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Abstract. Determining the quantitative content of chlorophylls in plant leaves by their ref lection spectra is an impor-
tant task both in monitoring the state of natural and industrial phytocenoses, and in laboratory studies of normal and 
pathological processes during plant growth. The use of machine learning methods for these purposes is promising, 
since these methods allow inferring the relationships between input and output variables (prediction model), and 
in order to improve the quality of the prediction, a researcher may modify predictors and selects a set of method 
parameters. Here, we present the results of the implementation and evaluation of the random forest algorithm for 
predicting the total concentration of chlorophylls a and b from the ref lection spectra of plant leaves in the visible and 
infrared wavelengths. We used the ref lection spectra for 276 leaf samples from 39 plant species obtained from open 
sources. 181 samples were from the sycamore maple (Acer pseudoplatanus L.). The ref lection spectrum represented 
wavelengths from 400 to 2500 nm with a step of 1 nm. The training set consisted of the 85 % of A. pseudoplatanus L. 
samples, and the performance was evaluated on the remaining 15 % samples of this species (validation sample). 
Six models based on the random forest algorithm with different predictors were evaluated. The selection of control 
parameters was performed by cross-checking on f ive partitions. For the f irst model, the intensity of the ref lection 
 spectra without any transformation was used. Based on the analysis of this model, the optimal ranges of wavelengths 
for the remaining f ive models were selected. The best results were obtained by models that used a two-point esti-
mation of the derivative of the ref lection spectrum in the visible wavelength range as input data. We compared one 
of these models (the two-point estimation of the derivative of the ref lection spectrum in the range of 400–800 nm 
with a step of 1 nm) with the model by other authors (which is based on the functional dependence between two 
unknown parameters selected by the least squares method and two ref lection coeff icients, the choice of which is 
described in the article). The comparison of the results of predictions of the model based on the random forest al-
gorithm with the model of other authors was carried out both on the validation sample of maple and on the sample 
from other plant species. In the f irst case, the predictions of the method based on a random forest had a lower 
estimate of the standard deviation. In the second case, the predictions of this method had a large error for small 
values of chlorophyll, while the third-party method had acceptable predictions. The article provides the analysis of 
the results, as well as recommendations for using this machine learning method to assess the quantitative content 
of chlorophylls in leaves.
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Аннотация. Определение количественного содержания хлорофиллов в листьях растений по их спектрам от-
ражения – важная задача как при мониторинге состояния естественных и промышленных фитоценозов, так и 
в лабораторных исследованиях нормальных и патологических процессов в ходе роста растения. Применение 
для этих целей методов машинного обучения является перспективным, поскольку они позволяют «автомати-
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чески» строить решающие правила для получения результата (модель предсказания), а исследователю (для 
повышения качества предсказания) остаются модификация предикторов и выбор множества параметров 
метода. В статье приведены результаты построения решающих правил алгоритмом случайного леса (random 
forest) для предсказания суммарной концентрации хлорофиллов a и b по спектрам отражения листьев расте-
ний в видимом и инфракрасном (ИК) диапазонах длин волн. Набор данных взят из открытых источников. Они 
включали 276 образцов листьев 39 видов растений. При этом 181 образец получен при анализе листьев бело-
го клена (Acer pseudoplata nus L.). Спектр отражения представлен в диапазоне 400–2500 нм с шагом 1 нм. Обу-
чение происходило на 85 % образцов A. pseudoplatanus L., оценка качества предсказания – на оставшихся 15 % 
образцов этого вида (валидационная выборка). Построено шесть моделей на основе алгоритма случайного 
леса с разными предикторами. Подбор управляющих параметров осуществляли при помощи перекрестной 
проверки на пяти разбиениях. Предикторами первой модели выступали имеющиеся значения по спектру от-
ражения без какой-либо обработки с нашей стороны. После проведения анализа этой модели были выбраны 
диапазоны длин волн предикторов для оставшихся пяти моделей. Лучшие предсказания имеют модели с раз-
ностной производ ной спектра отражения в видимом диапазоне длин волн. Модель с первой производной 
спектра отражения в диапазоне 400–800 нм с шагом 1 нм брали для сравнения с моделью других авторов. Этой 
моделью выступает функциональная зависимость с двумя неизвестными параметрами, подбираемыми мето-
дом наименьших квад ратов, и двумя коэффициентами отражения, выбор которых описывается в настоящей 
статье. Сравнение результатов предсказаний модели с применением алгоритма случайного леса проводили 
как на валидационной выборке клена, так и на выборке из других видов растений. В первом случае предсказа-
ния метода на основе случайного леса имели меньшую оценку среднеквадратического отклонения. Во втором 
случае предсказания этого метода были с большой ошибкой при малых значениях хлорофилла, в то время как 
сторонний метод имел приемлемые предсказания. В статье приводятся анализ результатов и рекомендации 
по применению этого метода машинного обучения для оценки количественного содержания хлорофиллов 
в листьях.
Ключевые слова: случайный лес; дистанционные методы; оптика листа растения; пигменты.

Introduction
Pigments are low-molecular-weight compounds that give 
color to plant organs and play an important role in their life, 
performing photosynthetic, protective and metabolic func-
tions. In terrestrial plants, the most well-known pigments are 
chlorophylls (which provide the green color of plant organs 
and play a crucial role in photosynthesis), carotenoids (which 
give red and yellow color, also participate in photosynthesis), 
anthocyanins (which give a purple color, perform protective 
functions), as well as a number of other compounds (Croft, 
Chen, 2018). Photosynthetic pigments, chlorophylls and caro-
tenoids, attract the most attention from researchers; they have 
different absorption spectra and perform different functions 
in the process of photosynthesis, which is due to structural 
differences between the molecules of these substances.

Chlorophyll in plants is represented by two types of mole-
cules, a and b, which have structural differences and differ 
in their light-absorbing properties (Du et al., 1998). It allows 
photosynthetic organisms to collect sunlight at different 
wavelengths to maximize the light energy available for pho-
tosynthesis. Changes in the concentrations of photosynthetic 
pigments are closely related to the physiological state of plants. 
For example, when the leaves of plants wither, there is a rapid 
decrease in the concentration of chlorophylls compared to 
carotenoids, thereby increasing the ratio of carotenoids to 
chlorophylls causes the leaves to turn red and yellow (Croft, 
Chen, 2018). The content of pigments, in particular chloro-
phylls a and b, can thus serve as an indicator of the state of 
plants during normal growth and during the development of 
infections, as well as stress, photosynthetic activity, metabolic 
disorders, etc. (Młodzińska, 2009). The need to determine 
the physiological state of plants often arises in the course of 
solving many scientific and practical problems, so methods for 
assessing the content of pigments in plant organs and tissues 
are constantly being developed and improved.

Quantitative and qualitative information about pigments 
can be obtained using chemical methods (Lichtenthaler, 1987; 
Porra et al., 1989; Wellburn, 1994). However, for many tasks, 
a more convenient approach is to use remote methods based 
on the light reflection spectra from the plant leaf (Horler et 
al., 1983; Curran et al., 1990; Gitelson et al., 2001, 2003). 
The reflectivity of the leaf in the optical and infrared (IR) 
wavelengths (400–2500 nm) depends on various biochemical 
and physical factors, including the content of chlorophyll and 
other leaf pigments, nitrogen, water, as well as on the internal 
structure of the leaves and the characteristics of their surface 
(Croft, Chen, 2018). Plant pigments are characterized by the 
absorption of electromagnetic radiation in the visible (400– 
700 nm) and near-IR (1300–2500 nm) wavelength ranges. The 
absorption of the leaf components in the near-infrared region 
in the range of 750–1300 nm is low, since in this wavelength 
range there is an intense reflection from the components of 
the internal structure of the leaves. Thus, the reflection coef-
ficient in the near-IR range depends on both the concentration 
of enzymes and the structure of the leaf. All these facts make 
it possible to use remote observation methods in both the 
visible and near-infrared wavelength ranges to monitor the 
physiological state of plants (Merzlyak et al., 2003; Alt et al.,  
2020).

One of the approaches to estimating the content of chlo-
rophylls from the reflection spectrum is to select empirical 
dependencies (indices) between the reflection coefficients at 
certain wavelengths, the choice of which is also an important 
part of the method, and the content of chlorophylls (Horler 
et al., 1983; Curran et al., 1990; Gitelson et al., 2001, 2003; 
Suo et al., 2010; Nikolaev et al., 2018). The success of such 
a “classical” approach directly depends on the depth of our 
understanding of the physics of the process.

Currently, machine learning methods are often used to 
predict the characteristics of biological objects (Doktor et 
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al., 2014; Feng et al., 2020). Their advantage is that usually a 
complex nonlinear dependence on many variables can be ap-
proximated with the necessary accuracy by machine learning 
methods. In simple cases, the data is fed to the program input 
without any processing, however, the accuracy of the predicted 
parameter will be quite high. Each machine learning method 
has its own ways to improve the accuracy of the prediction, for 
example, by varying the control actions. There are also ways 
to transform the input data to improve the result. Thus, in the 
analysis of spectra, the calculation of the derivative makes 
it possible to eliminate additive components and highlight 
such characteristic features of the spectrum as the positions 
of maxima, minima, and points.

The aim of our research was to develop a machine learning 
method using a random forest algorithm to predict the total 
concentration of chlorophylls a and b in plant leaves from 
the values of the reflection spectra in the visible and infrared 
wavelength ranges. The accuracy of the prediction is evaluated 
in comparison with the results obtained from the analytical 
functional dependence, and the advantages and disadvantages 
of both approaches are determined. 

Materials and methods
Experimental data. The characteristics of the leaf reflec-
tion spectra at different concentrations of chlorophylls a 
and b were downloaded from the EcoSIS database (ecosis.
org), set angers2003 (Jacquemound et al., 2003; Féret et al., 
2008). 276 leaf samples of 39 plant species were examined. 
181 samples are the leaves of sycamore maple (Acer pseudo
platanus L.). The data on the reflection spectrum are presented 
in the range of 400–2500 nm with a step of 1 nm. The ASD 
FieldSpec spectrum radiometer is used for this purpose; the 
pigment concentrations were determined by the Lichtenheler 
method and are presented in units of measurement of µg/cm2 
(see details in (Jacquemound et al., 2003; Féret et al., 2008)).

Mathematical statement of the problem. Let there be a 
general set of  Rgen

    λ  of all possible reflection coefficients of  
plant leaves for given wavelengths λ and Chl gen – the values 
of the sum of the concentration of chlorophylls a and b cor-
responding to Rgen

    λ . We have an Rλ – subsample of  Rgen
    λ  and 

Chl – values of the sum of the concentration of chlorophylls 
a and b corresponding to Rλ. It is required to construct the 
functional f : Rgen

    λ → Chl gen from the set (Rλ, Chl ). Moreover, 
since this idealized functional cannot be implemented, we get 
an approximating functional: ~f : Rλ → Chl . 

Building a prediction model using the random forest 
method. The random forest (RF) method was chosen for con-
structing the functional (Breiman, 2001; Hastie et al., 2009). 
It allows you to get the accuracy of the prediction of the target 
function, as a rule, higher than in the case of linear regression 
methods. The idea of the algorithm is to apply an ensemble 
of decision trees. Each decision tree in this ensemble sets a 
piecewise constant function, which is obtained by minimizing 
the loss function (for example, the mean square of the devia-
tion). The algorithm combines two main ideas: the Breiman 
bagging method (Breiman, 1996) and the random subspace 
method proposed by T.K. Ho (1998). In our work, we used the 
implementation of the random forest method from the sklearn 
library (scikit-learn.org) of the Python language.

To predict the chlorophyll concentrations by the random 
forest method, several models that differed in the input data 
sets were taken. First, each set was characterized by an interval 
of wavelengths, the intensity of reflection at which was taken 
into account. In total, several sets of intervals were considered: 
400–2450, 400–800 nm, and a combined set of two intervals 
of 500–600 and 680–740 nm. Second, the models differed in 
the type of input data. These included the values of the inten-
sity of the reflection spectra at certain wavelengths (base data 
type), the values of the first derivatives of the spectral curves 
for the same wavelengths (der data type), and the values of 
the second derivatives (der2 data type). Some models were 
based on only one data type, while others shared multiple data 
types. Such combinations were marked with a summation sign 
(for example, base+der). 

In this paper, six models have been considered. They are 
designated as RF-(X– Y)- Z, where (X–Y) – intervals of wave-
lengths, Z – type data model: RF-(400–2450)-base (the intensi-
ty of the spectrum in intervals of wavelengths 400–2450 nm); 
RF(400–800)-base (the intensity of the spectrum in intervals 
of wavelengths 400–800 nm); RF(400–800)-base+der (in-
tensity spectrum and the first derivative in the intervals of 
wavelengths 400–800 nm); RF(400–800)-der (first derivative 
in the intervals of wavelengths 400–800 nm); RF(400–800)-
der+der2 (first and se cond derivatives in the interval of wave-
lengths 400–800 nm); RF(500–600; 680–740)-base+der+der2 
(intensities, first and second derivatives in the wavelength 
ranges 500–600 and 680–740 nm).

As an approximation of the derivative of the spectral curves, 
the first-order finite difference with a change equal to 1 was 
used, which was calculated by the formula Di = Ri – Ri – 1. In 
this calculation, there is no derivative for the first value. For 
simplicity, the finite difference is referred to the derivative 
throughout the text. The second derivative was calculated as 
the derivative of the derivative of the spectral curve.

When configuring the random forest algorithm, the follow-
ing control parameters were selected: 
•  max_depth: [2, 3, 4, 5, 6] – the maximum depth of the tree;
•  max_features: [2, 7, sqrt, log2, auto] – the number of 

features that the partition is searched for (auto – all features);
•  n_estimators: [5, 10, 15, 30, 40] – the number of trees in 

the random forest ensemble;
•  random_state: 20200605.

The specified parameters of the algorithm were selected by 
cross-checking on five samples of the same size obtained from 
a randomly mixed initial training sample. Four subsamples 
were used for training the model, and the fifth one was used 
for testing it. To determine the best control parameters, the 
test results (mean square deviation of the target indicator – 
mse) were averaged between models with the same control 
parameters (i. e., obtained during cross-validation) and sorted. 
The control parameters for which the average mse is the mini-
mum are the best. As the final model, one of the five models 
with the best control parameters is selected, which has the 
minimum mse when tested among the models obtained by 
the cross-validation method.

The maximum depth of the trees is chosen to be 6, which 
gives 26 = 64 intervals for partitioning the parameter space, 
despite the fact that the sample length taken to build the model 
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Fig. 1. Determination coefficients of the obtained GGF models  
at λ  [400; 800], which were calculated on the training sample. 
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is 123. The depth increasing could lead to overfitting. The 
number of trees in the forest (up to 40) may seem redundant 
for 123 sample values, but the parameters of each of the 
decision trees were selected on different subspaces (since the 
random subspace method is used), and the dimension of the 
features was always greater than the number of elements in 
the sample.

It should be noted that the algorithm implemented in the 
sklearn library allows us to obtain the informativeness of each 
of the model features and select the most informative ones 
for the obtained decision rules (Breiman, 2001; Hastie et al., 
2009; Louppe et al., 2013).

Construction of empirical functional dependencies. As a 
functional of  ~f : Rλ → Chl  we additionally chose an empiri cal 
dependence from the work (Gitelson et al., 2003) (the GGM 
method, which we named after the authors’ surnames), rep-
resented by the expression

           Chl  = α ∙ 1
Rλ

 – 1
RNIR

 ∙ RNIR + β,           (1)

where Chl  is the total concentration of chlorophylls a and b; 
Rλ is the reflection coefficient at the wavelength λ; RNIR is the 
reflection coefficient in the near-infrared range (for example, 
at a wavelength of 800 nm); α and β are selected in such a 
way as to minimize the selected loss function. A.A. Gitelson 
and co-authors (2003) recommend choosing wavelengths 
from the range λ  [525; 555]  [695; 725]. According to the 
authors, the advantage of this algorithm is that the RNIR coef-
ficient “corrects” the influence of the plant tissue structure 
on the reflection spectrum and allows us to extend the found 
function to plants with different leaf structure. 

The comparison of methods for predicting the concen-
tration of chlorophyll. The sycamore maple sample from the 
angers2003 data set was randomly divided into a training and 
a validation sample in the ratio of 85 : 15. For the methods used 
in this work for predicting the random forest algorithm (RF) 
and functional dependence (GGM), the optimal parameters 
are selected on the training sample. The quality control of the 
algorithms is carried out on a validation sample represented 
by a sycamore maple and on a sample of non-maple samples. 
The following metrics were used to evaluate the accuracy of 
predicting chlorophyll concentrations: mse, mean absolute 
error (mae), and determination coefficient R2. The formulas 
for calculating metrics are as follows:

mse = 1n
n
Σ
1

(xi – x̂i)2,       

mae = 1n
n
Σ
1
|xi – x̂i|,

R2 = 1 – 

n
Σ
1

(xi – x̂i)2

n
Σ
1

(xi – xi)2
,

where x is the true values; x̂ is the predicted values; n is the 
number of samples, and x is the mathematical expectation 
for the true values. In terms of optimization, mae and R2 are 
equivalent. The coefficient of determination R2 is conve-
nient because it is a dimensionless value usually in the range 
[0; 1], the value of R2 < 0 shows that the arithmetic mean x 
has a better result than the predictions of the constructed 
model). 

Results
Selection of parameters for the functional dependence 
method. For the GGM prediction on the training sample, 
we selected the coefficients α and β of equations (1), as well 
as the values λ so as to maximize the value of R2. The value 
λNIR = 800 nm is selected as the wavelength in the near-
infrared range. To get the coefficients α and β, we took a linear 
model based on the least squares method (the LinearRegres-
sion class from the sklearn.linear_model package). For each  
λ  [400; 800] with a step of 1 nm, a specific type of GGM 
curve was found. The coefficients of determination R2 for 
the predictions of the obtained models are shown in Fig. 1. 
The highest coefficient of determination was achieved at the 
wavelength λ = 705 nm. The result is consistent with the 
recommended range λ  [525; 555]  [695; 725] (Gitelson et 
al., 2003). The RF method is compared with the GGM model 
obtained at this wavelength λ = 705 nm.

Results of constructing an algorithm based on the ran-
dom forest method. The characteristics of the accuracy of the 
prediction of chlorophyll concentrations (the values of the mse, 
mae, R2 parameters) for all six models in the test sample are 
shown in the table. The RF-(400–800)-der and RF-(400–800)-
der+der2 methods demonstrated high prediction accuracy. As 
the best of them, the RF-(400–800)-der method was selected 
as having a smaller number of input parameters.

The selection of wavelengths, the reflection coefficients for 
which were taken as input features for predicting chlorophyll 
concentrations by the random forest method, was carried out 
on the basis of the first model (RF-(400–2450)-base). This is 
due to the fact that at first it was not known whether the entire 
spectrum was needed, or only a part of it was necessary, and 
which one. As mentioned earlier, the RF algorithm allows you 
to evaluate the information content of the features the training 
took place on. After configuring the control parameters of the 
RF-(400–2450)-base model, we took the obtained parameters 
to re-train the models on five training samples (from cross-
validation). For these five models, we identified 10 features 
with the greatest contribution to the prediction. The results 
are shown in Fig. 2: the vertical lines represent the combined 
set of wavelengths, the spectrum intensities for which make 
the most significant contribution to the prediction accuracy 
(26 wavelengths out of 10 ∙ 5 = 50 possible if the values did 
not intersect). Interestingly, the most significant features lie in 
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Fig. 2. Characteristics of the ref lection spectrum of sycamore maple 
pigment samples used for model training. 
The lines show: the average value of the intensity of the reflection spectrum  
Rλ (Y-axis) for different wavelengths (X-axis); the value of the first derivative 
of the average intensity; the value of the second derivative. The values of 
the derivatives are normalized to the interval [0; 1]. Vertical lines indicate the 
wavelengths whose spectrum intensities make the greatest contribution to 
the prediction accuracy of the RF-(400–2450)-base model.

Results of a random forest model trained on different sets of input features

No. Random forest model Number of input features mse mae R2

1 RF-(400–2450)-base 2051 30.5 3.7 0.945

2 RF-(400–800)-base 401 26.6 3.8 0.952

3 RF-(400–800)-base+der 401 + 400 = 801 10.1 2.4 0.981

4 RF-(400–800)-der 400 9.1 2.4 0.984

5 RF-(400–800)-der+der2 400 + 399 = 799 8.9 2.3 0.984

6 RF-(500–600; 680–740)- 
base+der+der2

101 + 100 + 99 + 61 + 60 + 59 = 380 10.5 2.7 0.981

Notе. The numbers in the description of the feature indicate the range of wavelengths. Additional characteristics of the features: base – ref lection spectrum; 
der – values of the first derivative of the spectrum; der2 – values of the second derivative of the spectrum. The values with the worst accuracy are shown in italics, 
and the values with the best accuracy are highlighted in bold.
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Fig. 3. Comparison of true and predicted values of chlorophyll concentra-
tion in sycamore maple leaf tissues for validation sampling.

Fig. 4. Comparison of true and predicted values of chlorophyll concentra-
tion in leaf tissues of not related to sycamore maple samples.

the visible range; most of these features are in the wavelength 
range of 500–600 and 680–740 nm. On this basis we have 
formulated the wavelengths of the input characteristics for 
the remaining five models for predictions by random forest 
(see above).

Comparison of the accuracy of the RF and GGM 
 methods. The results of the comparison of the methods for pre-
dicting chlorophyll concentrations by the RF-(400–800)- der 
and GGM methods and their experimentally measured values 
at different concentrations are shown in Fig. 3 and 4. For 
sycamore maple samples (the type taken to fit the parame-
ters), the RF-(400–800)-der method shows a better result 
compared to the GGM method: √mseRF = 3.01 µg/cm2 ver-
sus √mseGGM = 3.21 µg/cm2. When testing the methods on a 
sample of plant leaves from other species, the GGM functional 
dependence method has an advantage √mseGGM = 6.31 µg/ cm2 
versus √mseRF = 12.97 µg/cm2. The GGM method shows high 
accuracy at low concentrations of chlorophyll, while the RF 
method shows a large error at these values. However, in the 
range of chlorophyll concentrations above 20 µg/cm2, the 
RF-(400–800)-der algorithm has the best result: √mseRF =  
= 5.91 µg/cm2 versus √mseGGM = 7.01 µg/cm2.

Further analysis revealed that for samples with a chlorophyll 
concentration of less than 7 µg/cm2, the reflection coefficients 

R550 (maximum of the reflection spectrum) and R680 (minimum 
of the reflection spectrum) are visually significantly different 
from all the others (Fig. 5, points in the upper right quarter). 
The predictions for these samples have a significant error. 
However, it was not possible to find out what the differences 
in the reflection spectrum are related to: these samples do not 
differ from the rest either in the surface density of the leaf or 
in the equivalent water thickness for the leaf (Jacquemound 
et al., 2003). Six out of ten plant species from these samples 
also have samples with normally predicted values. Further 
analysis of the causes of the anomalous spectrum is difficult, 
since the data are taken from open sources, and the measure-
ments themselves were carried out more than 17 years ago.
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Fig. 5. Scattering diagram of ref lection coefficients R680 versus R550 , 
with  selected categories by chlorophyll concentration (less than/more 
than 20 mcg/cm2) and by plant type (Acer pseudoplatanus L. or other).
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Discussion
Many studies on the application of reflection spectra to 
estimate pigment concentrations involve neural networks 
(Golhani et al., 2018), while the decisions founded on tree-
based methods are also common in machine learning research 
tasks. We used the decision tree method to predict chlorophyll 
concentrations in plant leaves and compared the results with 
the functional dependence method. We have found the ranges 
of the spectrum, the intensity of reflection in which most 
strongly affects the accuracy of the prediction by the random 
forest method.

The range of 690–750 nm in the literature is called the red 
edge of photosynthesis (Curran et al., 1990; Gitelson et al., 
2003; Croft, Chen, 2018), and the neighborhood of 550 nm, 
where the maximum of the chlorophyll reflection spectrum 
is located, is known as the green edge (Gitelson et al., 2003). 
As it can be seen from Fig. 2, in our study, these regions 
contain the most important predictors for the random forest 
method. The choice of a narrower wavelength range of the 
visible spectrum (400–800 nm) as input features compared to 
the full source data (400–2450 nm) improved the quality of 
the model. The explanation is that after dividing the sample 
into subspaces, some of them are less suitable for training, 
and the trees trained on these values introduce an error in the 
total result. The greatest effect was achieved with the use of 
derived spectral dependences.

The random forest RF method performed well when work-
ing with sycamore maple samples, while the functional de-
pendence of GGM performed well when working with dif-
ferent plant species. This is due to the greater generalization 
ability of the GGM method, as it has fewer configurable 
parameters. However, the lower accuracy of the RF method 
on samples from other plant species is partly due to the small 
size of the training sample and the fact that only one species is 
represented in it. For example, the best results of the random 
forest method were achieved with a tree depth of 5 or 6, and 
this requires a minimum of 32 or 64 objects of the training 

sample, while the functional method (1) requires a minimum 
of two points (preferably a point at small values of chlorophyll 
and a point at large values). Apparently, this feature of the RF 
method can be eliminated by using more training data with 
samples from different plant species.

Nevertheless, the procedure for selecting parameters for 
the RF method showed that the most significant features for 
prediction lie in the visible region, but the influence of the plant 
structure was not taken into account in this method. Along 
with this, in the functional dependence (1), the structure of 
the plant tissue is taken into account by the RNIR member. If 
the experiment is performed with different plant species (see 
Fig. 4), then at low values of chlorophyll, the structure of the 
plant begins to play a significant role.

Interestingly, both methods work in the range λ  [525; 
555]  [695; 725]. Both methods work on the decline of the 
derivative of the reflection spectrum, as it is shown in Fig. 2.

The word “random” in the name of the method “random 
forest” can lead to the idea that when you change the ran-
dom parameter used by the algorithm, you can get radically 
different results. We believe that with reasonably selected 
control parameters, a reasonable division into training and 
test samples, this probability is low. In our case,  625 models 
were built for each set of input features (a search of a set of 
125 combinations of control parameters, and 5 cross-checked 
models for each combination). In addition, it follows from the 
above table that the RF-(400–800)-base+der, RF-(400–800)-
der, RF-(400–800)-der+der2 methods have similar results 
(and, importantly, have less mse compared to the GGM me-
thod), which indirectly confirms that the results will not change 
dramatically.

Conclusion
The random forest method is one of the algorithms for 
constructing functional dependencies using machine learn-
ing methods. Therefore, it can be used for mass automatic 
construction of functions that connect the observed features 
with the desired ones in monitoring tasks. The results of this 
work have shown that it is advisable to use the random forest 
algorithm (and similar ones) in the task of determining the con-
tent of chlorophyll in a plant leaf if there is a large sample, at 
least 32 elements, represented by a wide range of chlorophyll 
concentrations, while the structure of the leaf tissue changes 
slightly (for example, the application of the algorithm only on 
those plants on which it was trained). In other cases, it is better 
to give preference to methods based on empirical dependencies 
(such as the GGM method discussed here).
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