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Background
Upon completing the human genome project, proteomics has become the focus in the 
post-genomic era. Proteins do not function only as single units. Instead, they form pro-
tein-protein interaction (PPI) networks and/or functional protein complexes [1]. Since 
most biological cellular processes are performed by protein complexes [2], identifying 
these operating units is an essential step for studying cells. Many experimental meth-
ods that can produce high-throughput PPI data have been proposed to identify protein 
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complexes within living cells, e.g., tandem affinity purification with mass spectrometry 
(TAP-MS) [3]. However, the existing experimental methods are expensive and time-con-
suming and may result in false-positive, or false-negative results [4].

Genome-scale PPI data can be obtained through high-throughput approaches, such as 
yeast-two-hybrid [5]. These PPI data can be formulated as an undirected graph in which 
the nodes and edges correspond to proteins and pairwise interactions. Meanwhile, most 
proteins are highly interactive with proteins in the same protein complex, which allows 
them to perform biological functions. Hence, the dense region in a PPI network can be 
identified as a protein complex. Thus, detecting protein complexes is similar to identi-
fying communities in complex networks [6]. Based on this, the problem of identifying 
protein complexes is usually transformed into the issue of soft graph clustering. Figure 1 
shows the detection process of protein complexes from a PPI network.

Related work

Over the past decade, various computational methods have been proposed to identify 
protein complexes in PPI networks automatically [7]. Among them, IPCA [8], and SPICi 
[9] identify local dense subgraphs as local protein complexes instead of globally clus-
tering a network based on different network properties and concepts [10]. By contrast, 
other methods, such as MCL [11], and RRW [12], apply random walks, which is a clas-
sic global protein complex identification approach. These methods mine global protein 
complexes by manipulating the network nodes’ transition probabilities or stochastic 
flows. In particular, RNSC [13] identifies global protein complexes by efficiently sepa-
rating networks into clusters using a cost function. To detect sparse protein complexes, 
PC2P [14] has been proposed to mine protein complexes as biclique spanned subgraphs 
(including both sparse and dense subgraphs) using the network partitioning method. 
Besides, other methods such as CMC [15] identify protein complexes by merging, mix-
ing, or deleting different types of cliques or k-cores, COACH [16] and WPNCA [17] 
take the core-attachment structure into account to detect protein complexes. In addi-
tion, some methods, such as OH-PIN [18], detect protein complexes using hierarchical 
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Fig. 1  The detection process of protein complexes from a protein-protein interaction (PPI) network
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clustering algorithms based on similarity or distance. Moreover, several methods, such 
as ClusterONE [19], and SE-DMTG [20], start from a protein or edge and expand it 
using a greedy algorithm for detecting protein complexes. Recently, with the increas-
ing research on swarm intelligence optimization algorithms, many study methods have 
transformed the protein complex identification into an optimization problem [21, 22]. 
However, these methods have two limitations: they only identify protein complexes with 
a single topological structure, and they cannot automatically and correctly set the input 
parameters of the algorithm according to different input datasets.

High-throughput experiment-derived PPIs may have false-positive or false-negative 
results, significantly affecting protein complex identification. Therefore, some computa-
tional methods, such as PEWCC [23] and EWCA [24], have been developed to improve 
the accuracy of protein complex identification by using the topology of PPI networks. 
Meanwhile, to reduce the effect of both false-positive and false-negative interactions on 
the performance of protein complex detection methods, GCC-v [25] and CUBCO [26] 
are designed to predict protein complexes by scoring and incorporating missing interac-
tions. Experiment results show their performance outperformed other state-of-the-art 
approaches across different species.

Furthermore, some other methods attempt to integrate biological properties. For 
instance, WEC [27] uses gene expression data to detect highly interconnected and co-
expressed protein complexes, whereas CPredictor5.0 [28] integrates gene ontology 
(GO) data and topological information of PPIs. Some methods [29, 30] use subcellular 
localization data to identify protein complexes. Recently, idenPC-MIIP [31] has been 
proposed to identify protein complexes based on the relationship of important mutu-
ally-interacting partners. Additionally, Wu et  al. [32] developed idenPC-CAP to iden-
tify protein complexes from RNA-protein heterogeneous interaction networks. Most of 
the above methods cannot reflect the dynamic characteristic of protein complexes [33] 
because the PPI network will change over time and depends on its surrounding condi-
tions. Therefore, current methods have considered dynamic cellular systems to create 
dynamic PPIs by using time-course gene expression data [34]. For example, based on 
the 3-sigma principle, some methods [35, 36] identify the active points of a protein in a 
time-serial gene expression data and to generate a series of time-sequenced subnetworks 
for identifying dynamic protein complexes. However, these methods usually identify 
many small false-positive protein complexes. In summary, using different types of bio-
logical properties or data to compensate for the PPI networks can improve the accuracy 
of PPI network-based detection of protein complexes.

In recent years, some supervised learning methods have been developed, including 
ClusterEPs [37] and ClusterSS [38], to identify protein complexes by using the properties 
of known protein complexes. In 2021, Zaki et  al. [39] introduced graph convolutional 
network approaches to improve the ability to detect protein complexes. Mei et al. [40] 
proposed a computational framework that combines supervised learning and dense sub-
graph to predict protein complexes. Furthermore, Liu et al. [41] proposed a new algo-
rithm based on a semi-supervised model to identify significant protein complexes with 
clear module structures. Additionally, ELF-DPC [42] is an ensemble learning framework 
for detecting protein complexes based on structural modularity and a trained voting 
regressor model. However, the performance of these methods is limited by the training 
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data size. With more known protein complexes available, detecting protein complexes by 
supervised learning methods will be further explored.

Motivation

Some researchers have illustrated that a protein complex with a core-attachment struc-
ture consists of two parts: a protein complex core and attachment proteins [43]. Various 
methods based on core-attachment structure have proposed to detect protein com-
plexes, such as MCL-CA [44], CACHET [45], COACH [16], Ma [46], WPNCA [17]. 
However, these methods ignore that the core proteins in the protein complex core are 
often co-localized, co-expressed, and have similar functions [30, 47], form the main 
functional part of the protein complex. Meanwhile, attachment proteins bind to the pro-
teins of the protein complex core, helping to perform their functions. Current studies 
[7] classify protein complexes into global [11, 13] and local protein complexes [8, 20]. 
Local protein complexes are protein complexes by local-cluster-quality-based methods, 
and these methods identify local clusters with optimal local cluster quality in a seed 
growth manner. Meanwhile, global protein complexes are protein complexes by global-
cluster-quality-based methods, and they search for an optimal clustering result with the 
best global-cluster-quality function value. This paper designs a local protein complex 
core detection strategy to mine local protein complex cores and form local protein com-
plexes. The MCL method identifies global protein complex cores and forms global pro-
tein complexes.

However, protein complexes include both global and local protein complexes. Moreo-
ver, although various definitions of protein complexes have been proposed, most only 
consider single properties. Thus, a novel structural description of protein complexes 
considering multiple topological properties is urgently needed. Additionally, most pro-
tein complex detection methods have a common disadvantage: their parameters are 
specified by users, making it difficult to deal with various PPI networks effectively. In 
recent years, the harmony search algorithm has paid much attention in the fields of bio-
informatics, such as the detection of high-order SNP epistasis and protein interactions 
[48], combinations, and epistasis [49–51], etc. Therefore, the improved harmony search 
algorithm is used to determine the parameters of the protein complex detection method 
in this paper. This paper will study and address the above issues.

Our work

To overcome the disadvantages of existing methods, this paper proposes a novel 
approach called MP-AHSA, which combines the MP algorithm and an adaptation 
harmony search algorithm (AHSA) to automatically determine the parameters of the 
MP algorithm for the input of different PPI networks. The MP algorithm is based on 
the core-attachment structure and multiple properties, and it is developed to iden-
tify protein complexes in PPI networks. First, the Topological Clustering Semantic 
Similarity (TCSS) method [52] based on functional annotations adopted to calculate 
the functional similarity between two interaction proteins, and a weighted PPI net-
work is constructed. Then, a local protein complex core detection strategy is designed 
based on gene expression and subcellular localization data to identify local protein 
complex cores. Then MCL is used to identify global protein complex cores. Next, a 
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fitness function integrating multiple topological properties is defined to describe pro-
tein complexes. Subsequently, a new protein complex forming strategy is developed 
to extend global and local protein complex cores to form protein complexes. Finally, 
the GO annotation data is used to filter the candidate protein complexes and improve 
the accuracy of the protein complex detection. The experimental results show that 
the performance of our algorithm is better than other comparison algorithms in most 
cases, and the experimental results on different datasets show that our algorithm has 
certain robustness and stability. Furthermore, the MP-AHSA algorithm can identify 
protein complexes with functional significance based on the p-value. The contribu-
tions of this paper are summarized as follows:

•	 A fitness function is defined, and it can detect protein complexes with multiple 
properties;

•	 The MP algorithm based on the core-attachment structure is proposed, and it can 
detect co-localized, co-expressed protein complexes with similar functions;

•	 The AHSA algorithm is developed to automatically determine the parameters of 
the MP algorithm for the input of different PPI networks;

•	 The experiments on various widely used PPI networks show that the proposed 
MP-AHSA algorithm outperforms 14 state-of-the-art methods.

Terminology
Herein, a PPI network is generally described as a weighted graph G = (V ,E,W ) , where 
V represents a set of proteins, E is a set of interactions, and W is a n× n(n = |V |) 
matrix that represents the reliability of protein pairs in the PPI network. The set of 
immediate neighbors of the node v is defined as N (v) = {u|(u, v) ∈ E,u ∈ V } . Mean-
while, we have provided a symbol table to explain these symbols in Table 1.

Methods
This paper proposes the MP-AHSA algorithm to identify protein complexes in PPI 
networks. The pipeline of the algorithm is shown in Algorithm 1, and it consists of 
the MP and AHSA methods. Figure  2 shows the flow of Algorithm  1. According to 
Algorithm 1, the MP-AHSA algorithm first constructs a weighted PPI network based 
on the TCSS method. Second, the MP algorithm is designed, and it first detects pro-
tein complex cores using Algorithm 2. Next, it defines a fitness function to describe 
protein complex in the PPI network. All protein complex cores are extended to form 
candidate protein complexes using fitness function and Algorithm  3. Based on the 
common functional annotation term, Algorithm 4 filters identified protein complexes. 
Finally, the AHSA algorithm is used to optimize the parameters of the MP algorithm.
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Table 1  Symbol and its explanation in this paper

ID symbol Explanation

1 PPI Protein-protein interaction

2 MP Multiple properties

3 MP-AHSA Multiple properties and an adaptation harmony search algorithm

4 MCL Markov cluster algorithm

5 TCSS method Topological clustering semantic similarity

6 GO Gene ontology

7 CC Cellular component

8 BP Biological process

9 MF Molecular function

10 WCC​ Weighted local clustering coefficient

11 LN(c) The union set of the first neighbors of protein c and itself

12 V(G) The set of proteins in G

13 SLD Subcellular localization data

14 GED Gene expression data

15 CEV Co-expression threshold value

16 G Weighted PPI network

17 GCE Gene co-expression threshold

18 PCCs The set of protein complex cores

19 PCC A protein complex core

20 Neighbor(PCC) The neighbors of protein complex core

21 cohesiveness(C) The cohesiveness score of cluster C

22 density(C) The weighted density of cluster C

23 awm(C) The average weighted modularity of cluster C

24 VC The set of proteins in the cluster C

25 EC The set of interactions in the cluster C

26 WC The set of weights between the protein pair in the cluster C

27 fitness(C) The fitness function score of cluster C

28 N(PCC) The potential attachment proteins of the cluster PCC

29 attachscore(v,PCC) The sum of weights between protein v and the protein complex core PCC

30 CPC A candidate protein complex

31 FPC A filtered protein complex

32 FPCs The set of filtered protein complexes

33 termmaxcommon The functional annotation term with the most common proteins in thei-
dentified protein complex has

34 HAS The harmony search algorithm

35 HMCR The harmony memory considering rate of AHSA method

36 PAR The pitch adjusting rate of AHSA method

37 FW The fret width of AHSA method

38 OFfitness The sum of the fitness function of the detected protein
complexes and it is used as the objective function

39 K The number of identified protein complexes

40 Fitness(Ci) The fitness function of the ith identified protein complex Ci

41 i The iteration times

42 HMs The harmony memory

43 HM A harmony

44 R1,R2 The variable value by randomly generated within [0,1]

45 fitnessmax,fitnessmin The maximum and minimum values of OFfitness in HMs

46 HMnew The new harmony generated

47 HMsmin The worst harmony in HMs

48 Maxiter The termination time
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Table 1  (continued)

ID symbol Explanation

49 HMsbest The best clustering HM in the harmony memory HMs

50 IPCs The identified protein complexes

Start

End

MP method

AHSA algorithm

MP-AHSA algorithm

Fig. 2  MP-AHSA algorithm detects protein complexes from PPI network
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Constructing a weighted PPI network

Recent studies [15, 24, 36] have shown that the accuracy of identifying protein com-
plexes can be significantly improved by integrating functional annotations into a single 
PPI network. Therefore, this paper uses an improved algorithm, i.e., the Topological 
Clustering Semantic Similarity (TCSS) method (including IEA annotations) by Jain et al. 
[52] to calculate the semantic similarity between two interacting proteins for weighting a 
PPI network. In particular, this method considers an unequal depth of biological knowl-
edge representations in different branches of the GO graph. Then, the gene annotations 
with GO terms downloaded from the Gene Ontology database for S.cerevisiae [53] are 
used to reflect the functional similarity of the proteins. According to the author’s sugges-
tion, the topology cutoffs for the cerevisiae PPI dataset are 2.4 for CC, 3.5 for BP, and 3.3 
for MF, respectively. For an edge, its semantic similarity score is calculated by using the 
average of the cellular component (CC), biological process (BP), and molecular function 
(MF) ontologies of GO by Eq. (1):

In this way, the reliability of the PPI networks is improved based on the semantic simi-
larity score, and a weighted PPI network is constructed.

MP algorithm

In the following subsections, the steps of the MP algorithm are explained in detail.

Identifying protein complex cores

The identification of protein complex cores consists of two steps in Algorithm 2. In step 
1, the initial seeds are identified, and local protein complex cores are mined based on the 
initial seeds. In step 2, global protein complex cores are detected by employing the MCL 
method [11]. Additional file 12 shows an example diagram to describe the Algorithm 2.

To detect local protein complex cores, we first introduce a weighted local clustering 
coefficient to detect initial seeds. Research has shown that PPI networks have a small 
world [54], scale-free [55], and modularity characteristics [56]. Therefore, local protein 
complex cores have a high local clustering coefficient [19, 36]. Thus, the higher the local 
clustering coefficient of the protein, the more likely the protein is to comprise the local 
protein complex core in the PPI network. For a protein pi , the definition of its weighted 
local clustering coefficient ( WCC(pi) ) [57] is shown in Eq. (2):

where w(v, u) represents the weight of the edge (v, u), |LN (pi)| = |{N (pi) ∪ {pi}}| is the 
number of proteins in LN (pi) , and LN (pi) is the union set of the first neighbors of pi 
( N (pi) ) and pi , V(G) is the set of proteins in G.

Next, based on initial seeds, we use subcellular localization data and gene expression 
data to form local protein complex cores. Because some studies [2, 58] have shown that 
proteins in a protein complex core tend to interact with each other, and the protein com-
plex core is generally highly co-expressed and has the same cellular localization. Thus, 

(1)TCSS(v,u) =
TCSSCC(v,u)+ TCSSBP(v,u)+ TCSSMF (v,u)

3
.

(2)WCC(pi) =
2× (v,u)∈LN (pi)

w(v,u)

|LN (pi)| × (|LN (pi)| − 1)
, pi ∈ V (G),
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this paper proposes a local protein complex core identification strategy to detect local 
protein complex cores. Here, for subcellular localization data, SLD, the proteins in the 
same protein complex tend to have the same subcellular localization term. Second, gene 
expression data, GED, are used to estimate proteins in the same protein complex core 
co-expression based on the person correlation coefficient.

Generally, the gene expression data can reflect the features of proteins in a biologi-
cal process under various conditions. However, for a protein, the fluctuation range of 
its expression is not the same. We normalize its expression value. As a result, its value is 
normalized using Eq. (3):

where Ti(v) represents the expression of protein v at the time point i, and max{T (v)} 
represents the maximum expression of protein v during the experimental procedure.

Furthermore, for a pair of proteins v and u in the PPI network, their gene expression 
profiles are denoted as v = {x1, x2, ..., xn} and u = {y1, y2, ..., yn} , respectively. Here, the 
person correlation coefficient is adopted to calculate their co-expression value CEV(v, u) 
[35], and its definition is shown in Eq. (4):

where x and y represent the average of the expression of the genes encoding proteins v 
and u in n time points. To ensure that the value of CEV(v, u) falls within [0,1], this paper 
replaces CEV(v, u) with CEV (v,u) = (CEV (v,u)+ 1)/2 . Hence, the higher the value of 
CEV(v, u), the more likely the proteins v and u to be co-expressed, and form the same 
protein complex.

According to weighted local clustering coefficient (Eq. (2)), subcellular localization 
data (two interacting proteins have the same subcellular localization term) and gene 
expression data and improved person correlation coefficient (Eq. (4)), we use them to 
identify local protein complex cores. Meanwhile, the MCL method is used to mine 
global protein complex cores. The pseudo-code of the mining protein complex cores is 
shown as Algorithm 2. First, the initial seeds are obtained, and then local protein com-
plex cores are detected (lines 1-7). To obtain the initial seeds, the weighted clustering 
coefficients of each protein are calculated based on Eq. (2). All proteins are sorted in 
descending order based on its WCC(pi) (lines 2-6). The top ratio % proteins in V(G) are 
selected as the initial seeds (line 7). For each protein s in InitialSeeds, if it is not visited, it 
is first initialized as a protein complex core, PCC. Meanwhile, it is marked and no longer 
used as a seed protein to form the protein complex core (lines 8-12). Second, the sub-
cellular location data of the seed protein s (SLD(s)) are obtained. The direct neighbors 
of the initial protein complex core PCC (Neighbor(PCC)) are determined (lines 13-14). 
Third, for each protein u ∈ Neighbor(PCC) , if the CEV(v, u) of the edge between the 
seed protein s and its neighbor u is larger than GCE, and the seed protein s and its neigh-
bor u have at least one common subcellular location term, the neighbor u is considered 
a part of the protein complex core PCC. It is added to the protein complex core PCC 
and marked (lines 15-23). Finally, if the protein complex core PCC is larger than two 

(3)T
′
i (v) =

Ti(v)

max{T (v)}
,

(4)CEV (v,u) =
∑n

i=1(xi − x)× (yi − y)
√

∑n
i=1(xi − x)2 ×

√

∑n
i=1(yi − y)2

,
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and does not exist in PCCs, it is saved (lines 24-26). The entire procedure terminates 
when no seed proteins need to be considered in InitialSeeds (lines 9-27). Then, the MCL 
method is employed, and its parameter inflate is set to detect global protein complex 
cores, MCLcluster (lines 28-29). MCL [11] is an iterative process that alternately applies 
two operations, i.e., expand and inflate, to mine global protein complex cores. Finally, 
local and global protein complex cores are combined, and redundant protein complexes 
are eliminated from protein complex cores, PCCs (lines 30-31). Note that Algorithm 2 
involves three parameters: GCE, inflate, and ratio. This paper uses the adaptive harmony 
search algorithm to set the parameters automatically, as shown in Algorithm 5 (see the 
MP-AHSA algorithm).

Fitness function

A fitness function needs to be defined to identify various topological properties of 
the protein complexes in the PPI network. A fitness function should combine mul-
tiple topological properties and compensate for the shortcomings of a single topo-
logical property to improve the quality of the identified protein complexes. This paper 
proposes a novel fitness function (Eq. (8)) by combining three topological properties 
including cohesiveness score (cohesiveness(C)), weighted density (density(C)), and the 
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average weighted modularity (awm(C)) to identify protein complexes. These topologi-
cal properties are defined in Eqs. (5-7):

Given the cluster, C = (VC ,EC ,WC) , where VC is the set of proteins in the cluster C, 
EC is the set of interactions in the cluster, and WC is the set of weights between the 
protein pair in the cluster. According to previous studies [19, 20], the cohesiveness 
score is defined in Eq. (5):

where Win(C) represents the sum of weights of all edges in the cluster C, and Wout(C) is 
the sum of weights of the edges connecting the inner proteins in C to other proteins in 
the rest of the PPI network.

According to the previously suggested hypotheses [8, 9], the higher the density of a 
cluster, the more likely cluster represents a protein complex. Thus, the weighted den-
sity of the cluster C is defined in Eq. (6):

where VC is the number of proteins in cluster C.
Some studies [36] have shown strong connections between the proteins in a protein 

complex but weak connections between the proteins outside of the protein complex. 
Thus, this paper proposes a new function called the average weighted modularity 
(awm). Awm could estimate that cluster C has a high average weight when connected 
but has a low average weight interaction with the rest of the network. awm is defined 
in Eq. (7):

The average inner edge weight ( AIEW (C) = Win(C)
|EC |  ) can estimate the reliability of the 

internal edges of the cluster C, where Win(C) represents the sum of the weights of the 
edges, and |EC | is the number of edges in cluster C. Meanwhile, the average border edge 
weight(ABEW (C) = Wout (C)

|BEC |  ) can measure the reliability of the border edges in cluster 
C, where |BEC | = {(u, v)|u ∈ C , v /∈ C} represents the number of border edges that con-
nect cluster C with the rest of the PPI network.

Taking these objective functions together, this paper proposes a fitness function 
(fitness(C)) that combines these single objective functions to evaluate the possibility that 
cluster C is a protein complex, as shown in Eq. (8):

Generally, a high-quality protein complex is a group of densely inter-connected but 
sparsely inter-connected with the rest of the PPI network. According to fitness(C), 
density(C) seeks a protein complex with a dense intra-connection. cohesiveness(C) and 
awm(C) can identify the protein complexes with densely interconnected nodes that are 
sparsely inter-connected to the rest of the PPI network. Therefore, this fitness function 
could detect various topological properties of protein complexes in PPI networks.

(5)cohesiveness(C) =
Win(C)

Win(C)+Wout(C)
,

(6)density(C) =
2×Win(C)

|VC | × (|VC | − 1)
,

(7)awm(C) =
AIEW (C)

AIEW (C)+ ABEW (C)
,

(8)fitness(C) = density(C)+ cohesiveness(C)+ awm(C).
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Forming protein complexes

After obtaining protein complex cores, the key is finding the attachment proteins 
required to form protein complexes that often surround the protein complex core. 
Attachment proteins are a functionally mixed group of proteins that assist the protein 
complex core in performing subordinate functions [6, 24, 36]. Meanwhile, attachment 
proteins directly and closely interact with their protein complex core. Additional file 13 
shows an example diagram to describe the Algorithm 3.

Given a protein complex core PCC in the PPI network, all its neighbor proteins can be 
considered potential attachment proteins, N(PCC). All its inner proteins are removed 
from the current protein complex core CPC. For an attachment protein v ∈ N (PCC) , 
this paper defines attachscore(v, PCC) between the potential attachment protein v and 
the protein complex core PCC in the PPI network according to Eq. (9).

where 
∑

v/∈PCC ,u∈PCC w(v,u) represents the sum weight of the potential attachment pro-
tein v that connects with the protein complex core PCC, and |PCC| is the number of 
proteins in the protein complex core PCC. Thus, attachscore(v, PCC) can effectively esti-
mate the interaction tightness between the potential attachment protein v and the pro-
tein complex core PCC in the PPI network.

The pseudo-code of the method for obtaining protein complexes is shown in 
Algorithm  3. For each protein complex core in Algorithm  3, the main operation is 
to iteratively add its neighbor nodes and delete its internal nodes to identify protein 
complexes. It includes two steps: Step 1 inserts neighbors into the current protein 
complex core (lines 5-16). Step 2 deletes inner nodes from the current protein com-
plex core (lines 17-27). Finally, because the diameter of protein complexes is 2, we set 
the termination condition of the above two-step iteration as that the iteration num-
ber is greater than or equal to 2 or the current protein complex is no longer changed 
(lines 3, 28-29). For current protein complex core, PCC (line 1), we first initialize a 
candidate protein complex CPC, the number of iterations count, and Iteration ter-
mination mark mark. Next, we form a candidate protein complex by detecting its 
attachment proteins based on attachscore(v, CPC) (Eq. (9)) and fitness(CPC) (Eq. (8)). 
The direct neighboring proteins of the protein complex core, N(CPC), are obtained 
(line 2). For example, we first do is that the attachment proteins are added into its 
protein complex core to form the protein complex. If the size of the protein com-
plex core N(CPC) is larger than or equal to 2 or adjust == 1 (line 7), for each poten-
tial attachment protein w ∈ N (CPC) , the potential attachment protein nodemax with 
the largest attachscore(w, CPC) with the protein complex core CPC is selected as a 
candidate attachment protein (line 8). Then, the fitness of CPC ∪ {nodemax} , and 
the fitness of CPC are calculated using Eq. (9), and if the potential attachment pro-
tein nodemax is inserted into CPC, and the fitness of current protein complex core 
can be increased. The potential attachment protein nodemax is inserted into CPC to 
increase the fitness(CPC) (Eq. (8)) of CPC (lines 11) and protein nodemax is removed 
from N(CPC). This process is performed iteratively, and once the new attachment 
protein nodemax is inserted into the protein complex core CPC, the protein complex 

(9)attachscore(v,PCC) =
∑

v/∈PCC ,u∈PCC w(v,u)

|PCC|
,
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core CPC is updated. That is, the neighbors of the new cluster CPC are re-con-
structed, and the potential attachment protein nodemax ∈ N (CPC) with the largest 
attachscore(v, CPC) and the neighbors of the new protein complex core CPC are re-
calculated. Also, the algorithm is redirected to the new protein complex core CPC 
(lines 8-15). Otherwise, this process is terminated (lines 13-15). Next, we obtain the 
inner nodes based on CPC, then we find the nodemin in I(CPC) having the minimum 
value of attachscore(v,CPC − {nodemin) according to Eq. (9) and calculate the fitness 
of CPC − {nodemin} and the fitness of CPC based on Eq. (8). If the inner node nodemin 
is deleted from current protein complex CPC can increase the fitness of CPC, and the 
inner node nodemin is removed from CPC. This process is performed iteratively until 
|I(CPC)| < 4 and adjust == 0. Steps 1 and 2 are executed circularly until the number 
of iterations exceeds two or the current protein complex is no longer changed (lines 
28-30). For the current protein complex core CPC, if its fitness(CPC) is larger than 0, 
and its size is larger than or equal to 3, the detected protein complex is inserted into 
identified protein complexes (CPCs) (lines 32-35). These steps are repeated until the 
protein complex cores (CPCs) are empty (lines 1-36). Considering that some protein 
complexes may be the same, this paper eliminates these redundant protein complexes 
(line 37). This way, the candidate protein complex set CPCs is generated (line 38).
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Filtering candidate protein complexes

Functional annotations are used to filter the detected protein complexes. The post-pro-
cessing subroutine for filtering identified protein complexes is shown in Algorithm  4. 
Based on functional annotations, for each candidate protein complex, CPC in the identi-
fied candidate protein complexes CPCs, a filtered protein complex FPC is first initial-
ized (line 1). Then the functional annotation term with the most common proteins in 
the candidate protein complex is determined, termmaxcommon (lines 3-4). Next, for each 
protein u in the candidate protein complex CPC, the set of functional annotation terms, 
i.e., FAT(u), is obtained (lines 5-6). If the protein u has termmaxcommon , the protein u is 
added to the filtered protein complex FPC (lines 7-9). This process is continued until 
all proteins in the detected candidate protein complex CPC are analyzed (lines 5-10). 
Furthermore, if the size of the filtered protein complex FPC is larger than or equal to 3, 
then FPC is kept (lines 11-13). As a result, the proteins in the filtered protein complex 
FPC have the same functional annotation term, which indicates whether the proteins in 
the filtered protein complex perform the same function. Finally, the redundant protein 
complexes in FPCs are eliminated (line 15).

MP‑AHSA algorithm

The MP algorithm has three parameters: the gene co-expression threshold (GCE), the 
inflating of the MCL algorithm (inflate), and the ratio of seed nodes (ratio), which is 
used in Algorithm  2. In this paper, we design the adaptive harmony search algorithm 
(AHSA) to obtains appropriate parameter settings for the MP algorithm.

The harmony search algorithm (HSA) [59] is a new intelligent optimization algorithm. 
It repeatedly adjusts the solution variables in the harmony memory and converges the 
objective function with increasing iterations. Compared with other intelligent optimiza-
tion algorithms, it has the following characteristics:

•	 It solves variables by harmony simulation without complex coding operations;
•	 In the HSA, the harmony population is small, which leads to fast operation speed 

and consumes less memory;



Page 15 of 32Wang et al. BMC Bioinformatics          (2022) 23:414 	

•	 The convergence and search speed of HSA do rely on have little relation with the ini-
tial state of the population, and the result is not affected by the initial state;

•	 Every harmony in the harmony library participates in variation, and a new harmony 
is generated by fully using the information in the harmony library.

Traditional HSA mainly have three parameters: HMCR, PAR, and FW. These parame-
ters are usually set as constants, but this suffers from slow convergence speed and low 
search accuracy. Therefore, we propose an adaptive harmony search algorithm (AHSA) 
to address this issue.

The improvements to the traditional harmony algorithm have two aspects. The 
main parameters of the AHSA algorithm are first introduced in Table 2. Meanwhile, 
according to the definition of these parameters in Table 3, HMCRi : The probability of 
taking a harmony from an existing harmony library, and it controls the global search 
capability. When the algorithm starts searching, the value of HMCRi is relatively 
small, and the parameter solution space is searched globally to obtain a better solu-
tion. As the number of iterations increases, the value of HMCRi gradually increases to 
reduce the possibility of a global search. It increases the local search’s possibility and 
makes the algorithm converge as quickly as possible. PARi : The probability of fine-
tuning the harmony obtained from the harmony library controls the probability of 
local search. If it is not set appropriately, it will affect the convergence speed of the 
algorithm. Note that when harmony reaches the neighborhood of the optimal solu-
tion with the increase of the number of iterations, PARi should be fine-tuned with a 
significant probability. When the fitness in the harmony memory is relatively close, 
PARi should be significant. FWi is the amplitude of pitch fine-tuning, correspond-
ing to the harmony algorithm’s search step. The harmony vector is scattered in the 

Table 2  Main parameters of AHSA

ID Parameters Abbreviation Parameter value range and setting

1 Harmony memory HMs 30

2 Harmony memory considering rate HMCR HMCRmax = 0.95,HMCRmin = 0.7

3 Pitch adjusting rate PAR PARmax = 0.5, PARmin = 0.1

4 Fret width FW FWmax = 0.1, FWmin = 0.01

5 The maximum number of iterations Maxiter 300

6 Gene co-expression threshold GCE GCEmin = 0.6,GCEmax = 0.9

7 The inflate of MCL Inflate inflatemin = 0.5, inflatemax = 4.0

8 The ratio of initial seeds Ratio ratiomin = 0.5, ratiomax = 0.9

Table 3  Main modifications of AHSA

i is the times of iteration

Parameters Adaptive adjustment

HMCRi HMCRi = HMCRmin + i/Maxiter ∗ (HMCRmax − HMCRmin)

PARi PARi = PARmax − i/Maxiter ∗ (PARmax − PARmin)

FWi FWi = FWmin + (FWmax − FWmin) ∗ ((fitnessmax − currentfitness)∗
(Maxiter − i)/((fitnessmax − fitnessmin) ∗Maxiter))
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solution space in the initial stage. A large adaptive is conducive to the global search 
of the algorithm, and the fitness variance of each harmony in the memory is slight, 
small adaptive step size is conducive to the local search of the algorithm. For the fine-
tuning step size problem, this paper uses the number of iterations and the fitness of 
the current harmony to adjust the parameter FWi . It can be ensured that the AHSA 
algorithm has strong adaptability and robustness. Second, a novel parameter adap-
tive adjustment strategy based on OFfitness and the iteration times i are designed to 
improve the searchability and robustness.

Finally, an optimized objective function is defined to guide the AHSA algorithm in 
searching for the best parameter value for the MP algorithm. We defined the sum 
of the fitness function of the detected protein complexes is defined as the objective 
function, as shown in Eq. (10):

where K is the number of identified protein complexes, and fitness(Ci) represents the 
fitness function of the ith identified protein complex ( Ci ). The higher the OFfitness of the 
identified protein complexes, the better the quality. Therefore, the parameter optimiza-
tion problem of the protein complex detection algorithm is transformed into a prob-
lem of finding the set of identified protein complexes with maximum OFfitness within PPI 
networks.

As a result, the main parameters of the MP algorithm include GCE, inflate, and ratio. 
In this paper, the AHSA algorithm is used to optimize the MP algorithm’s these param-
eters (hereafter referred to as the MP-AHSA algorithm). The overall MP-AHSA algo-
rithm is described in Algorithm 5. First, the basic parameters of the AHSA algorithm are 
set, shown in Table 3 (line 2). Then, the harmony memory HMs is initialized based on 
different parameters and their value ranges, as shown in Table 2 (line 3). Next, the best 
parameter settings of the MP algorithm are searched repeatedly by creating a new har-
mony or transforming a harmony from the generated harmony memory (HMs) based on 
OFfitness (lines 4-39). Here, two stages are involved. One selects harmony, and the other 
adjusts the parameters of the harmony based on the width of the fret FW. Additional 
file 14 shows the flow of the MP-AHSA algorithm to describe it.

In the stage of harmony selection, a variable R1 is randomly generated within 
[0,1], and it is compared with HMCRi based on Table 3 (lines 7-8). If R1 < HMCRi , 
a harmony HM is selected from the harmony memory (HMs) using the roulette 
wheel selection strategy (line 10). Otherwise, a new harmony is randomly generated 
according to the parameters and their value ranges in Table 2 (lines 11-17). Then, the 
maximum and minimum values of OFfitness in HMs are determined and recorded as 
fitnessmax and fitnessmin, respectively. Next, the value of FWi is calculated based on 
the number of iterations i, fitnessmax, and fitnessmin. If the harmony is obtained from 
the harmony memory (lines 10 and 20), a random number R2 between [0,1] is gener-
ated. The value of PARi is calculated (lines 21-22). If R2 < PAR , according to the fine-
tuning bandwidth FWi , the parameters of the harmony HM are adjusted to obtain a 
new harmony (lines 23-28).

(10)OFfitness =
K
∑

i=1

fitness(Ci),
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If R1 ≤ HMCRi , minor modifications are made to the parameters of the randomly gen-
erated harmony HMnew based on the fine-tuning bandwidth FWi (lines 29-34). Then, the 
OFfitness(HMnew) is calculated according to Eq. (8) (line 35). Suppose the OFfitness(HMnew) 
of the newly improvised harmony is better than the OFfitness(HMsmin) of the worst har-
mony in HMs. In that case, it is replaced to update the harmony memory HMs (line 36). 
Step 3 is repeated many times until a certain termination time Maxiter is satisfied (lines 
6-39).

Finally, in step 4, according to the OFfitness in Eq. (10), the highest fitness harmony 
in the harmony memory HMs is obtained. It is considered the best clustering output 
( HMsbest ), and its parameters are appropriate for the input PPI network of the MP algo-
rithm. At this time, this harmony is the identified protein complexes (IPCs)(lines 40-42).
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Results
Datasets

In this study, three PPI networks are used to conduct the verification experiments: the 
Collins [60], the Gavin [43], the Krogan [61], String(Saccharomyces cerevisiae, and inter-
action score ≥ 997 . It can be downloaded from https://cn.string-db.org/cgi/download?s
essionId=bjRXzv9e247w), DIP(yeast, and the release date 2015/07/01) [62], and Biogrid 
(Saccharomyces cerevisiae and these interactions are obtained using different methods 
from 2020 to 2022 years)) [63] datasets. The detailed properties of these PPI datasets are 
shown in Table 4. Here, the self-interactions and duplicate interactions are eliminated. If 
you want to obtain these datasets, please see the Additional files 1, 2, 3, 4, 5, 6 in Supple-
mentary Information.

We used two standard protein complexes of the yeast Saccharomyces cerevisiae (SGD) 
taken from the literature [36]. The properties of these known protein complexes are 
shown in Table  5. Standard protein complexes 1 consists of the known protein com-
plexes from MIPS [64], SGD [65], TAP06 [43], ALOY [66], CYC2008 [16], and NEW-
MIPS [67]. Standard protein complexes 2 is also a combined protein complex dataset 
[68], and it consists of the Wodak database, PINdb and GO complexes [68]. If you want 
to obtain the two standard protein complexes, please see the Additional files 10, 11  in 
Supplementary Information.

In this study, GO-slim data (available at https://downlo ads.yeastgenome.org) are used 
to describe the functional similarity of the interactions. Gene expression data is obtained 
from https://www.ncbi.nlm.nih.gov/sites/GDSbrowser. In addition, subcellular localiza-
tion data is obtained from https://compartments.jensenlab.org/Dow nloads. If you want 
to obtain the these biological data, please see the Additional files 7, 8, 9 in Supplemen-
tary Information. The stand-alone code of the MP-AHSA algorithm and the datasets are 
available at: https://github.com/RongquanWang/MP-AHSA.

Evaluation metrics

In the present study, F-measure, accuracy (ACC), maximum matching ratio (MMR), Jac-
card, and total score are used as the computational evaluation metrics to evaluate the 
performance of protein complex detection algorithms, with S and D denoting the known 
and identified protein complexes by a detection method, respectively.

Neighborhood affinity

Si represents a standard protein complex in S, and Dj is a discovered protein complex D. 
Thus, their neighborhood affinity score ( NA(Si,Dj) ) [69] describes the similarity of two 
protein complexes Si and Dj as defined by Eq. (11):

Generally, if NA(Si,Dj) is larger than or equal to 0.2, the protein complexes Si and Dj are 
regarded as matching [6].

(11)NA(Si,Dj) =
|Si ∩ Dj|2

|Si| × |Dj|
,
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F‑measure

With Nsm representing the number of standard protein complexes that match at 
least one detected protein complex, that is, Nsm = |{s|s ∈ S, ∃d ∈ D,NA(s, d) ≥ ω}| , 
and with Nim being the number of detected protein complexes that match at least 
one standard protein complex, that is, Nim = |{d|d ∈ D, ∃s ∈ S,NA(d, s) ≥ ω}| , where 
ω is a pre-defined threshold and is usually set as 0.20; then, recall and precision are 
defined as recall = Nsm

|S|  and precision = Nim
|D|  , respectively. Finally, the F-measure is rep-

resented by the compromise between precision and recall, as defined by Eq. (12):

ACC​

Tij is the number of proteins. These proteins are included in the standard protein 
complex Si and the detected protein complex Dj . Then, Sn and PPV are calculated by 

Sn =
∑|S|

i=1
max

|I |
j=1 {Tij}

∑|S|
i=1

Ni

 and PPV =
∑|D|

j=1
max

|S|
i=1 {Tij}

∑|D|
j=1

∑|S|
i=1

Tij

 , respectively. As a result, ACC is 

defined by Eq. (13):

MMR

The third metric is the MMR [19], which is based on a maximal one-to-one map-
ping between standard and detected protein complexes. First, each standard protein 
complex Si ∈ S and detected protein complex Dj ∈ D are connected by the weight 
NA(Si,Dj) edge. The MMR is represented as the sum of the weight of all selected 
edges divided by |S|, as denoted by Eq. (14):

(12)F −measure =
2× precision× recall

precision+ recall
.

(13)ACC =
√
Sn× PPV .

Table 4  Detailed properties of the experimental PPI networks used in the study

Dataset Nodes Edges Density

Collins 1622 9074 0.006902317076

Gavin 1855 7669 0.004459796985

Krogan 2674 7075 0.001979684934

String 1366 5071 0.005439265468

DIP 4696 21822 0.001979524413

Biogrid 4093 13178 0.001573628198

Table 5  Properties of the standard protein complexes used in the study

AS: average size of the protein complexes; Num: number of protein complexes; PC: number of proteins

Datasets Num PC AS

standard protein complexes 1 812 2773 8.92

standard protein complexes 2 1045 2778 8.97
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Fraction

The fraction criterion [19] is an indicator for identification coverage, which measures 
the percentage of standard protein complexes matched by detected protein com-
plexes. With S representing the set of standard protein complexes and D being the set 
of identified protein complexes, the fraction is defined by Eq. (15):

The fraction of gold standard complexes matches at least one detected protein complex. 
The threshold ω is set to 0.25, which guarantees that at least half of proteins in a matched 
standard protein complex are distinguished by at least half of the proteins in a matched 
detected protein complex.

Jaccard

Jaccard is the final category for measuring the clustering methods. Herein, the Jaccard of 
a standard protein complex Si ∈ S and a discovered protein complex Dj ∈ D was defined 
as Jac(Si,Dj) =

|Si∩Dj |
|Si∪Dj | . For a discovered protein complex Dj , its Jaccard is 

Jac(Dj) = maxSi∈SJac(Di, Si) , and for a standard protein complex Si , its Jaccard is 
Jac(Si) = maxDj∈DJac(Si,Dj) . Then, for detected protein complexes D, its average of the 
weighted Jaccard is JaccardD =

∑

Dj∈D |Dj |Jac(Dj)
∑

Dj∈D |Dj |  . Similarly, for the standard protein com-

plexes S, its JaccardS is defined by JaccardS =
∑

Si∈S |Si|Jac(Si)
∑

Si∈S |Si|
 . Finally, the Jaccard is calcu-

lated by Eq. (16):

Total score

To simultaneously consider F-measure, ACC, MMR, Frac, and Jaccard, we use the com-
prehensive score (total score), given by Eq. (17), to measure the performance of various 
methods [36].

Comparison with competing methods

To demonstrate the performance of MP-AHSA, we compared it with 14 state-of-the-art 
protein complex identification methods using the Collins [60], Gavin [43], Krogan core 
[61] String, DIP [62], and Biogrid [63] datasets. The competing methods used were MCL 
[11], IPCA [8], COACH [16], CMC [15], ClusterONE [19], PEWCC [23], WPNCA [17], 

(14)MMR =

∑|S|
i=1

max
j

NA(Si,Dj)

|S|
.

(15)
Ns = |s|s ∈ S, ∃d ∈ D,NA(d, s) ≥ w|,
Frac = Ns

|S| .

(16)Jaccard =
2× (JaccardD × JaccardS)

JaccardD + JaccardS
.

(17)total score = F −measure + ACC +MMR+ Frac + Jaccard.
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WEC [27], ClusterEPs [37], ClusterSS [38], SE-DMTG [20], MPC-C [36] and GCC-v 
[25]. Generally, it has been found that the author-suggested parameter settings generate 
the best results. The values of the parameters used in the different methods are shown in 
Table 6.

Figures 3, 4 and 5 show the comparison results of 14 competing methods concern-
ing six evaluation metrics (F-measure, ACC, MMR, Frac, Jaccard, and total score). 
As shown in Figure  3, according to the standard protein complexes 1, MP-AHSA 
achieves the best results on the F-measure, MMR, and total score statistics. MCL 
obtains the highest ACC in all PPI datasets. In contrast, MP-AHSA ranks fifth con-
cerning ACC on the Collins dataset, which is lower than the MCL outcome. Mean-
while, PEWCC achieves the best score Frac, and SE-DMTG achieves the highest 
Jaccard. In contrast, MP-AHSA ranks second and third in terms of Frac and Jaccard, 
respectively. Meanwhile, when standard protein complexes 2 is used as known pro-
tein complexes, MP-AHSA achieves the best performance for MMR and Frac except 
for ACC, Jaccard, and total score metrics in the Collins dataset. In the Gavin dataset 
is shown in Figure 4, using standard protein complexes 1 as real protein complexes, 
PEWCC has a total score value of 2.4973, ranking first among all methods. However, 
it identifies 664 protein complexes, far more than the number of protein complexes 
our MP-AHSA recognizes. Moreover, MP-AHSA ranks second concerning the 
F-measure metric. SE-DMTG obtains the highest Jaccard. When using the standard 
protein complexes 2, MP-AHSA ranks second in F-measure, second for MMR, sec-
ond for Jaccard, and second for the ACC statistic. Noteworthily, it achieves the best 
results on the Frac and total score statistics. In the Krogan core dataset is shown in 
Figure 5, MP-AHSA achieves the best results regarding the MMR, Frac, Jaccard, and 
total score static, ranking third on the F-measure statistic in standard protein com-
plexes 1. Furthermore, in standard protein complexes 2, the MP-AHSA algorithm 
shows the best performance concerning F-measure, MMR, Frac, Jaccard, and total 
score. It reaches the third-highest level in terms of ACC metrics.

To further verify the performance of our algorithm, we also use three new PPI net-
works to evaluate these identification algorithms. The evaluation results are shown 
in Additional files 15, 16, and 17. From the experimental results, we can see that the 
performance of our algorithm on these datasets is consistent with the performance 
of the Collins, Gavin, and Krogan datasets. These experimental results show that the 
MP-AHSA algorithm has strong adaptability and stability to different PPI networks 
from different datasets.

Altogether, these comparative experimental results show that the MP-AHSA can 
achieve a higher total score than all the compared methods in most datasets. Accord-
ing to the above-described analysis, multiple PPI datasets and standard protein com-
plexes are used. The MP-AHSA algorithm consistently achieves superior results in 
most evaluation metrics.

Case study

In this study, we provide an example of the 148th protein complex comprising 6 proteins 
in standard protein complexes 1 to show the performance of the described approach. 
Figure 6 shows the results of different methods used for identifying the protein complex 
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in the Gavin dataset. We define an output format to assist the readers in a more straight-
forward assessment of the information. For example, MP-AHSA-0.83-5 means that the 
neighborhood affinity Eq. (11) between our algorithm and the 148th protein complex is 
0.83 and that our algorithm contains 5 proteins.

As shown in Figure 6, our method achieves the highest ratio of proteins in the 148th 
protein complex. Specifically, only MP-AHSA covers the 5 standard proteins and misses 
one standard protein. ClusterONE, ClusterSS, ClusterEPs, COACH, IPCA, MCL, MPC-
C, GCC-v, PEWCC, SE-DMTG, WEC, and WPNCA all miss a standard protein. Moreo-
ver, ClusterONE, ClusterSS, CMC, ClusterEPs, COACH, IPCA, MCL, GCC-v, PEWCC, 
SE-DMTG, SPICi, WEC, and WPNCA only covered part of the standard proteins and 
detected some false-positive proteins. In conclusion, our algorithm only misses a standard 
protein to the 148th standard protein complex and shows the best predictive performance.

Discussion
Functional enrichment analysis

Additionally, we also use the proportion of biologically significant protein complexes 
to evaluate the detected protein complexes. The p-value of a protein complex C with 
respect to a functional group F is denoted by Eq. (18):

(18)p− value = 1−
k−1
∑

i=0

(

|F |
i

)(

|V | − |F |
|C| − i

)

(

|V |
|C|

) ,

Table 6  Parameters of each method used in the study

ID Year Algorithm Parameters

1 2004 MCL inflation=2

2 2008 IPCA S=3,P=2,Tin = 0.6

3 2008 COACH w=0.225

4 2009 CMC min_deg_ratio=1,min_size=3, overlap_thres=0.5,mergethres=0.25

5 2010 SPICi Graph mode=0,minimum support threshold= 0.5, minimum cluster size= 3, minimum 
density threshold=0.5

6 2012 ClusterONE Density=auto,Overlap threshold=0.8

7 2013 PEWCC​ Overlap=0.8,-r=0.1,Re-join=0.3

8 2015 WPNCA lambda=0.3,minimum cluster size=3

9 2016 WEC Balance factor ( �)=0.8,Edge weight ( Tw)=0.7,Enrichment(Te)=0.8, Filtering(Tf )=0.9

10 2018 ClusterEPs NEPs of Complexes(minimum support threshold=0.4,maximum support thresh-
old=0.05);
NEPs of non-complexes(maximum support threshold=0.05, minimum support thresh-
old=0.4)
;maximum overlap=0.9,Maximum size of clusters=100

11 2018 ClusterSS numEpochs = 500,learnRate =0.2,thresholdIn=1.0,thresholdOut=1.02,
negativeTime=20, minimum cluster size=3

12 2019 SE-DMTG minimum cluster size=3

13 2020 MPC-C Overlap threshold=0.8,minimum cluster size=3

14 2021 GCC-v Minimum cluster size=3



Page 23 of 32Wang et al. BMC Bioinformatics          (2022) 23:414 	

where k represents the number of proteins covered in C and F, and V represents the 
set of proteins in a PPI network. If the smallest p-value of C concerning all functional 
groups is smaller than 0.01, the detected protein complex C was regarded as biologi-
cally significant. Herein, we use the fast tool LAGO [70] to compute the p-value of the 
detected protein complexes.

Fig. 3  Comparative analysis of identified protein complexes from different approaches in Collins PPI network 
and two standard protein complexes. The comparative analyses are based on a total score that is a sum of 
ACC, F-measure, MMR, Frac, and Jaccard (see Evaluation metrics)
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Comparison with functional enrichment

To further estimate the effectiveness of the MP-AHSA algorithm, we investigate the 
biological significance of the identified protein complexes. Here, each protein complex 
is identified by the various methods associated with a p-value for GO annotation. The 
percentage of biological significant protein complexes detected by different methods is 

Fig. 4  Comparative analysis of identified protein complexes from different approaches in Gavin PPI network 
and two standard protein complexes. The comparative analyses are based on a total score that is a sum of 
ACC, F-measure, MMR, Frac, and Jaccard (see Evaluation metrics)
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shown in Table 7 and Additional file 18. Herein, the number and percentage of the iden-
tified complexes, for which p-value was in the range of ≤E-20, [E-20, E-15), [E-15, E-10), 
[E-10, E-5), [E-5, 0.01), ≤0.01, are listed in Table 7 and Additional file 18.

As Table 7 shows, in the Collins dataset, our MP-AHSA achieves second in the per-
centage of biologically significant protein complexes, reaching 97.1% , which is lower 

Fig. 5  Comparative analysis of identified protein complexes from different approaches in Krogan PPI 
network and two standard protein complexes. The comparative analyses are based on a total score that is a 
sum of ACC, F-measure, MMR, Frac, and Jaccard (see Evaluation metrics)
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Fig. 6  The 390th protein complex in standard protein complexes 1 detected by different methods based on 
the Gavin dataset. True positive, false-positive, and false-negative proteins are shown in red, blue, and yellow, 
respectively
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Table 7  Functional enrichment analysis of protein complexes detected by different methods in 
Collins, Gavin and Krogan datasets

Method <(E−20) [E-20,E-15) [E-15,E-10) [E-10,E-5) [E-5,0.01) � 0.01

Collins dataset

MCL 62(39.24%) 9(5.7%) 25(15.82%) 40(25.32%) 4(2.53%) 140(88.61%)

IPCA 108(31.58%) 37(10.82%) 63(18.42%) 97(28.36%) 16(4.68%) 321(93.86%)

COACH 64(25.5%) 22(8.76%) 39(15.54%) 80(31.87%) 14(5.58%) 219(87.25%)

CMC 54(30.51%) 17(9.6%) 22(12.43%) 63(35.59%) 8(4.52%) 164(92.66%)

SPICi 62(51.24%) 10(8.26%) 19(15.7%) 25(20.66%) 3(2.48%) 119(98.35%)1st

ClusterONE 47(23.15%) 19(9.36%) 45(22.17%) 61(30.05%) 11(5.42%) 183(90.15%)

PEWCC​ 128(30.05%) 21(4.93%) 104(24.41%) 120(28.17%) 18(4.23%) 391(91.78%)

WPNCA 90(33.46%) 33(12.27%) 61(22.68%) 52(19.33%) 7(2.6%) 243(90.33%)

WEC 394(40.74%) 81(8.38%) 174(17.99%) 261(26.99%) 23(2.38%) 933(96.48%)

ClusterEPs 4(0.68%) 13(2.21%) 95(16.18%) 350(59.63%) 74(12.61%) 536(91.31%)

ClusterSS 22(10.05%) 19(8.68%) 48(21.92%) 93(42.47%) 18(8.22%) 200(91.32%)

28(12.96%) 25(11.57%) 45(20.83%) 85(39.35%) 19(8.8%) 202(93.52%)

SE-DMTG 58(34.73%) 22(13.17%) 29(17.37%) 46(27.54%) 6(3.59%) 161(96.41%)

MPC-C 75(27.37%) 35(12.77%) 49(17.88%) 86(31.39%) 10(3.65%) 255(93.07%)

GCC-v 11(5.16%) 19(8.92%) 28(13.15%) 107(50.23%) 29(13.62%) 194(91.08%)

MP-AHSA 75(27.17%) 36(13.04%) 48(17.39%) 94(34.06%) 15(5.43%) 268(97.1%)2nd

Gavin dataset

MCL 24(10.91%) 22(10.0%) 35(15.91%) 72(32.73%) 22(10.0%) 175(79.55%)

IPCA 121(26.08%) 58(12.5%) 70(15.09%) 106(22.84%) 41(8.84%) 396(85.34%)

COACH 124(34.35%) 34(9.42%) 52(14.4%) 83(22.99%) 18(4.99%) 311(86.15%)

CMC 71(24.15%) 15(5.1%) 40(13.61%) 76(25.85%) 21(7.14%) 223(75.85%)

SPICi 47(24.87%) 15(7.94%) 30(15.87%) 54(28.57%) 17(8.99%) 163(86.24%)

ClusterONE 52(20.16%) 11(4.26%) 36(13.95%) 78(30.23%) 20(7.75%) 197(76.36%)

PEWCC​ 76(11.45%) 51(7.68%) 108(16.27%) 224(33.73%) 77(11.6%) 536(80.72%)

WPNCA 128(26.45%) 32(6.61%) 100(20.66%) 158(32.64%) 19(3.93%) 437(90.29%)

WEC 261(28.87%) 82(9.07%) 151(16.7%) 234(25.88%) 66(7.3%) 794(87.83%)

ClusterEPs 74(27.31%) 35(12.92%) 47(17.34%) 62(22.88%) 22(8.12%) 240(88.56%)

ClusterSS 27(6.47%) 24(5.76%) 57(13.67%) 178(42.69%) 50(11.99%) 336(80.58%)

30(7.59%) 21(5.32%) 68(17.22%) 165(41.77%) 42(10.63%) 326(82.53%)

SE-DMTG 82(35.65%) 35(15.22%) 38(16.52%) 48(20.87%) 13(5.65%) 216(93.91%)2nd

MPC-C 124(31.16%) 38(9.55%) 58(14.57%) 152(38.19%) 10(2.51%) 382(95.98%)1st

GCC-v 13(4.45%) 15(5.14%) 27(9.25%) 101(34.59%) 44(15.07%) 200(68.49%)

MP-AHSA 100(27.17%) 30(8.15%) 58(15.76%) 125(33.97%) 32(8.7%) 345(93.75%)

Krogan dataset

MCL 31(8.38%) 23(6.22%) 40(10.81%) 118(31.89%) 31(8.38%) 243(65.68%)

IPCA 101(17.35%) 70(12.03%) 90(15.46%) 218(37.46%) 39(6.7%) 518(89.0%)

COACH 68(19.71%) 33(9.57%) 53(15.36%) 118(34.2%) 27(7.83%) 299(86.67%)

CMC 36(13.64%) 19(7.2%) 38(14.39%) 92(34.85%) 21(7.95%) 206(78.03%)

SPICi 10(4.46%) 17(7.59%) 42(18.75%) 68(30.36%) 25(11.16%) 162(72.32%)

ClusterONE 34(14.17%) 16(6.67%) 34(14.17%) 109(45.42%) 14(5.83%) 207(86.25%)

PEWCC​ 146(37.53%) 50(12.85%) 71(18.25%) 95(24.42%) 16(4.11%) 378(97.17%)1st

WPNCA 106(28.73%) 52(14.09%) 61(16.53%) 114(30.89%) 17(4.61%) 350(94.85%)

WEC 171(33.14%) 64(12.4%) 88(17.05%) 141(27.33%) 19(3.68%) 483(93.6%)

ClusterEPs 53(12.93%) 32(7.8%) 57(13.9%) 237(57.8%) 14(3.41%) 393(95.85%)

ClusterSS 35(7.73%) 33(7.28%) 50(11.04%) 188(41.5%) 34(7.51%) 340(75.06%)

42(17.43%) 33(13.69%) 43(17.84%) 92(38.17%) 12(4.98%) 222(92.12%)

SE-DMTG 33(9.14%) 33(9.14%) 69(19.11%) 173(47.92%) 23(6.37%) 331(91.69%)

MPC-C 93(20.39%) 70(15.35%) 110(24.12%) 160(35.09%) 7(1.54%) 440(96.49%)2nd

GCC-v 11(3.53%) 9(2.88%) 28(8.97%) 148(47.44%) 29(9.29%) 225(72.12%)

MP-AHSA 75(14.71%) 35(6.86%) 90(17.65%) 232(45.49%) 27(5.29%) 459(90.0%)
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than that of the SPICi method. However, SPICi only detected 121 protein complexes, 
which is also why it can get a higher percentage of biologically significant protein com-
plexes than the output of MP-AHSA. In the Gavin dataset, MPC-C achieves the best 
percentage of biologically significant protein complexes, which is better than MP-AHSA 
based on Table 7. In the Krogan dataset, PEWCC achieves the best percentage of bio-
logically significant protein complexes. It outperforms our MP-AHSA algorithm. Two 
reasons are: (1) MP-AHSA predicted more detected protein complexes than PEWCC, 
and (2) the average size of the detected protein complexes identified by PEWCC is more 
significant than that of MP-AHSA. In particular, the average size of the detected protein 
complexes predicted by PEWCC and MP-AHSA is 10.28 and 6.6, respectively. In con-
trast, the average size of standard protein complexes is minimal [20]. Note that as the 
p-value of an identified protein complex is closely associated with the size, the p-value 
gradually decreases as the size of the detected protein complexes increases [16, 17, 20].

Meanwhile, we also calculate the p-value of three new PPI networks to obtain func-
tional enrichment analysis to measure the biologically significant of identified protein 
complexes by different algorithms. The evaluation results are shown in Additional 
file 18. From the experimental results, we can see that the performance of our algorithm 
on these datasets is the best in all protein complex detection methods. These experimen-
tal results illustrate that the MP-AHSA algorithm can identify biological protein com-
plexes, and our method has strong stability in different PPI networks.

In conclusion, MP-AHSA can identify more protein complexes with significant GO 
terms. Although some of those identified protein complexes are not known, they are 
more likely to be experimentally verified as factual protein complexes by biologists. 
Therefore, based on the p-value results, the MP-AHSA algorithm can effectively detect 
biologically meaningful protein complexes.

Conclusions
Detection of protein complexes is essential to understanding cellular mechanisms. In 
this study, the MP-AHSA algorithm is proposed to identify protein complexes. First, a 
weighted PPI network is designed using the TCSS method based on functional annota-
tions. Then, local protein complex cores are identified based on co-subcellular locali-
zation and gene co-expression datas. Global protein complex cores are detected using 
the MCL method. Second, a new fitness function is defined to guide mining attachment 
proteins. Third, all candidate protein complexes are filtered to obtain the filtered pro-
tein complexes. Finally, the AHSA algorithm is used to determine the parameter set-
tings of the MP algorithm based on the input PPI network. The experimental results on 
widely used PPI networks indicate that the MP-AHSA algorithm outperforms 14 com-
peting methods and can effectively detect biologically meaningful protein complexes. In 
the future, advanced machine learning techniques, such as ensemble learning and graph 
attention networks will be applied to this field.

Table 7  (continued)
The highest score of each row are shown in bold
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TAP-MS	� Tandem affinity purification with mass spectrometry
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CC	� Cellular component
BP	� Biological process
MP	� Molecular function
SLD	� Subcellular localization data
GED	� Gene expression data
HSA	� Harmony search algorithm
GCE	� Gene co-expression threshold
inflate	� The inflate of the MCL algorithm
ratio	� The ratio of seed nodes
HMs	� Harmony memory
HMCR	� Harmony memory considering rate
PAR	� Pitch adjusting rate
FW	� Fret width
Maxiter	� The maximum number of iterations
ACC​	� Accuracy
MMR	� Maximum matching ratio
Frac	� Fraction
total score	� The composite score of F-measure, ACC, MMR, Frac and Jaccard
Num	� Number of protein complexes
AS	� Average size of the protein complexes
PC	� Number of proteins.
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