show or list CIs whenever results based on summary sta-

tistics are given;

2.	use formula-based CIs if the assumptions are not rejected by the 

data of if it is conventional to do so in the area of research; use boot-

strap CIs otherwise;

3.	prefer difference-adjusted CIMs if focus is on the pattern of re-

sults; if unadjusted CIMs are given and there is a conventional refer-

ence value, provide the reference value on the plot (e.g., with a dashed 

line); 

4.	in the text, use the notation [low, high] for 95% CIMs. Use the 

notation ± to denote SEs.

5.	in plots showing means in a within-subject design, provide the 

Huynh-Feldt ε so that readers can assess whether the sphericity as-

sumption holds or not. In between-subjects designs, the reader can 

assess the homogeneity of variances assumption visually by comparing 

the length of the error bars.

6.	if half-length CIs are used, clearly identify this fact and give the 

rule for interpreting these.
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As mentioned by Belia et al. (2005), “better guidelines for research-

ers and less ambiguous graphical conventions are needed before the 

advantages of CIs for research communication can be realized” (p. 

389). I hope that this article is one step further in that direction.

Footnotes
1 The result can also be seen in the denominator of the two-sample t 

test. Some authors write the two-sample t test as Reject H0 if 

|M1 −M2| /

�

sp

�

1

n1

+
1

n2

�

> tγ

where n1 and n2 are the two groups’ sample sizes and sp is the pooled SD. 

However, note that 
�

1

n1

+
1

n2

 can be simplified into 
√

2/
√

�n , where 
�n is the harmonic mean of the number of participants in the two groups 

so that the t test becomes Reject H0 if |M1 −M2| /
�√

2sp/
√
�n
�

> tγ. 

Using this formulation, the √2 adjustment is evident.
2 A warning to SPSS users wishing to compute the Huynh-Feldt ε: 

Consult Lecoutre, 1991, and Dalgaard, 2007, pp. 3-4.
3 To be formal, this approach is called a non-parametric bootstrap 

estimation. Bootstraps which incorporate some properties of the popu-

lation distribution are called parametric bootstrap estimations.
4 One restriction to bootstrap estimation is that this method can-

not be used to estimate lower bound or upper bound parameters. The 

core of bootstrapping is that it should be possible to underestimate 

the true parameter on some subsamples, and overestimate the true 

parameter on other subsamples. With boundary parameters, such as 

an upper bound, it is not possible to overestimate this parameter using 

observed data so that nonparametric bootstrap is not applicable (Bickel 

& Freedman, 1981).
5 Thanks to an anonymous reviewer for suggesting this solution.
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APPENDIX A

Summary of the formulas

In this appendix, L is used to denote the length of the CI from the 

mean, that is, the distance from one bound to the mean. CIs of means 

are always symmetrical so that both arms of the error bar are of equal 

length. Thus, in what follows:

			    CI = [M − L, M + L]		  (A1)

Confidence Interval Base-length in 
Between-Group Designs
Given a set of observations in a certain group or condition containing 

n observations, compute

			    SEM = s/
√

n 		  (A2)

	  		  L L = SEM × tγ 		  (A3)

in which s is the SD of the observations, tγ is a multiplier based on the 

confidence level desired and on the degrees of freedom n – 1.

Confidence Interval Base-Length in 
Within-Subject Designs
Here, Xsj is the score of subject s for the jth measure;       is the mean 

score of subject s and         is the grand mean. Finally, J is the number 

of repeated measures. In a mixed design, apply the transformations for 

all groups separately.

	  					     (A4a)

	  					     (A4b)

then compute L from the transformed dataset Z using Equations A2 

and A3.

Pooling the Standard Deviations
If you choose to pool the SDs (as recommended by Loftus and Masson, 

1994), replace s in Equation A2 with sp:

	  					     (A5)

where si is the SD of the data (raw if between-groups data or trans-

formed if within-subject data) in condition i, J is the number of groups 

or measurements, and dfi = ni – 1 is the degree of freedom for measure-

ment i. This is a simple weighted average of the (squared) SD.

Difference Adjustment
			   Multiply L by √2	  	 (A6)

Finite-Population Adjustment
			   Multiply L by 

�

1−
n

N

 	 (A7)

This adjustment will shorten the length of the error bars. As N tends to 

infinity, the term 
�

1− n/N  tends to 1 so that for large N relative to 

n, this adjustment can be ignored.

Cluster Adjustment

Suppose that the group contains k clusters of m subjects (k × m = n). 

The intra-class correlation, noted by ρ, must be estimated first (Shrout 

and Fleiss, 1979). The adjustment factor is given by λ

	  				  

						      (A8)

	

			   Multiply L by λ 		  (A9)

The value of λ is always larger than 1, reflecting the well-known fact 

that cluster randomized samples have less precision than simple rand-

omized samples (Kish, 1965; Cousineau & Laurencelle, 2015).

X
..

Xs.

Ysj = Xsj −Xs. +X ..

Zsj =

�

J

J − 1
×

�

Ysj − Y .j

�

+ Y .j

sp =

�

�J

i=1
dfis

2

i
�J

i=1
dfi

λ =
1 + (n− 1)ρ

1− n−1

kn−1
ρ

http://www.ac-psych.org


Advances in Cognitive Psychologyresearch Article

http://www.ac-psych.org2017 • volume 13(2) • 140-155153

APPENDIX B

Using a Mathematica Package to 
Make Summary Statistic Plots With 
Error Bars

These are commands to make a summary statistic plot using the pack-

age MeanPlot for Mathematica, available from the author. The op-

tions controlling aesthetics are not presented. Note that Mathematica 

is case sensitive. All the data files used next are tab-separated text files 

containing information using one line per subject. Only the informa-

tion to be plotted must be present in the file and group membership 

must always be in the first column(s).

Loading the Package
Load the package; you must specify as the second parameter the loca-

tion of the file “MeanPlot.m” on your computer, doubling the backslash 

if your operating system requires such character.

Needs[

	 "MeanPlot`",

	 "C:\\Users\\DenisCousineau\\Documents\\

MeanPlot.m"

]

Making Figure 1
Figure 1 is done in two different ways, first using unadjusted CIs, sec-

ond, using difference-adjusted CIs.

X = Import["DataFigure1.tsv"];

MeanPlot[X,

  BetweenSubjectFactors -> {{"Groups", {1 -> 		

 "Treatment group", 

     2 -> "Control group"}}},

  ErrorBarContent -> CI,

  PlotRange -> {90, 115}

 ]

MeanPlot[X,

	 BetweenSubjectFactors -> {{"Groups", {1 -> 	

	 "Treatment group", 

		  2 -> "Control group"}}},

	 ErrorBarContent -> CI,

	 Adjustments -> {Objective -> Difference},

	 PlotRange -> {90, 115}

 ]

In the above, replace CI with SE to use SEs for the length of 

the error bars. MeanPlot default is to plot CIs so that the option 

ErrorBarContent -> CI is optional and omitted in the fol-

lowing. The confidence level can be adjusted by adding the option 

Gamma -> level (default is 0.95). The option Adjustments 

-> {Objective -> Single} is equivalent to no adjustments 

and is the default.

Making Figure 3
Figure 3 is based on a 2-measure within-subject design so that the data 

are organized in two columns.

X = Import["DataFigure3.tsv"];

MeanPlot[X,

	 WithinSubjectFactors -> {{"Moments", {1 -> 	

	 "Moment 1", 

		  2 -> "Moment 2"}}},

	 Adjustments -> {Objective -> Difference, 	 	

	 RepeatedMeasures -> CM},

	 PlotRange -> {90, 115}

]

Instead of the Cousineau-Morey method (CM), it is possible to take 

the Loftus and Masson’s pooled estimate by replacing CM with LM in 

the above instruction.

Making Figure 5
To make Figure 5, replace the regular (assumption-based) CIs 

(ErrorBarContent -> CI) for an approach using bootstrap (with 

10,000 subsamples with ErrorBarContent -> (CI[Mean,#, 

.95, Algorithm-> {Bootstrap, 10000}]&)).

X = Import["DataFigure5.tsv"];

MeanPlot[X,

	 BetweenSubjectFactors -> {{"Groups", {1 -> 	

	 "Group 1", 

		  2 -> "Group 2", 3 -> "Group 3"}}},

	 ErrorBarContent -> (CI[Mean, #, .95, 

		  Algorithm -> {Bootstrap, 10000}] &),

	 Adjustments -> {Objective -> Difference},

	 PlotRange -> {85, 115},

	 PlotLabel -> "Bootstrap-based"

]

Making Figure 6
In Figure 6, different summary statistics than the default (Mean) can 

be specified using the SummaryStatistic option. Here, the data 

of Figure 5 are used again.

X = Import["DataFigure5.tsv"];

MeanPlot[X,

	 BetweenSubjectFactors -> {{"Moments", {1 ->       

"Group 1", 

		  2 -> "Group 2", 3 -> "Group 3"}}},

	 SummaryStatistic -> Median,

	 Adjustments -> {Objective -> Difference},

	 PlotRange -> {85, 115},

	 PlotLabel -> "Median"

]

Instead of Median, the identifiers Mean, StandardDeviation, 

Variance, HarmonicMean, GeometricMean, 

MedianDeviation, InterquartileRange, SkewnessU, 

SkewnessP, and KurtosisU. can be used; other functions can 

also be defined by the user. The option SummaryStatistic -> 

Mean can be omitted as was done in the previous examples as it is the 

default.  
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Appendix C

Datasets Used for the Figures 
Data set for Figure 1: A 2-group design (n is 25 in each group).

1	 117 

1	 103 

1	 113 

1	 101 

1	 104 

1	 114 

1	 111 

1	 103 

1	 110 

1	 118 

1	 103 

1	 113 

1	 119 

1	 92 

1	 98 

1	 93 

1	 111 

1	 103 

1	 105 

1	 109 

1	 117 

1	 107 

1	 92 

1	 82 

1	 87

2	 118 

2	 107 

2	 102 

2	 99 

2	 93 

2	 110 

2	 83 

2	 88 

2	 96 

2	 111 

2	 97 

2	 102 

2	 103 

2	 109 

2	 85 

2	 89 

2	 93 

2	 98 

2	 101 

2	 101 

2	 91 

2	 126 

2	 92 

2	 103 

2	 103

Data set for Figure 3: A repeated-measures design with two measure-

ments (n is 25)

128	 105

96	 96

102	 88

88	 80

83	 90

99	 86

126	 122

129	 140

103	 94

125	 115

100	 100

88	 94

91	 86

115	 111

95	 89

112	 111

109	 110

92	 104

116	 101

85	 80

108	 103

116	 96

115	 111

123	 115

81	 73
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Dataset for Figure 5: A three-group design (n is 20 in each group).

1	 93

1	 102

1	 105

1	 103

1	 86

1	 102

1	 92

1	 90

1	 108

1	 94

1	 94

1	 98

1	 95

1	 105

1	 93

1	 95

1	 105

1	 102

1	 97

1	 88

2	 107

2	 113

2	 81

2	 107

2	 122

2	 97

2	 120

2	 111

2	 98

2	 99

2	 89

2	 95

2	 108

2	 100

2	 95

2	 108

2	 99

2	 121

2	 125

2	 106

3	 121

3	 116

3	 87

3	 117

3	 103

3	 93

3	 120

3	 107

3	 119

3	 110

3	 106

3	 120

3	 84

3	 118

3	 104

3	 92

3	 112

3	 107

3	 113

3	 89
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