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Abstract

Recent genome-wide studies have revealed a remarkable correspondence between nucleosome
positions and exon-intron boundaries, and several studies have implicated specific histone modifications
in regulating alternative splicing. In addition, recent progress in cracking the ‘splicing code’ shows that
sequence motifs carried on the nascent RNA molecule itself are sufficient to accurately predict tissue-
specific alternative splicing patterns. Together, these studies shed light on the complex interplay between
RNA sequence, DNA sequence, and chromatin properties in regulating splicing.

Introduction and context
The fact that the majority of pre-mRNAs are spliced while
they are still being transcribed [1] has led to the proposal
that local chromatin structure and histone modifications
may play direct roles in regulating splicing. Indeed,
several studies have shown that specific histone mod-
ifications can affect the association of splicing factors
with chromatin and the efficiency of the splicing process
[2-4]. A link between nucleosome positioning and exon-
intron boundaries was first proposed in 1991, long
before the functional link between splicing and tran-
scription was established [5]. Recent advances in the
computational prediction and experimental verification
of nucleosome positioning, based on underlying DNA
sequence features [6-8], in combination with recently
published high-resolution genome-wide maps of
nucleosome positions [9,10] and histone modifications
[11,12] in several organisms, have now enabled genome-
wide comparisons of nucleosome positioning, histone
modifications, and intron-exon architecture, revealing
surprising correlations between these features and
throwing light on the question of how chromatin
features may help the splicing machinery to distinguish
between exons and introns.

A distinct question is that of alternative splicing.
Alternative splicing can generate many different

transcripts from a single gene. Recent high-throughput
transcriptome analyses have detected alternative splicing
in approximately 95% of multi-exon human genes
[13-15] and also extensively in mice [16], plants [17],
flies [18,19], and yeast [20,21]. Alternative splicing is
often regulated by trans-acting factors that are differen-
tially expressed in different tissues or metabolic states
and bind specific sequence or structural motifs on the
pre-mRNA, resulting in alternative splicing [22-24]. It has
long been a goal of the splicing field to crack the ‘splicing
code’: to identify the pre-mRNA sequence features that
can explain and predict not only the exact sites of
constitutive splicing but also the features that determine
tissue-specific alternative splicing patterns [25].

Previous work has successfully identified pre-mRNA-
encoded features that define the precise boundaries of
certain classes of constitutively spliced exons [26-28] and
additional splicing enhancers and silencers [28,29],
some of which have been shown to correlate with exon
inclusion levels in specific tissues [16,28]. However, it
has been suggested that pre-mRNA-encoded information
alone is not sufficient to explain the recognition of short
exons in a desert of long introns or the modulation of
this process in alternative splicing [30]. The idea that
local chromatin structure may add an additional
regulatory layer to splicing, particularly to alternative
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splicing, is currently gaining momentum, and both
correlative evidence and functional evidence are emer-
ging [30-35]. Additional insights into the role of RNA
sequence come from the recent demonstration that by
taking hundreds of RNA features into account, a ‘splicing
code’ based on pre-mRNA features is able to qualitatively
predict tissue-specific alternative splicing for thousands
of vertebrate exons [36]. Here, recent advances and
current ideas on how chromatin and pre-mRNA
sequence contribute to constitutive and alternative
splicing are reviewed.

Major recent advances
In 2009 and 2010, several groups [37-42] used bioinfor-
matic approaches to uncover patterns from published
genome-wide maps of nucleosome positioning in
human T cells and in Caenorhabditis elegans, derived
from deep sequencing of micrococcal nuclease-digested
chromatin [9,10]. These recent bioinformatic analyses
[37-42] now show that nucleosomes sit preferentially on
exon sequences whereas introns are relatively depleted of
nucleosomes (Figure 1). This remarkable arrangement
was observed in several metazoan species and was found
to be independent of transcriptional activity, suggesting
that the arrangement is an inherent property of
chromatin [37-39,41]. Strikingly, the average length
observed for metazoan exons (140-150 base pairs)
corresponds neatly with the length of DNA required to
wrap a single nucleosome (147 base pairs) [39,41].
Further correlations to the splicing process were observed
by several authors (e.g., exons flanked by weak splice
sites or by long introns have a higher tendency to be
bound by nucleosomes) [40,41], raising the idea that
nucleosomes may help the splicing machinery by
‘marking’ exons that may otherwise be difficult to
recognize (reviewed in [30-32]).

By analysis of chromatin immunoprecipitation (ChIP)
combined with high-throughput sequencing (ChIP-seq)
and ChIP followed by microarray analysis (ChIP-chip)
data sets [9,11,12], several studies have examined
correlations between histone modifications and exon-
intron boundaries and have reported conflicting results.
Several authors conclude that specific histone modifica-
tions are enriched on exons compared with introns,
suggesting an active marking mechanism [12,37,40,43],
whereas others argue that these apparent enrichments are
due mostly to nucleosome positioning, which is inde-
pendent of modification status [38,39,41]. It has been
suggested that these discrepancies may be due mainly to
difficulties of normalization of ChIP data for nucleosome
occupancy, compounded by the fact that occupancy
studies and modification studies were performed with
different techniques (micrococcal nuclease digestion

versus ChIP) [30]. It is also possible that gene-specific
differences exist but go undetected in global analyses.

To what extent can we understand the preference of
nucleosomes for exonic sequences in terms of known

Figure 1. RNA, DNA, and chromatin features at exon/intron
boundaries
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The positions of core RNA splicing signals (red boxes), DNA sequence
properties (yellow profile), and nucleosome occupancy (blue profile) on human
exon/intron boundaries are drawn approximately to scale according to the
distance from the exon end. Core RNA splicing signals include the 50 splice site
(ss) (position −2 to +4), which has a variable sequence in higher eukaryotes and
a human consensus of AGGUAAG. The branch site (BS) has a variable position
at −20 to −30, directly 50 of the polypyrimidine tract (PPT), and a variable
sequence, with a human consensus of CUAAC. The PPT (position −5 to −20
or −30) is variable in length (in humans typically 10-25 pyrimidines) and strongly
favors uracil. The 30 ss (position −3 to +1) has a variable sequence, and a human
consensus of CAGG [27]. Each of the core splice signals on the pre-mRNA is
recognized specifically by a protein or ribonucleoprotein component of the
splicing machinery [25-27]. Not shown are the numerous additional splicing
regulatory elements, which reside in introns and exons and add specificity to
constitutive and tissue-specific splicing [23,25,36]. Nucleosome occupancy
(blue profile): The average relative nucleosome occupancy across the exon/
intron junctions is shown to scale for human activated T cells (adapted from
[39,40]). The vertical scale represents approximately 1.5-fold higher enrich-
ment on exons compared with introns. Note the more profound depletion at
the 30 intron end. The extent of depletion at this site was found to correlate
positively with the strength of the PPT [39]. DNA sequence properties
(yellowprofile): The density of pentamer sequences that disfavor nucleosome
binding [6] was calculated for constitutive exon/intron junctions in [39] and is
drawn approximately to scale. The maximum value on the vertical scale
represents approximately 70% of sequences containing a nucleosome-
disfavoring pentamer, and the minimum is approximately 40%. Guanine and
cytosine (GC) content (not shown) may also play a role in nucleosome
positioning. Exons have a higher GC content than surrounding intron regions,
and this has been proposed to contribute to the observed increased
nucleosome occupancy over exons relative to introns [31]. However, there is
some disagreement on this point in the literature (for a discussion, see [32]).
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pre-mRNA splicing signals? Figure 1 summarizes the
RNA, DNA, and chromatin features at exon-intron
boundaries. The preference of nucleosomes for exons
appears to be a consequence not only of the higher
guanine and cytosine content of exons [38,39,41] but
also of a high density of sequences that repel nucleo-
somes [6] exactly at the intron-exon boundary and a
depletion of these sequences within the exon itself
relative to the adjacent intron [39] (Figure 1). Particu-
larly interesting is the polypyrimidine tract (PPT),
typically a long (10-20 nucleotides) run of uracil
bases at the 30 intron end in the pre-mRNA, that is
specifically recognized by spliceosome components
(Figure 1). At the DNA level, the PPT corresponds to
poly T, one of the strongest nucleosome-repelling
sequences identified by Kaplan et al. [6]. Thus, it is
clear that splicing signal sequences play a role both at
the RNA level, for recognition by RNA-binding proteins
of the splicing machinery, and at the DNA level, in
determining the positions of nucleosomes. An addi-
tional role of splice site sequences in increasing RNA
flexibility has been proposed [42]. Is nucleosome
positioning thus merely a coincidence of the RNA
sequence or does it have a causal role in splicing?
Experimental evidence beyond correlation is currently
lacking but several possible roles have been proposed
(summarized in Figure 2).

The models proposed so far fall into one of two non-
mutually exclusive classes – the ‘recruitment’models and
the ‘kinetic coupling’models [32] – and are summarized
in Figure 2. Recruitment models favor the idea that
nucleosome positioning or nucleosome modifications
on exons guide the splicing machinery to the right place
(Figure 2), whereas kinetic coupling proposes that the
presence of a nucleosome in the path of the polymerase
decreases the speed of transcription and thus allows
more time for splicing to occur (Figure 2, arrow 5). In
favor of such ‘speed bump’models [30], single-molecule
in vitro experiments have shown that the speed of RNA
polymerase II (Pol II) transcription is modulated by
nucleosomal barriers [44]. On the other hand, a recent in
vivo study of Pol II transcription rates measured similar
speeds on exonic and intronic sequences and showed
that although splicing does indeed occur cotranscrip-
tionally, it lags substantially behind the transcription
process, being approximately twice as slow [45]. This
raises the question of how much the chromatin features
ahead of the polymerase can influence splicing events
that take place far behind it (Figure 2). However, this
study was limited to a small number of genes, and it is
not known whether they contain exons that are regulated
in a chromatin or Pol II elongation-dependent manner
(or both).

If nucleosome positions do affect splicing, then how
could such a system permit the vast amount of flexibility
observed in alternative splicing? Several authors have
proposed that nucleosome remodelers, a relaxation of
nucleosome positioning at alternatively spliced exons, or
tissue-specific histone modifications may account for
tissue-specific differences in nucleosome positioning
or properties and thus facilitate alternative splicing
[30-32,39]. In support of this idea, ectopic recruitment
of heterochromatin modifications to the vicinity of an
alternative exon was found to reduce Pol II speed and to

Figure 2. Integration of RNA, DNA, and chromatin signals in
cotranscriptional regulation of splicing
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The nascent pre-mRNA molecule is shown in black, and the exon is shown
as a thicker line. The large subunit of RNA polymerase II (Pol II) is shown in
green, transcribing from left to right. The C-terminal domain (CTD) of Pol II
is indicated. DNA is shown in blue, with exon-encoding sequences (thicker
lines) wrapped around nucleosomes (light blue). Red arrows show different
points at which the splicing machinery has been shown or proposed to
operate. (1) RNA sequences (shown in Figure 1) are bound directly by the
splicing machinery via protein-RNA interactions or ribonucleoprotein-RNA
interactions [25]. Core signals shown in Figure 1 operate on all exons,
whereas additional tissue-specific signals act in conjunction with tissue-
specific splicing factors to ensure alternative splicing [23,36]. (2) The CTD
is phosphorylated at different residues upon initiation, elongation, and
termination and serves as a binding platform for other proteins. The CTD
may affect pre-mRNA processing directly by recruiting splicing factors or
indirectly by recruiting nucleosome remodelers and histone modifiers [47].
(3) When Pol II transcribes through a nucleosome, core histones are
transferred behind the transcribing polymerase via a transient DNA loop
[44]. Unassembled DNA or DNA in linker sequences presents an
opportunity for splicing regulators to bind directly to DNA sequences.
(4a, 4b) Histone tail modifications can recruit regulators of alternative
splicing to chromatin [34,35]. These may be on reassembled nucleosomes
behind Pol II (4a) or on nucleosomes in front of Pol II (4b). (5)
Nucleosomes positioned on exons have been proposed to act as ‘speed
bumps’, slowing down the polymerase immediately as it begins transcribing
the exon upon which the nucleosome is positioned [30,39]. Such a
mechanism may affect any of steps 1 to 4 by modulating the time available
for interactions of trans-acting factors with the exon (at the DNA, RNA,
or chromatin level) emerging behind the polymerase.
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affect the splicing of that exon [34]. Furthermore,
investigation of the fibroblast growth factor receptor 2
(FGFR2) locus revealed cell line-specific enrichment of
histone H3 lysine 36 trimethylation (H3K36me3),
which was shown to be required to promote the
exclusion of one exon of the gene [35]. An adaptor
protein recruits the proteins required for specific exclu-
sion of this exon to the sites of H3K36 methylation,
demonstrating a direct mechanistic link between cell
type-specific chromatin modification and exon exclu-
sion. Interestingly, the H3K36me3 enrichments were
broadly spread across the FGFR2 locus and were not
limited to the excluded exon, suggesting that nucleo-
some positioning does not play the major role here; it is
the H3K36me3 modification that serves to recruit the
necessary factors to the general vicinity of an alternatively
spliced exon in the appropriate cell type, although
sequence features of the pre-mRNA itself determine
which exon is to be excluded.

Although it remains unclear to what extent alternative
nucleosome positions play a role in alternative splicing,
a recent study [36] demonstrates that pre-mRNA
sequence features are an essential component and
perhaps contain sufficient information for many alter-
native splicing events. The authors examined the splicing
patterns of over 3000 alternative exons in 27 mouse
tissues and extracted over 1000 RNA sequence features,
including known and novel motifs and structural
features. From this the authors compiled 200 features
that were diagnostic and qualitatively predictive for
tissue-specific alternative splicing. The predictive power
of the code was tested by cross-validation and compar-
ison with experimental data. Depending on the exon
type, the code was able to correctly predict alternative
splicing in central nervous system and muscle for 65-
95% of test exons. Importantly, the code is combinator-
ial, and the authors conclude that large numbers of
sequence features are required to ensure tissue-specific
splicing. Although this study focuses on the idea that
these are pre-mRNA sequence features, it is also possible
that several of the newly identified features may work at
the DNA level or at both RNA and DNA levels as is the
case for the PPT [39] (Figure 1).

Future directions
In the future, it will be essential to determine the relative
contributions of RNA sequence features, nucleosome
positioning, and histone modifications to constitutive
and alternative splicing. The data so far correlating
nucleosome positioning to exon-intron architecture have
been limited to few cell types. It will be important to
see whether nucleosome positions are indeed differ-
ent in different tissues, as has been proposed via

thermodynamic competition with tissue-specific tran-
scription factors [7] and observed for regulatory regions
of specific loci [46]. If this is also the case on a genome-
wide scale, then do alternative nucleosome positions
correlate with alternatively spliced exons?

Furthermore, it would be extremely interesting to
investigate whether any of the RNA sequence features
that are predictive for alternative splicing [36] could play
an additional role at the DNA level (e.g., as nucleosome
positioning or repelling sequences [6] or as binding sites
for site-specific DNA binding proteins that may compete
with nucleosomes in a tissue-specific manner [7]).

Finally, it will be essential to go beyond global correlations
and to determine cause and effect for specific loci. To
unravel the relative contributions of RNA sequence, DNA
sequence, and chromatin architecture, it will be essential
to overcome the inherent difficulty in such experiments
(i.e., that any change in DNA sequence changes the RNA
sequence). Thus, it will be essential to devise strategies by
which nucleosome positions can be modulated without
affecting the underlying DNA sequence (e.g., by manip-
ulating levels of remodelers or competing transcription
factors).
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