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INTRODUCTION

Heart failure (HF) is a multicomponent disease wherein the 
heart is unable to provide sufficient oxygen-rich blood for the 
metabolic needs of the surrounding tissues. Recent technologi-
cal and pharmacological trends have helped in decreasing mor-
talities due to HF, however, the disease still poses danger to 
about 5.8 million people in the United States alone, in addition 
to 23 million more people worldwide [1]. The Framingham 
Heart Study approximates 1-month to 1-year mortality at 
around 20%–30%, and 5-year mortality between 45%–60% [2]. 
It should be kept in mind that HF is a rather complex syn-
drome, whose progression depends on factors such as physio-
logical conditions, preexisting cardiovascular diseases like coro-

nary heart disease (CHD), high blood pressure, and diabetes; 
and occurs together with diseases that further aggravate the 
condition, such as diabetes and hypertension [3]. CHD alone, 
specifically coronary artery disease, was responsible for 65% of 
patients afflicted with HF [4]. It has also been suggested that 
neurological dysfunction further contributes to the progression 
of CHD. CHD has been directly linked with bladder pain syn-
drome/interstitial cystitis, a recurring discomfort around the 
pelvic and bladder area, wherein it was concluded that endo-
thelial dysfunction might be a pathogenic factor common be-
tween the two conditions [5]. The pathomechanism remains 
unclear; however, the progression and coexistence of these dis-
eases, which lead to HF, might be linked with mitochondrial ir-
regularities.
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Heart failure (HF) is a multifactorial disease brought about by numerous, and oftentimes complex, etiological mechanisms. 
Although well studied, HF continues to affect millions of people worldwide and current treatments can only prevent further 
progression of HF. Mitochondria undoubtedly play an important role in the progression of HF, and numerous studies have 
highlighted mitochondrial components that contribute to HF. This review presents an overview of the role of mitochondrial 
biogenesis, mitochondrial oxidative stress, and mitochondrial permeability transition pore in HF, discusses ongoing studies 
that attempt to address the disease through mitochondrial targeting, and provides an insight on how these studies can affect 
future research on HF treatment. 
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  The pervasiveness of HF is due, in part, to factors such as ir-
regularities in signal transduction pathways and mitochondrial 
deterioration [6]. The role of mitochondria in the production of 
adenosine triphosphate (ATP) and in the regulation of cell 
death makes it vital for cell survival. Data published in recent 
years suggest that mitochondria might be pivotal in HF devel-
opment [7]. The levels of oxidative stress brought about by re-
active oxygen species (ROS) as well as regulation of opening/
closing of the mitochondrial permeability transition pore 
(mPTP) also contribute to HF development. Previous studies 
have implicated altered mitochondrial biogenesis as one of the 
causal mechanisms of oxidative phosphorylation (OXPHOS) 
dysfunction in cardiac remodeling [8]. It will be important to 
focus on restoring contractile function in failing hearts by tar-
geting the mitochondria. This review outlines some common 
and recent modes of mitochondrial targeting for HF, and pro-
vides insights on future directions for HF treatment (Fig. 1).

MITOCHONDRIAL TARGETS

Mitochondrial Biogenesis
Primary alterations in mitochondrial biogenesis may be associ-
ated with the progression of cardiac pathologies. Mitochondrial 
DNA (mtDNA) copy number and mitochondrial content are 
significantly reduced in both human and rat models of failing 
myocardium, which can be attributed to downregulation of the 
mitochondrial biogenesis signaling pathways [9-12]. It is sug-
gested that a disturbance in mitochondrial biogenesis occurs at 
early onset of HF, which is cardioprotective upon reversal. Re-
cently, peroxisome proliferator-activated receptor gamma co-
activator 1α (PGC-1α) has been studied for its central role in 
the regulation of transcription factors in the mitochondria, 
such as nuclear respiratory factor 1/2 (NRF 1/2) and mitochon-
drial transcription factor A (mtTFA). PGC-1α is a protein en-
coded in the nucleus and is activated during periods of high 

Fig. 1. Selected examples of current methods in mitochondrial targeting. Peroxisome proliferator-activated receptor gamma coactiva-
tor 1α (PGC-1α), which is considered a master regulator of mitochondrial proteins and transcription factors, affects the expression of 
mitochondrial (mt)DNA. Inhibition of mitochondrial reactive oxygen species (ROS) prevents damage to the mtDNA, decreasing the 
possibility of mutations. Opening of the mitochondrial permeability transition pore (mPTP) increases mitochondrial membrane per-
meability, causing further depolarization of the mitochondria, resulting in the loss of membrane potential. When this occurs, adenos-
ine triphosphate production is severely affected and causes the heart to fail; thus the need to inhibit mPTP opening. CI–CV, complex-
es I–V of the mitochondria; mtOXPHOS, mitochondrial oxidative phosphorylation; NRF 1/2, nuclear respiratory factor 1/2; mtTFA, 
mitochondrial transcription factor A.
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energy demand, such as those during increased cardiac work-
load, physical training or exercise, or starvation. PGC-1α is re-
sponsible for the activation of mitochondrial proliferation 
through its intercommunication with different transcription 
factors. PGC-1α was evidently decreased in various HF experi-
mental models, and this affected essential, related transcription 
factors, as evidenced by decreased NRF 1/2 and mtTFA expres-
sion [13,14]. Targeted mtTFA disruption in cardiac tissue af-
fected electron transport chain (ETC) capacity, eventually re-
sulting in spontaneous cardiomyopathy and HF [15,16].
  Increased mtDNA and mitochondrial proliferation with 
myofibril displacement is associated with primary mitochon-
drial defects and cardiomyopathy, and commonly related with 
increased mitochondrial biogenesis-related gene expression 
[17]. It was previously observed that mitochondrial prolifera-
tion was higher in cardiomyopathic murine models, and asso-
ciated with the removal of adenine nucleotide translocase 1 
(ANT1) [18], manganese superoxide dismutase (Mn-SOD) 
[19], and mtTFA [20]. Furthermore, there was increased mito-
chondrial mass in mtTFA-knocked out mice; in addition to de-
creased levels of mtDNA and cytochrome c oxidase subunit I, 
peroxisome proliferator-activated receptors α (PPARα), and 
PPARα-dependent transcripts; and dysfunctional ETC [21]. 
The significant decrease in ATP revealed that increase in mito-
chondrial number is not enough to compensate for damage in 
the mitochondria. These examples demonstrate the importance 
of improved mitochondrial biogenesis and mtDNA copy num-
ber in cardioprotection against HF.
  Recent studies have focused on targeting the mitochondria 
and improving mitochondrial biogenesis through various 
methods, including those involving pharmacological agents. 
Currently, there are no pharmacologic agents that specifically 
target mitochondrial biogenesis in HF. However, stimulation of 
mitochondrial biogenesis, leading to its beneficial effects, is ac-
celerated by targeting other components such as endothelial ni-
tric oxide synthase, adenosine monophosphate-activated ki-
nase, and other mitochondrial biogenesis pathways, which all 
hold promise in addressing the disease [22,23]. A summary of 
some common and recent experimental and clinical interven-
tions are presented in Table 1. One of the earlier drugs to be 
used, an angiotensin-converting enzyme (ACE) inhibitor 
named captopril (now marketed as Capoten), increased mito-
chondrial content in canine hearts after coronary ligation [24]. 
This indicates that the favorable effects may, in part, be related 
to mitochondrial invigoration. Current studies have examined Ta
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the effects of various ACE inhibitors in human patients, includ-
ing that of captopril. Although captopril is widely used, patients 
treated with the drug presented higher incidence of coughing, 
and it was suggested that enalapril is more potent, owing to its 
effect on ejection fraction, stroke volume, and mean arterial 
pressure [25].

Mitochondrial Oxidative Stress
Mitochondrial oxidative stress, caused by either ROS overpro-
duction or decreased endogenous antioxidant defenses, has 
been implicated in the structural and functional alterations 
during myocardial failure [39]. Sources of ROS in the failing 
heart include mitochondrial ETC, nicotinamide adenine dinu-
cleotide phosphate oxidases, nitric oxide synthases, and xan-
thine oxidase [40]. The change in oxidative stress levels may 
contribute to changes in the abundance and copy number of 
mitochondria, and in the integrity of mtDNA in human cells 
during pathological conditions [41]. ROS may act within a 
threshold to generate stress responses through various cellular 
processes, such as modifications in specific nuclear genes, in 
order to maintain energy metabolism and production [42]. De-
creased mitochondrial biogenesis occurs during insignificant 
increases in oxidative stress, in addition to increased mitochon-
drial DNA mutations, which eventually lead to impaired OX-
PHOS and cardiomyopathy. On the other hand, induction of 
PGC-1α, mitochondrial biogenesis, and enzymes related to 
metabolism were observed during marked elevation in oxida-
tive stress [43]. 
  The complex role of ROS in the progression of HF remains 
to be clarified. A suggested mechanism involves impairment of 
cellular and mitochondrial structures, such as excitation-con-
traction coupling proteins, which affect the mechanical func-
tion of the heart [44]. Considering that majority of the ROS 
originates in the mitochondria during HF, it is not surprising 
that these organelles are the most susceptible to oxidative dam-
age. In fact, mtDNA is more prone to ROS damage since it lacks 
histones, which can serve as protection from ROS attack. This 
renders the mtDNA to a less efficient DNA repair system, 
which results in mtDNA gene mutations. Furthermore, de-
crease in PGC-1α in affected hearts aggravates oxidative stress 
and mitochondrial damage, owing to the protein’s role in main-
taining mitochondrial antioxidant defenses [43]. ROS also reg-
ulates signaling cascades such as those involving protein kinase 
C (PKC), mitogen-activated protein kinase (MAPK), Jun N-
terminal kinase, and Ras—all implicated in hypertrophy [45]. 

Further, ROS facilitates extracellular matrix remodeling by pro-
moting matrix metalloproteinases either directly via posttrans-
lational modifications (PTMs) or indirectly via nuclear factor 
κB (NFκB) pathway [46]. The aforementioned roles of ROS 
highlight its importance and novelty as a therapeutic target for 
treating HF. As mentioned in the previous section, therapies in-
volving ACE inhibitors and angiotensin II receptor blockers 
have been used experimentally, owing to the agents’ antioxidant 
properties. However, it is unclear whether these agents target 
mitochondrial ROS directly or indirectly [47,48].
  Numerous studies have focused on oxidative-stress targets or 
energetics in HF models. Large randomized trials of antioxi-
dant vitamins such as vitamin E have so far been futile, which 
might be due to the nonspecific nature of the vitamins, possibly 
inhibiting both the beneficial and negative effects of ROS. Nev-
ertheless, it has been shown that mitochondrial targeting of 
ROS-scavenging molecules is protective. Modulation of sub-
strate utilization with drugs such as perhexiline to increase 
myocardial energy production has only been performed in 
small-scale clinical studies [49]. A two-pronged approach of 
addressing oxidative stress and mitochondrial dysfunction to-
gether has been deemed a more efficient approach. The use of 
antioxidants such as triphenylphosphonium conjugation (Mi-
toQ) and novel Mn-SOD, or catalase analogues could be con-
sidered in future HF studies.

Mitochondrial Permeability Transition Pore
Decreased energy metabolism due to dysfunction in mitochon-
dria is further aggravated by ROS generation, which, when tak-
en together with Ca2+ mishandling, favors mPTP opening. 
mPTP is a nonselective pore in the inner mitochondrial mem-
brane, activated under high Ca2+ and ROS levels, resulting in 
mitochondrial dysfunction and inhibition of OXPHOS [50,51]. 
It was earlier thought that the inner-membrane ANT [52], out-
er-membrane voltage-dependent anion channel [53], and inner 
phosphate carrier [54] all play essential roles in mPTP induc-
tion. However, recent studies have pointed out that these com-
ponents only play a supporting, regulatory role, while more 
compelling evidence points at the importance of matrix protein 
cyclophilin D (CyP-D) and mitochondrial ATPase in mPTP 
structure and regulation [55]. Determining the structure of 
mPTP would aid the development of better methods to inhibit 
mPTP opening, helping in the maintenance of inner-mem-
brane integrity and preservation of ATP production, which 
would prevent cell death during the onset of HF.  
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  mPTP is widely studied in cardiac pathology, including isch-
emia/reperfusion (I/R) and HF. It was earlier observed that inhi-
bition of mPTP opening by cyclosporine A (CsA) offers possible 
cardioprotection. Subsequent research in a myocyte model of 
hypoxia/reoxygenation found that CsA is a potent inhibitor of 
mPTP pore in isolated mitochondria. Earlier studies involving 
CsA also revealed cardioprotection from reoxygenation injury 
in isolated cardiac myocytes [56]. This was supported by another 
study where CsA exhibited cardioprotection from reperfusion 
injury in the Langendorff perfused heart [57]. Cardioprotective 
effects of CsA were also observed in CyP-D-knocked out mice, 
exhibiting a significant reduction in infarct size in an I/R model 
[58]. However, owing to its affinity to cytosolic cyclophilin-A, 
CsA poses a problem regarding cardioprotection, wherein it in-
hibits calcineurin, which directly affects heart function [59] and 
is reported to possess immunosuppressive activity [60]. In order 
to address such problems exhibited by CsA, analogues have 
been developed that are inactive against calcineurin, but still 
bind strongly to CyP-D. The cardioprotective properties of these 
analogues are similar to that of CsA, and are potent even when 
administered only during early reperfusion [61-64]. 
  Several other indirect inhibition methods for mPTP have 
been suggested, mostly focused on reduction of mitochondrial 
build-up of pore-formation inducers such as ROS and Ca2+. 
Considering that oxidative stress is a robust mPTP-opening ac-
tivator, clinical use of ROS scavengers might be effective [65]. 
Propofol, which is used during cardiac surgeries, inhibited 
mPTP opening in an I/R model of isolated rat hearts, exhibiting 
significant post-ischemic recovery of heart function. This car-
dioprotective effect could be attributed to propofol’s role in in-
hibiting the formation of ROS–cardiolipin complexes in the re-
spiratory chain by maintaining the integrity of cardiolipin un-
der ROS attack [66]. In another case, 3-Methyl-1-phenyl-2-pyr-
azolin-5-one (MCI-186) significantly decreased myocardial in-
farction size and inhibited mPTP opening in an I/R rat model. 
This effect could be attributed to the action of MCI-186 in in-
hibiting cellular Ca2+ overload brought about by oxidative stress, 
in addition to the inhibitory effect on mitochondrial swelling 
and cytochrome c release [67].
  Ca2+ channel blockers have been well studied in cardiac dis-
ease models, but the role of mPTP in relation to these blockers 
remains unclear. Ruthenium 360 is a specific Ca2+ uniport in-
hibitor, which reduces mitochondrial Ca2+ by blocking mPTP 
while not affecting Ca2+ movement. This was associated with 
cardiac function recovery after ischemia [68]. Hearts adminis-

tered with Na+/H+ exchanger isoform 1 (NHE-1) inhibitors 
showed decreased muscle cell injury as evidenced by low lactate 
dehydrogenase release and improved cardiac function during 
reperfusion [69]. The NHE-1 inhibitor cariporide was also able 
to mitigate oxidative stress-induced mitochondrial Ca2+ over-
load and mitochondrial membrane potential (ΔΨm) loss in 
neonatal cardiomyocytes [70]. Thus, there is a need to develop 
drugs that are more potent in targeting other aspects of mPTP, 
without disrupting normal mitochondrial function. 

FUTURE DIRECTION AND CONCLUSION

Mitochondria are deemed pivotal in both normal and patholog-
ical functioning of the heart, and are implicated as either the pri-
mary cause or an aid in the progression of HF. There are many 
other factors that are yet to be considered in order to come up 
with more successful methods of dealing with HF. Pharmaco-
logical intervention may be used in patients at the risk of HF, es-
pecially when addressing novel cardiac targets such as mito-
chondrial PTM [71]. Briefly, PTMs are conformational changes 
that occur in a protein after the translational process, in response 
to external stimuli like ROS or aberrant signaling, and these 
PTMs significantly affect cellular function [7]. 
  Taken together, maintaining mitochondrial biogenesis against 
cardiac injury and decreasing mitochondrial ROS are two prom-
ising mechanisms that may lead to effective treatments for HF. In 
addition, results from experiments show that mPTP also holds 
promise as a target in HF treatment; these experiments should 
be followed up.
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