RESEARCH

Open Access

Check for updates

Detecting protein complexes with multiple properties by an adaptive harmony search algorithm

Rongquan Wang^{1†}, Caixia Wang^{2†} and Huimin Ma^{1*†}

[†]Rongquan Wang, Caixia Wang and Huimin Ma have equally contributed

*Correspondence: mhmpub@ustb.edu.cn

 ¹ School of Computer and Communication
 Engineering, University of Science and Technology
 Beijing, No. 30 Xueyuan Road,
 Haidian District, Beijing 100083,
 China
 ² School of International
 Economics, China Foreign Affairs
 University, 24 Zhanlanguan Road,
 Xicheng District, Beijing 100037,
 China

Abstract

Background: Accurate identification of protein complexes in protein-protein interaction (PPI) networks is crucial for understanding the principles of cellular organization. Most computational methods ignore the fact that proteins in a protein complex have a functional similarity and are co-localized and co-expressed at the same place and time, respectively. Meanwhile, the parameters of the current methods are specified by users, so these methods cannot effectively deal with different input PPI networks.

Result: To address these issues, this study proposes a new method called MP-AHSA to detect protein complexes with Multiple Properties (MP), and an Adaptation Harmony Search Algorithm is developed to optimize the parameters of the MP algorithm. First, a weighted PPI network is constructed using functional annotations, and multiple biological properties and the Markov cluster algorithm (MCL) are used to mine protein complex cores. Then, a fitness function is defined, and a protein complex forming strategy is designed to detect attachment proteins and form protein complexes. Next, a protein complex filtering strategy is formulated to filter out the protein complexes. Finally, an adaptation harmony search algorithm is developed to determine the MP algorithm's parameters automatically.

Conclusions: Experimental results show that the proposed MP-AHSA method outperforms 14 state-of-the-art methods for identifying protein complexes. Also, the functional enrichment analyses reveal that the protein complexes identified by the MP-AHSA algorithm have significant biological relevance.

Keywords: Protein-protein interaction network, Protein complex, Multiple properties, Core-attachment structure, Fitness function, Adaptation harmony search algorithm

Background

Upon completing the human genome project, proteomics has become the focus in the post-genomic era. Proteins do not function only as single units. Instead, they form protein-protein interaction (PPI) networks and/or functional protein complexes [1]. Since most biological cellular processes are performed by protein complexes [2], identifying these operating units is an essential step for studying cells. Many experimental methods that can produce high-throughput PPI data have been proposed to identify protein

© The Author(s) 2022. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creativecommons.org/licenses/by/40/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/public cdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

complexes within living cells, e.g., tandem affinity purification with mass spectrometry (TAP-MS) [3]. However, the existing experimental methods are expensive and time-consuming and may result in false-positive, or false-negative results [4].

Genome-scale PPI data can be obtained through high-throughput approaches, such as yeast-two-hybrid [5]. These PPI data can be formulated as an undirected graph in which the nodes and edges correspond to proteins and pairwise interactions. Meanwhile, most proteins are highly interactive with proteins in the same protein complex, which allows them to perform biological functions. Hence, the dense region in a PPI network can be identified as a protein complex. Thus, detecting protein complexes is similar to identifying communities in complex networks [6]. Based on this, the problem of identifying protein complexes is usually transformed into the issue of soft graph clustering. Figure 1 shows the detection process of protein complexes from a PPI network.

Related work

Over the past decade, various computational methods have been proposed to identify protein complexes in PPI networks automatically [7]. Among them, IPCA [8], and SPICi [9] identify local dense subgraphs as local protein complexes instead of globally clustering a network based on different network properties and concepts [10]. By contrast, other methods, such as MCL [11], and RRW [12], apply random walks, which is a classic global protein complex identification approach. These methods mine global protein complexes by manipulating the network nodes' transition probabilities or stochastic flows. In particular, RNSC [13] identifies global protein complexes by efficiently separating networks into clusters using a cost function. To detect sparse protein complexes, PC2P [14] has been proposed to mine protein complexes as biclique spanned subgraphs (including both sparse and dense subgraphs) using the network partitioning method. Besides, other methods such as CMC [15] identify protein complexes by merging, mixing, or deleting different types of cliques or k-cores, COACH [16] and WPNCA [17] take the core-attachment structure into account to detect protein complexes. In addition, some methods, such as OH-PIN [18], detect protein complexes using hierarchical

Fig. 1 The detection process of protein complexes from a protein-protein interaction (PPI) network

clustering algorithms based on similarity or distance. Moreover, several methods, such as ClusterONE [19], and SE-DMTG [20], start from a protein or edge and expand it using a greedy algorithm for detecting protein complexes. Recently, with the increasing research on swarm intelligence optimization algorithms, many study methods have transformed the protein complex identification into an optimization problem [21, 22]. However, these methods have two limitations: they only identify protein complexes with a single topological structure, and they cannot automatically and correctly set the input parameters of the algorithm according to different input datasets.

High-throughput experiment-derived PPIs may have false-positive or false-negative results, significantly affecting protein complex identification. Therefore, some computational methods, such as PEWCC [23] and EWCA [24], have been developed to improve the accuracy of protein complex identification by using the topology of PPI networks. Meanwhile, to reduce the effect of both false-positive and false-negative interactions on the performance of protein complex detection methods, GCC-v [25] and CUBCO [26] are designed to predict protein complexes by scoring and incorporating missing interactions. Experiment results show their performance outperformed other state-of-the-art approaches across different species.

Furthermore, some other methods attempt to integrate biological properties. For instance, WEC [27] uses gene expression data to detect highly interconnected and coexpressed protein complexes, whereas CPredictor5.0 [28] integrates gene ontology (GO) data and topological information of PPIs. Some methods [29, 30] use subcellular localization data to identify protein complexes. Recently, idenPC-MIIP [31] has been proposed to identify protein complexes based on the relationship of important mutually-interacting partners. Additionally, Wu et al. [32] developed idenPC-CAP to identify protein complexes from RNA-protein heterogeneous interaction networks. Most of the above methods cannot reflect the dynamic characteristic of protein complexes [33] because the PPI network will change over time and depends on its surrounding conditions. Therefore, current methods have considered dynamic cellular systems to create dynamic PPIs by using time-course gene expression data [34]. For example, based on the 3-sigma principle, some methods [35, 36] identify the active points of a protein in a time-serial gene expression data and to generate a series of time-sequenced subnetworks for identifying dynamic protein complexes. However, these methods usually identify many small false-positive protein complexes. In summary, using different types of biological properties or data to compensate for the PPI networks can improve the accuracy of PPI network-based detection of protein complexes.

In recent years, some supervised learning methods have been developed, including ClusterEPs [37] and ClusterSS [38], to identify protein complexes by using the properties of known protein complexes. In 2021, Zaki et al. [39] introduced graph convolutional network approaches to improve the ability to detect protein complexes. Mei et al. [40] proposed a computational framework that combines supervised learning and dense subgraph to predict protein complexes. Furthermore, Liu et al. [41] proposed a new algorithm based on a semi-supervised model to identify significant protein complexes with clear module structures. Additionally, ELF-DPC [42] is an ensemble learning framework for detecting protein complexes based on structural modularity and a trained voting regressor model. However, the performance of these methods is limited by the training data size. With more known protein complexes available, detecting protein complexes by supervised learning methods will be further explored.

Motivation

Some researchers have illustrated that a protein complex with a core-attachment structure consists of two parts: a protein complex core and attachment proteins [43]. Various methods based on core-attachment structure have proposed to detect protein complexes, such as MCL-CA [44], CACHET [45], COACH [16], Ma [46], WPNCA [17]. However, these methods ignore that the core proteins in the protein complex core are often co-localized, co-expressed, and have similar functions [30, 47], form the main functional part of the protein complex. Meanwhile, attachment proteins bind to the proteins of the protein complex core, helping to perform their functions. Current studies [7] classify protein complexes into global [11, 13] and local protein complexes [8, 20]. Local protein complexes are protein complexes by local-cluster-quality-based methods, and these methods identify local clusters with optimal local cluster quality in a seed growth manner. Meanwhile, global protein complexes are protein complexes by globalcluster-quality-based methods, and they search for an optimal clustering result with the best global-cluster-quality function value. This paper designs a local protein complex core detection strategy to mine local protein complex cores and form local protein complexes. The MCL method identifies global protein complex cores and forms global protein complexes.

However, protein complexes include both global and local protein complexes. Moreover, although various definitions of protein complexes have been proposed, most only consider single properties. Thus, a novel structural description of protein complexes considering multiple topological properties is urgently needed. Additionally, most protein complex detection methods have a common disadvantage: their parameters are specified by users, making it difficult to deal with various PPI networks effectively. In recent years, the harmony search algorithm has paid much attention in the fields of bio-informatics, such as the detection of high-order SNP epistasis and protein interactions [48], combinations, and epistasis [49–51], etc. Therefore, the improved harmony search algorithm is used to determine the parameters of the protein complex detection method in this paper. This paper will study and address the above issues.

Our work

To overcome the disadvantages of existing methods, this paper proposes a novel approach called MP-AHSA, which combines the MP algorithm and an adaptation harmony search algorithm (AHSA) to automatically determine the parameters of the MP algorithm for the input of different PPI networks. The MP algorithm is based on the core-attachment structure and multiple properties, and it is developed to identify protein complexes in PPI networks. First, the Topological Clustering Semantic Similarity (TCSS) method [52] based on functional annotations adopted to calculate the functional similarity between two interaction proteins, and a weighted PPI network is constructed. Then, a local protein complex core detection strategy is designed based on gene expression and subcellular localization data to identify local protein complex cores. Next, a

fitness function integrating multiple topological properties is defined to describe protein complexes. Subsequently, a new protein complex forming strategy is developed to extend global and local protein complex cores to form protein complexes. Finally, the GO annotation data is used to filter the candidate protein complexes and improve the accuracy of the protein complex detection. The experimental results show that the performance of our algorithm is better than other comparison algorithms in most cases, and the experimental results on different datasets show that our algorithm has certain robustness and stability. Furthermore, the MP-AHSA algorithm can identify protein complexes with functional significance based on the p-value. The contributions of this paper are summarized as follows:

- A fitness function is defined, and it can detect protein complexes with multiple properties;
- The MP algorithm based on the core-attachment structure is proposed, and it can detect co-localized, co-expressed protein complexes with similar functions;
- The AHSA algorithm is developed to automatically determine the parameters of the MP algorithm for the input of different PPI networks;
- The experiments on various widely used PPI networks show that the proposed MP-AHSA algorithm outperforms 14 state-of-the-art methods.

Terminology

Herein, a PPI network is generally described as a weighted graph G = (V, E, W), where V represents a set of proteins, E is a set of interactions, and W is a $n \times n(n = |V|)$ matrix that represents the reliability of protein pairs in the PPI network. The set of immediate neighbors of the node v is defined as $N(v) = \{u | (u, v) \in E, u \in V\}$. Meanwhile, we have provided a symbol table to explain these symbols in Table 1.

Methods

This paper proposes the MP-AHSA algorithm to identify protein complexes in PPI networks. The pipeline of the algorithm is shown in Algorithm 1, and it consists of the MP and AHSA methods. Figure 2 shows the flow of Algorithm 1. According to Algorithm 1, the MP-AHSA algorithm first constructs a weighted PPI network based on the TCSS method. Second, the MP algorithm is designed, and it first detects protein complex cores using Algorithm 2. Next, it defines a fitness function to describe protein complex in the PPI network. All protein complex cores are extended to form candidate protein complexes using fitness function and Algorithm 3. Based on the common functional annotation term, Algorithm 4 filters identified protein complexes. Finally, the AHSA algorithm is used to optimize the parameters of the MP algorithm.

1 PPI Protein-protein interaction 2 MP Multiple properties 3 MP-AHSA Multiple properties and an adaptation harmony search algorithm 4 MCL Markov cluster algorithm 5 TCSS method Topological clustering semantic similarity 6 GO Gene ontology 7 CC CC Cellular component 8 PF Biological process 9 MF Molecular function 10 WCC Weighted local clustering coefficient 11 LN(c) The union set of the first neighbors of protein c and itself 12 V(G) The set of proteins in 6 13 SLD Subcellular localization data 14 GED Gene expression threshold value 16 G Weighted PI network 17 GCE Gene co-expression threshold value 18 PCC A protein complex core 19 PCC A protein complex core 21 cohsiveness(C) The evidyhted density of cluster C 22 density (C) The weighted density of cluster C 23 awm(C) The set of protein complex core 22 density (C) The set of protein cons of clust	ID	symbol	Explanation			
2MPMultiple properties3MP-AHSAMultiple properties and an adaptation harmony search algorithm5TCSS methodTopological clustering semantic similarity6GOGene ontology7CCCellular component8BPBiological process9MFMolecular function10WCCWeighted local clustering coefficient11LN(o)The union set of the first neighbors of protein c and itself12V(G)The set of proteins in G13SLDSubcellular localization data14GEDGene expression threshold value16GWeighted PPI network17GCESThe set of protein complex cores18PCCA protein complex core19PCCThe neighbors of protein complex core10weightor/PCC)The neighbors of cluster C10Neighbor/PCC)The neighbors of protein complex core11Neightor/PCC)The neighbors of protein complex core12density(C)The set of protein sin the cluster C13swmC)The set of interactions in the cluster C14NPCC)The set of interactions in the cluster C15GCEThe set of interactions in the cluster C16GNPCC)The set of motein score of cluster C17fitness/C)The interaction score of cluster C18PCCThe set of interactions in the cluster C19CNPCCThe set of interacti	1	PPI	Protein-protein interaction			
3MP-AHSAMultiple properties and an adaptation harmony search algorithm4MCLMarkov cluster algorithm5TCSS methodTopological clustering semantic similarity6GOGene ontology7CCCellular component8BPBiological process9MFMolecular function10WCCWeighted local clustering coefficient11LN(c)The union set of the first neighbors of protein c and itself12VGOThe set of proteins in G13SLDSubcellular localization data14GEDGene expression threshold value15CEVCo-expression threshold value16GWeighted PPI network17GCESThe set of protein complex cores18PCCA protein complex core19NIGbybor(PCC)The neighbors of protein complex core20Nighbor(PCC)The weighted density of cluster C21cohesivenessi(C)The exighted density of cluster C23awm(C)The set of protein sin the cluster C24VCThe set of interactions in the cluster C25ECThe set of interactions in the cluster C26MCCThe set of interact protein oraplex27fitness(C)The fitness function score of cluster C28WCCThe set of interact protein oraplex29atchscore(vPCC)The set of interact protein oraplex29Hitness(C)The fitnes function score of cluster C	2	MP	Multiple properties			
4MCLMarkov cluster algorithm5TCSS methodTopological clustering semantic similarity6GOGene ontology7CCCellular component8BPBiological process9MFMolecular function10WCCWelghed local clustering coefficient11LN(c)The union set of the first neighbors of protein c and itself12V(G)The set of proteins in G13SLDSubcellular localization data14GEDGene expression threshold value16GGene co-expression threshold value17GCEGene co-expression threshold18PCCsThe set of protein complex core19PCCA protein complex core21cohesiveness(C)The neighbors of protein complex core22density(C)The neighbors of protein complex core23awm(C)The set of proteins in the cluster C24VCThe set of proteins in the cluster C25ECThe set of interactions in the cluster C26WCThe set of weights between the protein pair in the cluster C27fitness(C)The inters function accore of cluster C28NIPCQThe set of frotein complex29attachcore(vPCQ)The set of frotein complex21FPCA faitered protein complex22Berness(C)The functional attachment proteins of the cluster PCC23BitterC24WCCThe	3	MP-AHSA	Multiple properties and an adaptation harmony search algorithm			
5TCSS methodTopological clustering semantic similarity6GOGene ontology7CCCellular component8BPBiological process9MFMolecular function10WCCWeighted local clustering coefficient11LN(C)The union set of the first neighbors of protein c and itself12VGGThe union set of the first neighbors of protein c and itself13SLDSubcellular localization data14GEDGene expression threshold value16GWeighted PPI network17GCEGene co-expression threshold value18PCCSThe set of protein complex core20Neighbor(PCC)The neighbors of protein complex core21cohesiveness(C)The neighbors of protein complex core22density(C)The weighted density of cluster C23awn(C)The set of interactions in the cluster C24VCThe set of interactions in the cluster C25ECThe set of interactions in the cluster C26WCThe set of interaction complex27fitness/C)The fitnes function score of cluster C28NIPCC)The set of fittered protein complex29attachscore(v,PCC)The set of fittered protein complex29attachscore(v,PCC)The fittered protein complex21FCAcadidate protein complex22HMCCThe set of interaction term with the most common proteins in their dentified pro	4	MCL	Markov cluster algorithm			
6GOGene ontology7CCCellular component8BPBiological process9MFMolecular function10WCCWeighted local clustering coefficient11LN(c)The union set of the first neighbors of protein c and itself12VGGThe set of proteins in G13SLDSubcellular localization data14GEDGene expression threshold value15CEVCo-expression threshold value16GWeighted PPI network17GCEGene co-expression threshold18PCCSThe set of protein complex core20Neighbor/PCC)The neighbors of protein complex core21cohesiveness(C)The orbeiveness score of cluster C23awm(C)The set of proteins in the cluster C24VCThe set of protein sin the cluster C25ECThe set of interactions in the cluster C26WCThe set of weights between protein pair in the cluster C27fitness(C)The fitnes function score of cluster C28NIPCOThe set of fitnered protein complex31FPCA failtered protein complex32WCAThe set of fitnered protein complex33term_mazcommanThe futnetional amotaliant protein grate of AHSA method34HASThe harmony search algorithm35HMCRThe harmony search algorithm36FPCA failtered protein complex37Fress(C)	5	TCSS method	Topological clustering semantic similarity			
7CCCellular component8BPBiological process9MFMolecular function10WCCWeighted local clustering coefficient11LN(c)The union set of the first neighbors of protein c and itself12V(G)The set of proteins in G13SLDSubcellular localization data14GEDGene expression data15CEVCo-expression threshold value16GWeighted PPI network17GCEGene co-expression threshold value18PCCsThe set of protein complex cores19PCCA protein complex core10Neighbor(PCC)The neighbors of protein complex core11chesiveness:(C)The obsiveness score of cluster C12density(C)The weighted density of cluster C13awm(C)The set of proteins in the cluster C14VCCThe set of proteins in the cluster C15ECThe set of interactions in the cluster C16WCThe ster of weights between the protein pair in the cluster C17fitness(C)The fitness function score of cluster C18NPCC)The sum of weights between protein vand the protein complex core PCC19attachcore(v,PCC)The sum of weights between protein vand the protein complex core PCC19tatachcore(v,PCC)The sum of weights between protein vand the protein complex core PCC19tatachcore(v,PCC)The sum of weights between protein vand the protein complex core P	6	GO	Gene ontology			
8 BP Biological process 9 MF Molecular function 10 WCC Weighted local clustering coefficient 11 LN(c) The union set of the first neighbors of protein c and itself 12 V(G) The set of proteins in G 13 SLD Subcellular localization data 14 GED Gene expression threshold value 16 G Weighted PPI network 17 GCE Gene co-expression threshold 18 PCCs A protein complex core 20 Neighbor(PCC) The neighbors of protein complex core 21 cohesiveness(C) The cohesiveness score of cluster C 22 density(C) The everage weighted modularity of cluster C 23 awm(C) The set of proteins in the cluster C 24 VC The set of protein complex 25 EC The set of futerein complex 26 WC The set of interactions in the cluster C 27 fitness(C) The fitness function score of cluster C 28 N(PCC) The potential attachment protein somplex core PCC 29 attachscore(v,PCC) The sum of weights between protein vand the protein complex core PCC 30 CPC A fittered prote	7	СС	Cellular component			
9 MF Molecular function 10 WCC Weighted local clustering coefficient 11 LN(c) The union set of the first neighbors of protein c and itself 12 V(G) The set of proteins in G 13 SLD Subcellular localization data 14 GED Gene expression threshold value 16 G Weighted PPI network 17 GCE Gene co-expression threshold 18 PCCs The set of protein complex cores 19 PCC A protein complex core 21 cohesiveness/C) The neighbors of protein complex core 22 density(C) The neighbors of protein complex core 23 awm(C) The everage weighted modularity of cluster C 24 VC The set of proteins in the cluster C 25 EC The set of moteins in the cluster C 26 WC The set of function score of cluster C 27 fitness(C) The function complex 31 FPC A candidate protein complex 32 RVCO The sum of weights between the protein pair in the cluster C 33 termmacconneon The functional annotation term with the most commone proteins in theighted protein complex has 34 HPC <td>8</td> <td>BP</td> <td>Biological process</td>	8	BP	Biological process			
10WCCWeighted local clustering coefficient11LN(c)The union set of the first neighbors of protein c and itself12V(G)The set of proteins in G13SLDQSubcellular localization data14GEDGene expression data15CEVCo-expression threshold value16GWeighted PI network17GCEGene co-expression threshold18PCCsThe set of protein complex cores19PCCA protein complex core20Neighbor(PCC)The neighbors of protein complex core21cohesiveness(C)The veighted density of cluster C23awm(C)The average weighted modularity of cluster C24VCThe set of proteins in the cluster C25ECThe set of moteriant in the cluster C26WCThe set of weights between the protein pair in the cluster C27fitness(C)The fitnes function score of cluster C28N(PCC)The set of fitnered protein complex29attachscore(v,PCC)The sum of weights between the protein pair in the cluster C29attachscore(v,PCC)The set of fitnered protein complex31FPCA fitnered protein complex32FPCsThe set of fitnered protein complex33termmaxcommonThe fitner dynotein complex34HASThe harmony memory considering rate of AHSA method35HWCRThe fitne dynotein of AHSA method36PARThe fitne dynotein	9	MF	Molecular function			
11LN(c)The union set of the first neighbors of protein c and itself12V(G)The set of proteins in G13SLDSubcellular localization data14GEDGene expression data15CEVCo-expression threshold value16GWeighted PPI network17GCEGene co-expression threshold18PCCsThe set of protein complex cores20Neighbor(PCC)The neighbors of protein complex core21cohesiveness(C)The cohesiveness core of cluster C23awm(C)The average weighted modularity of cluster C24VCThe set of proteins in the cluster C25ECThe set of interactions in the cluster C26WCThe set of interactions in the cluster C27fitness(C)The fitness function score of cluster C28N(PCC)The set of interactions in the cluster C29attachscore(v,PCC)The sum of weights between protein pair in the cluster C29attachscore(v,PCC)The sum of weights between protein vand the protein complex core PCC30CPCA faitered protein complex31FPCA filtered protein complex32FPCsThe set of filtered protein complex33term _{maccommon} The functional annotation term with the most common proteins in thei- dentified protein complex has34HASThe harmony search algorithm35HMCRThe harmony search algorithm36PARThe harmony search algo	10	WCC	Weighted local clustering coefficient			
12V(G)The set of proteins in G13SLDSubcellular localization data14GEDGene expression data15CEVCo-expression threshold value16GWeighted PPI network17GCEGene co-expression threshold18PCCsThe set of protein complex cores19PCCA protein complex core20Neighbor(PCC)The neighbors of protein complex core21cohesiveness(C)The cohesiveness score of cluster C23awm(C)The average weighted modularity of cluster C24VCThe set of proteins in the cluster C25ECThe set of proteins one of cluster C26WCThe set of proteins one of cluster C27fitness(C)The fitness function score of cluster C28N(PCC)The set of weights between the protein pair in the cluster C29attachscore(v,PCC)The set of fitneractions in the cluster C29attachscore(v,PCC)The sum of weights between protein v and the protein complex core PCC30CPCA candidate protein complex31FPCA filtered protein complex32FPCsThe set of filtered protein complex33termmaxcommonThe fitnes function annotation term with the most common proteins in theidentified protein complex has34HASThe harmony search algorithm35HMCRThe harmony search algorithm36PARThe harmony search algorithm37FW <t< td=""><td>11</td><td>LN(c)</td><td>The union set of the first neighbors of protein c and itself</td></t<>	11	LN(c)	The union set of the first neighbors of protein c and itself			
13SLDSubcellular localization data14GEDGene expression data15CEVCo-expression threshold value16GWeighted PPI network17GCEGene co-expression threshold18PCCsThe set of protein complex cores19PCCA protein complex core20Neighbor(PCC)The neighbors of protein complex core21cohesiveness(C)The eveloptex of cluster C22density(C)The average weighted modularity of cluster C23awm(C)The set of proteins in the cluster C24VCThe set of interactions in the cluster C25ECThe set of interactions in the cluster C26WCThe set of interactions core of cluster C27fitness(C)The fitness function score of cluster C28N(PCC)The fitness function score of cluster C29attachscore(v,PCC)The set of fittered protein complex31FPCA candidate protein complex32FPCSThe set of fittered protein complex33termmaccommonThe functional annotation term with the most common proteins in thei- dentified protein complex has34HASThe harmony memory considering rate of AHSA method35HMCRThe harmony memory considering rate of AHSA method36PARThe harmony memory considering rate of AHSA method37FWThe fittered protein complex as38OffittnessThe harmony memory considering rate of AHSA metho	12	V(G)	The set of proteins in G			
14GEDGene expression data15CEVCo-expression threshold value16GWeighted PPI network17GCEGene co-expression threshold value18PCCsThe set of protein complex cores19PCCA protein complex core20Neighbor(PCC)The neighbors of protein complex core21cohesiveness(C)The cohesiveness score of cluster C22density(C)The average weighted modulanty of cluster C23awm(C)The set of proteins in the cluster C24VCThe set of interactions in the cluster C25ECThe set of interactions in the cluster C26WCThe set of interactions in the cluster C27fitness(C)The fitness function score of cluster C28N(PCC)The potential attachment proteins of the cluster PCC29attachscore(v,PCC)The sum of weights between protein vand the protein complex core PCC30CPCA faltered protein complex31FPCsThe functional annotation term with the most common proteins in theidentified protein complex has34HASThe harmony search algorithm35HMCRThe harmony memory considering rate of AHSA method36PARThe humber of identified protein complexes37FWThe fitter with th AHSA method38OffitnessThe sum of the fitness function of the detected protein complexes39KThe number of identified protein complexes40Fitness(Ci	13	SLD	Subcellular localization data			
15CEVCo-expression threshold value16GWeighted PPI network17GCEGene co-expression threshold18PCCsThe set of protein complex cores19PCCA protein complex core20Neighbor(PCC)The neighbors of protein complex core21cohesiveness(C)The cohesiveness score of cluster C22density(C)The weighted density of cluster C23awm(C)The average weighted modularity of cluster C24VCThe set of proteins in the cluster C25ECThe set of interactions in the cluster C26WCThe set of interactions in the cluster C27fitness(C)The fitness function score of cluster C28N(PCC)The potential attachment proteins of the cluster PCC29attachscore(v,PCC)The sum of weights between protein v and the protein complex core PCC30CPCA candidate protein complex31FPCA filtered protein complex32FPCsThe set of filtered protein complexs33term _{maxcommon} The functional annotation term with the most common proteins in thei- dentified protein complex has be objective function34HASThe harmony memory considering rate of AHSA method35HMCRThe protein dentified protein complexs36PARThe pitch adjusting rate of AHSA method37FWThe fitness function of the ith identified protein complex fit38OffitnessThe number of identified protein	14	GED	Gene expression data			
NoteComposition function function16GWeighted PP I network17GCEGene co-expression threshold18PCCsThe set of protein complex cores19PCCA protein complex core20Neighbor(PCC)The neighbors of protein complex core21cohesiveness(C)The cohesiveness score of cluster C22density(C)The weighted density of cluster C23awm(C)The set of proteins in the cluster C24VCThe set of proteins in the cluster C25ECThe set of interactions in the cluster C26WCThe set of weights between the protein pair in the cluster C27fitness(C)The fitness function score of cluster C28N(PCC)The potential attachment proteins of the cluster PCC29attachscore(v,PCC)The sum of weights between protein v and the protein complex core PCC30CPCA candidate protein complex31FPCA filtered protein complex33termmaxcommonThe functional annotation term with the most common proteins in thei- dentified protein complex has34HASThe harmony search algorithm35HMCRThe paum of the fitness function of the detected protein complexes and it is used as the objective function39KThe number of identified protein complexes34HASThe number of identified protein complexes35HMCRThe paum of the fitness function of the detected protein complexes and it is used as the objective f	15	CEV	Co-expression threshold value			
17GCEGene co-expression threshold18PCCsThe set of protein complex cores19PCCA protein complex core20Neighbor(PCC)The neighbors of protein complex core21cohesiveness(C)The cohesiveness score of cluster C22density(C)The weighted density of cluster C23avm(C)The average weighted modularity of cluster C24VCThe set of proteins in the cluster C25ECThe set of proteins in the cluster C26WCThe set of interactions in the cluster C27fitness(C)The fitness function score of cluster C28N(PCC)The set of weights between the protein pair in the cluster C29attachscore(v,PCC)The sum of weights between protein v and the protein complex core PCC30CPCA candidate protein complex31FPCA filtered protein complex33termmaxcommonThe functional annotation term with the most common proteins in theidentified protein complex has34HASThe harmony memory considering rate of AHSA method35HMCRThe pitch adjusting rate of AHSA method36PARThe function of the it is due at the objective function37FWThe futeration of the it is due at the objective function38OFfitnessThe number of identified protein complexes34HASThe number of identified protein complexes35HMCRThe number of identified protein complexes36PARThe	16	6	Weighted PPI network			
PCCsThe set of protein complex cores19PCCA protein complex core20Neighbor(PCC)The neighbors of protein complex core21cohesiveness(C)The cohesiveness score of cluster C22density(C)The weighted density of cluster C23awm(C)The average weighted modularity of cluster C24VCThe set of proteins in the cluster C25ECThe set of interactions in the cluster C26WCThe set of weights between the protein pair in the cluster C27fitness(C)The fitness function score of cluster C28N(PCC)The potential attachment proteins of the cluster PCC29attachscore(v,PCC)The sum of weights between protein vand the protein complex core PCC30CPCA candidate protein complex31FPCsThe functional annotation term with the most common proteins in theidentified protein complex has34HASThe harmony search algorithm35HMCRThe harmony memory considering rate of AHSA method36PARThe fitness function of the detected protein37FWThe function of the fitness function of the detected protein38OffitnessThe sum of the fitness function of the detected protein39KThe number of identified protein complexes40Fitness(C)The fut width of AHSA method31FWThe number of identified protein complexes34HASThe number of identified protein complexes35HMCR <td>17</td> <td>GCE</td> <td>Gene co-expression threshold</td>	17	GCE	Gene co-expression threshold			
Inc. StructureInteraction protections19PCCA protein complex core20Neighbor(PCC)The neighbors of protein complex core21cohesiveness(C)The cohesiveness score of cluster C22density(C)The weighted density of cluster C23avm(C)The average weighted modularity of cluster C24VCThe set of proteins in the cluster C25ECThe set of interactions in the cluster C26WCThe set of weights between the protein pair in the cluster C27fitness(C)The fitness function score of cluster C28N(PCC)The potential attachment proteins of the cluster PCC29attachscore(v,PCC)The sum of weights between protein vand the protein complex core PCC30CPCA candidate protein complex31FPC sThe functional annotation term with the most common proteins in theidentified protein complex has33term _{maxcommon} The functional annotation term with the most common proteins in theidentified protein complex has34HASThe harmony memory considering rate of AHSA method35HMCRThe number of identified protein complexes36PARThe press function of the detected protein complexes and it is used as the objective function39KThe number of identified protein complexes40Fitness(Ci)The furt width of AHSA method31FPCThe sum of the fitness function of the detected protein complexes and it is used as the objective function39K </td <td>18</td> <td>PCCs</td> <td>The set of protain complex cores</td>	18	PCCs	The set of protain complex cores			
NextThe neighbors of protein complex corecohesiveness(C)The neighbors of protein complex coreawm(C)The verage weighted modularity of cluster Cawm(C)The set of proteins in the cluster CECThe set of proteins in the cluster CECThe set of interactions in the cluster CECWCThe set of interactions in the cluster CFitness(C)The set of weights between the protein pair in the cluster CFitness(C)The set of weights between the protein pair in the cluster Cfitness(C)The potential attachment proteins of the cluster PCCattachscore(v,PCC)The sum of weights between protein v and the protein complex core PCCCPCA candidate protein complexFPCsThe set of filtered protein complexFPCsThe set of filtered protein complex stermmaxcommonThe functional annotation term with the most common proteins in thei- dentified protein complex hasHASThe harmony memory considering rate of AHSA methodHASThe neither adjusting rate of AHSA methodFWThe fittered protein complexesFWThe fittered protein complexesFWThe neither fit is used as the objective functionFWThe fittered protein complexesFWThe fittered protein complexesFWThe iteration timesFWThe iteration of the iterd protein complexesFWThe protein of the fitteres function of the detected protein complexes and it is used as the objective functionFWThe iteration timesFWThe	10	PCC	A protein complex core			
20Neighboly (CC)The lengthous of plotent complex cole21cohesiveness(C)The cohesiveness score of cluster C22density(C)The average weighted modularity of cluster C23awm(C)The set of proteins in the cluster C24VCThe set of proteins in the cluster C25ECThe set of interactions in the cluster C26WCThe fitness function score of cluster C27fitness(C)The potential attachment proteins of the cluster PCC29attachscore(v,PCC)The sum of weights between protein v and the protein complex core PCC30CPCA candidate protein complex31FPCA fittered protein complex32FPCsThe set of fittered protein complexes33term _{maxcommon} The harmony search algorithm34HASThe harmony memory considering rate of AHSA method36PARThe pitch adjusting rate of AHSA method37FWThe fittered protein complexes38OFfitnessThe number of identified protein complexes39KThe number of identified protein complexes31IASThe harmony memory considering rate of AHSA method36PARThe pitch adjusting rate of AHSA method37FWThe fitteres function of the detected protein complexes and it is used as the objective function38OFfitnessThe number of identified protein complexes40Fitteress(Ci)The fitterest function of the ith identified protein complex Ci4	20	Noighbor(PCC)	The neighbors of protein complex core			
21Consider (C)The weighted density of cluster C22density(C)The weighted density of cluster C23awm(C)The set of proteins in the cluster C24VCThe set of interactions in the cluster C25ECThe set of weights between the protein pair in the cluster C26WCThe set of weights between the protein pair in the cluster C27fitness(C)The fitness function score of cluster C28N(PCC)The potential attachment proteins of the cluster PCC29attachscore(v,PCC)The sum of weights between protein v and the protein complex core PCC30CPCA candidate protein complex31FPCA filtered protein complex32FPCsThe set of filtered protein complex sa33termmaxcommonThe functional annotation term with the most common proteins in thei- dentified protein complex has34HASThe harmony search algorithm35HMCRThe sum of the fitness function of the detected protein complexes and it is used as the objective function38OFfitnessThe sum of the fitness function of the detected protein complexes and it is used as the objective function39KThe number of identified protein complexes41iThe harmony memory42HMsThe harmony memory43HMA harmony44R1,R2The variable value by randomly generated within [0,1]45fitnessmainThe maximum and minimum values of OF fitness in HMs46 <td>20</td> <td>cobosivonoss(C)</td> <td>The cohosivonoss score of cluster C</td>	20	cobosivonoss(C)	The cohosivonoss score of cluster C			
22Density(C)The weighted density of cluster C23awm(C)The average weighted modularity of cluster C24VCThe set of proteins in the cluster C25ECThe set of interactions in the cluster C26WCThe set of weights between the protein pair in the cluster C27fitness(C)The fitness function score of cluster C28N(PCC)The potential attachment proteins of the cluster PCC29attachscore(v,PCC)The sum of weights between protein v and the protein complex core PCC30CPCA candidate protein complex31FPCA filtered protein complex32FPCsThe set of filtered protein complex has34HASThe harmony search algorithm35HMCRThe pitch adjusting rate of AHSA method36PARThe pitch adjusting rate of AHSA method37FWThe fitness function of the detected protein complexes and it is used as the objective function39KThe number of identified protein complexes40Fitness(Ci)The fitness function of the it identified protein complex Ci41iThe number of identified protein complexes42HMsThe harmony memory43HMA harmony44R1,R2The variable value by randomly generated within [0,1]45fitnessman, fitnessminThe maximum and minimum values of OF fitness in HMs46HMnewThe new harmony generated	21	donsity(C)	The weighted depicity of cluster C			
23awrin(c)The average weighted infoduation of cluster C24VCThe set of proteins in the cluster C25ECThe set of interactions in the cluster C26WCThe set of weights between the protein pair in the cluster C27fitness(C)The fitness function score of cluster C28N(PCC)The potential attachment proteins of the cluster PCC29attachscore(v,PCC)The sum of weights between protein v and the protein complex core PCC30CPCA candidate protein complex31FPCA filtered protein complex32FPCsThe set of filtered protein complexes33termmaccommonThe functional annotation term with the most common proteins in thei- dentified protein complex has34HASThe harmony search algorithm35HMCRThe pitch adjusting rate of AHSA method36PARThe fittered protein complexes37FWThe fittered protein complexes38OFfitnessThe sum of the fittered protein complexes39KThe number of identified protein complexes40Fitteress(Ci)The fitteress function of the detected protein complexes and it is used as the objective function39KThe harmony memory41iThe harmony memory42HMsThe harmony memory43HMA harmony44R1,R2The variable value by randomly generated within [0,1]45fitnessminThe numbur of identified protein differes in HM	22	uensity(c)	The average weighted medularity of cluster C			
24VCThe set of interactions in the cluster C25ECThe set of interactions in the cluster C26WCThe set of weights between the protein pair in the cluster C27fitness(C)The fitness function score of cluster C28N(PCC)The potential attachment proteins of the cluster PCC29attachscore(v,PCC)The sum of weights between protein v and the protein complex core PCC30CPCA candidate protein complex31FPCA filtered protein complex32FPCsThe set of filtered protein complexs33termmaxcommonThe functional annotation term with the most common proteins in thei- dentified protein complex has34HASThe harmony search algorithm35HMCRThe pitch adjusting rate of AHSA method36PARThe fitter width of AHSA method37FWThe fitter width of AHSA method38OFfitnessThe sum of the fitness function of the detected protein complexes and it is used as the objective function39KThe number of identified protein complexes40Fitness(Ci)The fitness function of the ith identified protein complex Ci41iThe iteration times42HMSThe harmony memory43HMA harmony44R1,R2The variable value by randomly generated within [0,1]45fitnessmax,fitnessminThe maximum and minimum values of OF fitness in HMs46HMnewThe new harmony generated	23		The set of protoins in the cluster C			
23ECThe set of interactions in the cluster C26WCThe set of weights between the protein pair in the cluster C27fitness(C)The fitness function score of cluster C28N(PCC)The potential attachment proteins of the cluster PCC29attachscore(v,PCC)The sum of weights between protein v and the protein complex core PCC30CPCA candidate protein complex31FPCA filtered protein complex32FPCsThe set of filtered protein complexes33termmaxcommonThe functional annotation term with the most common proteins in thei- dentified protein complex has34HASThe harmony search algorithm35HMCRThe fitness function of the detected protein complexes and it is used as the objective function38OFfitnessThe sum of the fitness function of the detected protein complexes and it is used as the objective function39KThe number of identified protein complexes41iThe iteration times42HMSThe harmony memory43HMA harmony44R1,R2The variable value by randomly generated within [0,1]45fitnessmax,fitnessminThe maximum and minimum values of OF fitness46HMnewThe out her with the function	24	VC	The set of proteins in the cluster C			
26WCThe set of weights between the protein pair in the cluster C27fitness(C)The fitness function score of cluster C28N(PCC)The potential attachment proteins of the cluster PCC29attachscore(v,PCC)The sum of weights between protein v and the protein complex core PCC30CPCA candidate protein complex31FPCA filtered protein complex32FPCsThe set of filtered protein complexes33termmaxcommonThe functional annotation term with the most common proteins in thei- dentified protein complex has34HASThe harmony search algorithm35HMCRThe pitch adjusting rate of AHSA method36PARThe pitch adjusting rate of AHSA method37FWThe fitness function of the detected protein complexes and it is used as the objective function39KThe number of identified protein complexes40Fitness(Ci)The fitness function of the ith identified protein complex Ci41iThe iteration times42HMSThe harmony memory43HMA harmony44R1,R2The variable value by randomly generated within [0,1]45fitnessmax,fitnessminThe maximum and minimum values of OF fitness46HMnewThe number of identified protein complex	25	EC	The set of interactions in the cluster C			
27Interest(L)The intrees function score of cluster C28N(PCC)The potential attachment proteins of the cluster PCC29attachscore(v,PCC)The sum of weights between protein v and the protein complex core PCC30CPCA candidate protein complex31FPCA filtered protein complex32FPCsThe set of filtered protein complexes33termmaxcommonThe functional annotation term with the most common proteins in thei- dentified protein complex has34HASThe harmony search algorithm35HMCRThe harmony memory considering rate of AHSA method36PARThe fret width of AHSA method37FWThe fret width of AHSA method38OFfitnessThe number of identified protein complexes40Fitness(Ci)The fitness function of the idetected protein complexes and it is used as the objective function39KThe number of identified protein complexes41iThe harmony memory42HMsThe harmony memory43HMA harmony44R1,R2The variable value by randomly generated within [0,1]45fitnessmax,fitnessminThe maximum and minimum values of OF_fitness in HMs46HMnewThe new harmony generated	20	VVC	The set of weights between the protein pair in the cluster C			
28N(PCC)The potential attachment proteins of the cluster PCC29attachscore(v,PCC)The sum of weights between protein v and the protein complex core PCC30CPCA candidate protein complex31FPCA filtered protein complex32FPCsThe set of filtered protein complexes33termmaxcommonThe functional annotation term with the most common proteins in thei- dentified protein complex has34HASThe harmony search algorithm35HMCRThe pitch adjusting rate of AHSA method36PARThe pitch adjusting rate of AHSA method37FWThe fret width of AHSA method38OFfitnessThe sum of the fitness function of the detected protein complexes and it is used as the objective function39KThe number of identified protein complexes40Fitness(Ci)The fitness function of the ith identified protein complex Ci41iThe harmony memory43HMA harmony44R1,R2The variable value by randomly generated within [0,1]45fitnessmax,fitnessminThe maximum and minimum values of $OF_{fitness}$ in HMs46HMnewThe new harmony generated	27	ntness(C)	The fitness function score of cluster C			
29attachscore(v,PCC)The sum of weights between protein v and the protein complex core PCC30CPCA candidate protein complex31FPCA filtered protein complex32FPCsThe set of filtered protein complexes33term _{maxcommon} The functional annotation term with the most common proteins in thei- dentified protein complex has34HASThe harmony search algorithm35HMCRThe harmony memory considering rate of AHSA method36PARThe fret width of AHSA method37FWThe fret width of AHSA method38OFfitnessThe sum of the fitness function of the detected protein complexes and it is used as the objective function39KThe number of identified protein complexes40Fitness(Ci)The fitness function of the ith identified protein complex Ci41iThe harmony memory43HMA harmony44R1,R2The variable value by randomly generated within [0,1]45fitnessmax,fitnessminThe new harmony generated46HMnewThe new harmony generated	28	N(PCC)	The potential attachment proteins of the cluster PCC			
30CPCA Candidate protein complex31FPCA filtered protein complex32FPCsThe set of filtered protein complexes33termmaxcommonThe functional annotation term with the most common proteins in thei- dentified protein complex has34HASThe harmony search algorithm35HMCRThe harmony memory considering rate of AHSA method36PARThe pitch adjusting rate of AHSA method37FWThe firet width of AHSA method38OFfitnessThe sum of the fitness function of the detected protein complexes and it is used as the objective function39KThe number of identified protein complexes40Fitness(Ci)The fitness function of the ith identified protein complex Ci41iThe iteration times42HMSThe harmony memory43HMA harmony44R1,R2The variable value by randomly generated within [0,1]45fitnessman, fitnessminThe new harmony generated	29	attachscore(v,PCC)	The sum of weights between protein v and the protein complex core PCC			
31FPCA filtered protein complex32FPCsThe set of filtered protein complexes33termmaxcommonThe functional annotation term with the most common proteins in thei- dentified protein complex has34HASThe harmony search algorithm35HMCRThe harmony memory considering rate of AHSA method36PARThe pitch adjusting rate of AHSA method37FWThe fret width of AHSA method38OFfitnessThe sum of the fitness function of the detected protein complexes and it is used as the objective function39KThe number of identified protein complexes40Fitness(Ci)The fitness function of the ith identified protein complex Ci41iThe iteration times42HMSThe harmony memory43HMA harmony44R1,R2The variable value by randomly generated within [0,1]45fitnessmax,fitnessminThe new harmony generated	30	CPC	A candidate protein complex			
32FPCsThe set of filtered protein complexes33term_maxcommonThe functional annotation term with the most common proteins in thei- dentified protein complex has34HASThe harmony search algorithm35HMCRThe harmony memory considering rate of AHSA method36PARThe pitch adjusting rate of AHSA method37FWThe fret width of AHSA method38OFfitnessThe sum of the fitness function of the detected protein complexes and it is used as the objective function39KThe number of identified protein complexes40Fitness(Ci)The fitness function of the ith identified protein complex Ci41iThe harmony memory42HMsThe harmony memory43HMA harmony44R1,R2The variable value by randomly generated within [0,1]45fitnessminThe maximum and minimum values of OF _{fitness} in HMs46HMnewThe new harmony generated	31	FPC	A filtered protein complex			
33term maxcommonThe functional annotation term with the most common proteins in thei- dentified protein complex has34HASThe harmony search algorithm35HMCRThe harmony memory considering rate of AHSA method36PARThe pitch adjusting rate of AHSA method37FWThe fret width of AHSA method38OFfitnessThe sum of the fitness function of the detected protein complexes and it is used as the objective function39KThe number of identified protein complexes40Fitness(Ci)The fitness function of the ith identified protein complex Ci41iThe iteration times42HMsThe harmony memory43HMA harmony44R1,R2The variable value by randomly generated within [0,1]45fitnessminThe maximum and minimum values of OF fitness in HMs46HMnewThe new harmony generated	32	FPCs	The set of filtered protein complexes			
34HASThe harmony search algorithm35HMCRThe harmony memory considering rate of AHSA method36PARThe pitch adjusting rate of AHSA method37FWThe fret width of AHSA method38OFfitnessThe sum of the fitness function of the detected protein complexes and it is used as the objective function39KThe number of identified protein complexes40Fitness(Ci)The fitness function of the ith identified protein complex Ci41iThe harmony memory42HMsThe harmony memory43HMA harmony44R1,R2The variable value by randomly generated within [0,1]45fitnessminThe maximum and minimum values of OF _{fitness} in HMs46HMnewThe new harmony generated	33	term _{maxcommon}	The functional annotation term with the most common proteins in thei- dentified protein complex has			
35HMCRThe harmony memory considering rate of AHSA method36PARThe pitch adjusting rate of AHSA method37FWThe fret width of AHSA method38OFfitnessThe sum of the fitness function of the detected protein complexes and it is used as the objective function39KThe number of identified protein complexes40Fitness(Ci)The fitness function of the ith identified protein complex Ci41iThe iteration times42HMsThe harmony memory43HMA harmony44R1,R2The variable value by randomly generated within [0,1]45fitnessminThe new harmony generated	34	HAS	The harmony search algorithm			
36PARThe pitch adjusting rate of AHSA method37FWThe fret width of AHSA method38OFftnessThe sum of the fitness function of the detected protein complexes and it is used as the objective function39KThe number of identified protein complexes40Fitness(Ci)The fitness function of the ith identified protein complex Ci41iThe iteration times42HMsThe harmony memory43HMA harmony44R1,R2The variable value by randomly generated within [0,1]45fitnessminThe new harmony generated46HMnewThe new harmony generated	35	HMCR	The harmony memory considering rate of AHSA method			
37FWThe fret width of AHSA method38OFfitnessThe sum of the fitness function of the detected protein complexes and it is used as the objective function39KThe number of identified protein complexes40Fitness(Ci)The fitness function of the ith identified protein complex Ci41iThe iteration times42HMsThe harmony memory43HMA harmony44R1,R2The variable value by randomly generated within [0,1]45HMnewThe new harmony generated	36	PAR	The pitch adjusting rate of AHSA method			
38OF fitnessThe sum of the fitness function of the detected protein complexes and it is used as the objective function39KThe number of identified protein complexes40Fitness(Ci)The fitness function of the ith identified protein complex Ci41iThe iteration times42HMsThe harmony memory43HMA harmony44R1,R2The variable value by randomly generated within [0,1]45fitnessmax,fitnessminThe new harmony generated46HMnewThe new harmony generated	37	FW	The fret width of AHSA method			
39KThe number of identified protein complexes40Fitness(Ci)The fitness function of the ith identified protein complex Ci41iThe iteration times42HMsThe harmony memory43HMA harmony44R1,R2The variable value by randomly generated within [0,1]45fitnessmax,fitnessminThe maximum and minimum values of <i>OF</i> _{fitness} in HMs46HMnewThe new harmony generated	38	OFfitness	The sum of the fitness function of the detected protein complexes and it is used as the objective function			
40Fitness(Ci)The fitness function of the ith identified protein complex Ci41iThe iteration times42HMsThe harmony memory43HMA harmony44R1,R2The variable value by randomly generated within [0,1]45fitnessmax,fitnessminThe maximum and minimum values of <i>OF_{fitness}</i> in HMs46HMnewThe new harmony generated	39	К	The number of identified protein complexes			
41iThe iteration times42HMsThe harmony memory43HMA harmony44R1,R2The variable value by randomly generated within [0,1]45fitnessmax,fitnessminThe maximum and minimum values of OF _{fitness} in HMs46HMnewThe new harmony generated	40	Fitness(Ci)	The fitness function of the ith identified protein complex Ci			
42HMsThe harmony memory43HMA harmony44R1,R2The variable value by randomly generated within [0,1]45fitnessmax,fitnessminThe maximum and minimum values of OF fitness in HMs46HMnewThe new harmony generated	41	i	The iteration times			
43HMA harmony44R1,R2The variable value by randomly generated within [0,1]45fitnessmax,fitnessminThe maximum and minimum values of OF fitness in HMs46HMnewThe new harmony generated	42	HMs	The harmony memory			
 R1,R2 The variable value by randomly generated within [0,1] fitnessmax,fitnessmin The maximum and minimum values of <i>OF</i>_{fitness} in HMs HMnew The new harmony generated 	43	HM	A harmony			
45 fitnessmax,fitnessmin The maximum and minimum values of <i>OF_{fitness}</i> in HMs 46 HMnew The new harmony generated	44	R1,R2	The variable value by randomly generated within [0,1]			
46 HMnew The new harmony generated	45	fitnessmax,fitnessmin	The maximum and minimum values of <i>OF_{fitness}</i> in HMs			
	46	HMnew	The new harmony generated			
4/ HMIsmin The worst harmony in HMs	47	HMsmin	The worst harmony in HMs			
48 Maxiter The termination time	48	Maxiter	The termination time			

Table 1 Symbol and its explanation in this paper

••••

ID	symbol	Explanation
lable 1	(continued)	

49	HMsbest	The best clustering HM in the harmony memory HMs
50	IPCs	The identified protein complexes

Fig. 2 MP-AHSA algorithm detects protein complexes from PPI network

Algorithm 1 Pipeline of the MP-AHSA algorithm

Input: The PPI networks, G = (V, E); GO annotation data, gene expression data, and subcellular location data. $\label{eq:output: A list of identified protein complexes, \ IPCs.$

- 1: initialize $IPCS = \phi$; 2: Step 1: Construct a weighted PPI network based on Eq.(1) by using the TCSS method, G = (V, E, W);
- 3: Step 2: Design the MP algorithm based on core-attachment structure and multiple properties;
- 4: Step 2.1: Detect protein complex cores (PCCs) from the PPI network using Algorithm 2; 5: Step 2.2: Define a fitness function (Eq.(8)) by integrating multiple topological properties;
- 6: Step 2.3: Use Eq.(8) and Eq.(9) to extend each protein complex core to form candidate protein complexes, CPCs, by using Algorithm 3;
- 7: Step 2.4: Filter the candidate protein complexes (CPCs) based on the highest common functional annotation terms to obtain similarly functional protein complexes using Algorithm 4.
- 8: Step 3: Use AHSA algorithm to optimize the parameters of MP method and obtain final identified protein complexes, IPCs.
- 9: return Output the set of identified protein complexes, *IPCs*.

Constructing a weighted PPI network

Recent studies [15, 24, 36] have shown that the accuracy of identifying protein complexes can be significantly improved by integrating functional annotations into a single PPI network. Therefore, this paper uses an improved algorithm, i.e., the Topological Clustering Semantic Similarity (TCSS) method (including IEA annotations) by Jain et al. [52] to calculate the semantic similarity between two interacting proteins for weighting a PPI network. In particular, this method considers an unequal depth of biological knowledge representations in different branches of the GO graph. Then, the gene annotations with GO terms downloaded from the Gene Ontology database for S.cerevisiae [53] are used to reflect the functional similarity of the proteins. According to the author's suggestion, the topology cutoffs for the cerevisiae PPI dataset are 2.4 for CC, 3.5 for BP, and 3.3 for MF, respectively. For an edge, its semantic similarity score is calculated by using the average of the cellular component (CC), biological process (BP), and molecular function (MF) ontologies of GO by Eq. (1):

$$TCSS(v,u) = \frac{TCSS_{CC}(v,u) + TCSS_{BP}(v,u) + TCSS_{MF}(v,u)}{3}.$$
(1)

In this way, the reliability of the PPI networks is improved based on the semantic similarity score, and a weighted PPI network is constructed.

MP algorithm

In the following subsections, the steps of the MP algorithm are explained in detail.

Identifying protein complex cores

The identification of protein complex cores consists of two steps in Algorithm 2. In step 1, the initial seeds are identified, and local protein complex cores are mined based on the initial seeds. In step 2, global protein complex cores are detected by employing the MCL method [11]. Additional file 12 shows an example diagram to describe the Algorithm 2.

To detect local protein complex cores, we first introduce a weighted local clustering coefficient to detect initial seeds. Research has shown that PPI networks have a small world [54], scale-free [55], and modularity characteristics [56]. Therefore, local protein complex cores have a high local clustering coefficient [19, 36]. Thus, the higher the local clustering coefficient of the protein, the more likely the protein is to comprise the local protein complex core in the PPI network. For a protein p_i , the definition of its weighted local clustering coefficient ($WCC(p_i)$) [57] is shown in Eq. (2):

$$WCC(p_i) = \frac{2 \times \sum_{(v,u) \in LN(p_i)} w(v,u)}{\sqrt{|LN(p_i)|} \times (|LN(p_i)| - 1)}, p_i \in V(G),$$
(2)

where w(v, u) represents the weight of the edge (v, u), $|LN(p_i)| = |\{N(p_i) \cup \{p_i\}\}|$ is the number of proteins in $LN(p_i)$, and $LN(p_i)$ is the union set of the first neighbors of p_i $(N(p_i))$ and p_i , V(G) is the set of proteins in G.

Next, based on initial seeds, we use subcellular localization data and gene expression data to form local protein complex cores. Because some studies [2, 58] have shown that proteins in a protein complex core tend to interact with each other, and the protein complex core is generally highly co-expressed and has the same cellular localization. Thus,

this paper proposes a local protein complex core identification strategy to detect local protein complex cores. Here, for subcellular localization data, *SLD*, the proteins in the same protein complex tend to have the same subcellular localization term. Second, gene expression data, *GED*, are used to estimate proteins in the same protein complex core co-expression based on the person correlation coefficient.

Generally, the gene expression data can reflect the features of proteins in a biological process under various conditions. However, for a protein, the fluctuation range of its expression is not the same. We normalize its expression value. As a result, its value is normalized using Eq. (3):

$$T_{i}^{'}(\nu) = \frac{T_{i}(\nu)}{\max\{T(\nu)\}},$$
(3)

where $T_i(v)$ represents the expression of protein v at the time point i, and max{T(v)} represents the maximum expression of protein v during the experimental procedure.

Furthermore, for a pair of proteins v and u in the PPI network, their gene expression profiles are denoted as $v = \{x_1, x_2, ..., x_n\}$ and $u = \{y_1, y_2, ..., y_n\}$, respectively. Here, the person correlation coefficient is adopted to calculate their co-expression value CEV(v, u) [35], and its definition is shown in Eq. (4):

$$CEV(\nu, u) = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) \times (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \times \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}},$$
(4)

where \overline{x} and \overline{y} represent the average of the expression of the genes encoding proteins v and u in n time points. To ensure that the value of CEV(v, u) falls within [0,1], this paper replaces CEV(v, u) with CEV(v, u) = (CEV(v, u) + 1)/2. Hence, the higher the value of CEV(v, u), the more likely the proteins v and u to be co-expressed, and form the same protein complex.

According to weighted local clustering coefficient (Eq. (2)), subcellular localization data (two interacting proteins have the same subcellular localization term) and gene expression data and improved person correlation coefficient (Eq. (4)), we use them to identify local protein complex cores. Meanwhile, the MCL method is used to mine global protein complex cores. The pseudo-code of the mining protein complex cores is shown as Algorithm 2. First, the initial seeds are obtained, and then local protein complex cores are detected (lines 1-7). To obtain the initial seeds, the weighted clustering coefficients of each protein are calculated based on Eq. (2). All proteins are sorted in descending order based on its $WCC(p_i)$ (lines 2-6). The top ratio % proteins in V(G) are selected as the initial seeds (line 7). For each protein *s* in *InitialSeeds*, if it is not visited, it is first initialized as a protein complex core, PCC. Meanwhile, it is marked and no longer used as a seed protein to form the protein complex core (lines 8-12). Second, the subcellular location data of the seed protein s (SLD(s)) are obtained. The direct neighbors of the initial protein complex core PCC (Neighbor(PCC)) are determined (lines 13-14). Third, for each protein $u \in Neighbor(PCC)$, if the CEV(v, u) of the edge between the seed protein s and its neighbor u is larger than GCE, and the seed protein s and its neighbor u have at least one common subcellular location term, the neighbor u is considered a part of the protein complex core PCC. It is added to the protein complex core PCC and marked (lines 15-23). Finally, if the protein complex core PCC is larger than two and does not exist in PCCs, it is saved (lines 24-26). The entire procedure terminates when no seed proteins need to be considered in InitialSeeds (lines 9-27). Then, the MCL method is employed, and its parameter *inflate* is set to detect global protein complex cores, MCLcluster (lines 28-29). MCL [11] is an iterative process that alternately applies two operations, i.e., expand and inflate, to mine global protein complex cores. Finally, local and global protein complex cores are combined, and redundant protein complexes are eliminated from protein complex cores, PCCs (lines 30-31). Note that Algorithm 2 involves three parameters: GCE, inflate, and ratio. This paper uses the adaptive harmony search algorithm to set the parameters automatically, as shown in Algorithm 5 (see the MP-AHSA algorithm).

Algorithm 2 Mining protein complex cores.
Input: Datasets: Weighted PPI network, $G = (V, E, W)$; Subcellular localization Data, SLD ; Gene expression Data, GED ; Parameters: Gene co-expression threshold, GCE , the inflate of MCL threshold, $inflate$, the ratio of initial seeds, $ratio$.
Output: The set of protein complex cores, <i>PCCs</i> .
1: step 1: detect local protein complex cores based on initial seeds;
2: initialize $InitialSeeds = \emptyset$;
3: for each protein p_i in $V(G)$ do
4: Compute its weighted clustering coefficient, $WCC(p_i)$ as Eq.(2);
5: end for
6: Sort all nodes in descending order based on its $WCC(p_i)$;
7: Obtain the top $ratio \%$ of nodes in $V(G)$ and use them as seed nodes, $InitialSeeds$;
8: initialize Set of protein complex cores, $PCCs = \emptyset$, visit=[];
9: for each seed s in InitialSeeds do
10: if seed s not in visit then
11: $visit = visit \cup \{s\};$
12: initialize Protein complex core, $PCC = \{s\}$;
13: Obtain the set of subcellular localization data of seed node s , $SLD(s)$;
14: Find the first-layer neighbors of <i>PCC</i> , <i>Neighbor</i> (<i>PCC</i>).
15: for each node $u \in Neighbor(PCC)$ do
16: Obtain the set of subcellular localization data of protein u , $SLD(u)$;
17: Calculate the co-expression value between proteins s and u , $CEV(s, u)$;
18: if $CEV(s, u) \ge GCE$ and $ SLD(s) \cap SLD(u) \ge 1$ then
$19: \qquad PCC = PCC \cup \{u\};$
20: $visit = visit \cup \{u\};$
21: end if
22: end for
23: end if
24: if the size of $PCC \ge 2$ and $PCC \notin PCCs$ then
$25: \qquad PCCs = PCCs \cup PCC;$
26: end if
27: end for
28: step 2: identify global protein complex cores based on Markov cluster method;
29: Detect global protein complex cores $MCLclusters$ from G using inflate $inflate$ and the Markov
cluster algorithm;
30 : $PCCs = PCCs \cup MCLclusters;$
31: Eliminate redundant protein complex cores from $PCCs$;
32: return Set of protein complex cores, $PCCs$.

Fitness function

A fitness function needs to be defined to identify various topological properties of the protein complexes in the PPI network. A fitness function should combine multiple topological properties and compensate for the shortcomings of a single topological property to improve the quality of the identified protein complexes. This paper proposes a novel fitness function (Eq. (8)) by combining three topological properties including cohesiveness score (cohesiveness(C)), weighted density (density(C)), and the

average weighted modularity (awm(C)) to identify protein complexes. These topological properties are defined in Eqs. (5-7):

Given the cluster, $C = (V_C, E_C, W_C)$, where V_C is the set of proteins in the cluster C, E_C is the set of interactions in the cluster, and W_C is the set of weights between the protein pair in the cluster. According to previous studies [19, 20], the cohesiveness score is defined in Eq. (5):

$$cohesiveness(C) = \frac{W_{in}(C)}{W_{in}(C) + W_{out}(C)},$$
(5)

where $W_{in}(C)$ represents the sum of weights of all edges in the cluster *C*, and $W_{out}(C)$ is the sum of weights of the edges connecting the inner proteins in *C* to other proteins in the rest of the PPI network.

According to the previously suggested hypotheses [8, 9], the higher the density of a cluster, the more likely cluster represents a protein complex. Thus, the weighted density of the cluster *C* is defined in Eq. (6):

$$density(C) = \frac{2 \times W_{in}(C)}{|V_C| \times (|V_C| - 1)},$$
(6)

where V_C is the number of proteins in cluster *C*.

Some studies [36] have shown strong connections between the proteins in a protein complex but weak connections between the proteins outside of the protein complex. Thus, this paper proposes a new function called the average weighted modularity (awm). Awm could estimate that cluster C has a high average weight when connected but has a low average weight interaction with the rest of the network. awm is defined in Eq. (7):

$$awm(C) = \frac{AIEW(C)}{AIEW(C) + ABEW(C)},$$
(7)

The average inner edge weight $(AIEW(C) = \frac{W_{in}(C)}{|E_C|})$ can estimate the reliability of the internal edges of the cluster *C*, where $W_{in}(C)$ represents the sum of the weights of the edges, and $|E_C|$ is the number of edges in cluster *C*. Meanwhile, the average border edge weight $(ABEW(C) = \frac{W_{out}(C)}{|BE_C|})$ can measure the reliability of the border edges in cluster *C*, where $|BE_C| = \{(u, v) | u \in C, v \notin C\}$ represents the number of border edges that connect cluster *C* with the rest of the PPI network.

Taking these objective functions together, this paper proposes a fitness function (fitness(C)) that combines these single objective functions to evaluate the possibility that cluster *C* is a protein complex, as shown in Eq. (8):

$$fitness(C) = density(C) + cohesiveness(C) + awm(C).$$
(8)

Generally, a high-quality protein complex is a group of densely inter-connected but sparsely inter-connected with the rest of the PPI network. According to fitness(C), density(C) seeks a protein complex with a dense intra-connection. cohesiveness(C) and awm(C) can identify the protein complexes with densely interconnected nodes that are sparsely inter-connected to the rest of the PPI network. Therefore, this fitness function could detect various topological properties of protein complexes in PPI networks.

Forming protein complexes

After obtaining protein complex cores, the key is finding the attachment proteins required to form protein complexes that often surround the protein complex core. Attachment proteins are a functionally mixed group of proteins that assist the protein complex core in performing subordinate functions [6, 24, 36]. Meanwhile, attachment proteins directly and closely interact with their protein complex core. Additional file 13 shows an example diagram to describe the Algorithm 3.

Given a protein complex core *PCC* in the PPI network, all its neighbor proteins can be considered potential attachment proteins, *N*(*PCC*). All its inner proteins are removed from the current protein complex core *CPC*. For an attachment protein $v \in N(PCC)$, this paper defines *attachscore*(v, *PCC*) between the potential attachment protein v and the protein complex core *PCC* in the PPI network according to Eq. (9).

$$attachscore(v, PCC) = \frac{\sum_{v \notin PCC, u \in PCC} w(v, u)}{|PCC|},$$
(9)

where $\sum_{v \notin PCC, u \in PCC} w(v, u)$ represents the sum weight of the potential attachment protein v that connects with the protein complex core *PCC*, and |PCC| is the number of proteins in the protein complex core *PCC*. Thus, *attachscore*(v, *PCC*) can effectively estimate the interaction tightness between the potential attachment protein v and the protein complex core *PCC* in the PPI network.

The pseudo-code of the method for obtaining protein complexes is shown in Algorithm 3. For each protein complex core in Algorithm 3, the main operation is to iteratively add its neighbor nodes and delete its internal nodes to identify protein complexes. It includes two steps: Step 1 inserts neighbors into the current protein complex core (lines 5-16). Step 2 deletes inner nodes from the current protein complex core (lines 17-27). Finally, because the diameter of protein complexes is 2, we set the termination condition of the above two-step iteration as that the iteration number is greater than or equal to 2 or the current protein complex is no longer changed (lines 3, 28-29). For current protein complex core, PCC (line 1), we first initialize a candidate protein complex CPC, the number of iterations count, and Iteration termination mark *mark*. Next, we form a candidate protein complex by detecting its attachment proteins based on attachscore(v, CPC) (Eq. (9)) and fitness(CPC) (Eq. (8)). The direct neighboring proteins of the protein complex core, N(CPC), are obtained (line 2). For example, we first do is that the attachment proteins are added into its protein complex core to form the protein complex. If the size of the protein complex core N(CPC) is larger than or equal to 2 or adjust == 1 (line 7), for each potential attachment protein $w \in N(CPC)$, the potential attachment protein *node_{max}* with the largest *attachscore(w, CPC*) with the protein complex core *CPC* is selected as a candidate attachment protein (line 8). Then, the fitness of $CPC \cup \{node_{max}\}$, and the fitness of CPC are calculated using Eq. (9), and if the potential attachment protein $node_{max}$ is inserted into CPC, and the fitness of current protein complex core can be increased. The potential attachment protein nodemax is inserted into CPC to increase the *fitness*(CPC) (Eq. (8)) of CPC (lines 11) and protein *node_{max}* is removed from N(CPC). This process is performed iteratively, and once the new attachment protein *node_{max}* is inserted into the protein complex core *CPC*, the protein complex core CPC is updated. That is, the neighbors of the new cluster CPC are re-constructed, and the potential attachment protein $node_{max} \in N(CPC)$ with the largest attachscore(v, CPC) and the neighbors of the new protein complex core CPC are recalculated. Also, the algorithm is redirected to the new protein complex core CPC (lines 8-15). Otherwise, this process is terminated (lines 13-15). Next, we obtain the inner nodes based on CPC, then we find the nodemin in I(CPC) having the minimum value of $attachscore(v, CPC - \{node_{min}\})$ according to Eq. (9) and calculate the fitness of $CPC - \{node_{min}\}$ and the fitness of CPC based on Eq. (8). If the inner node *node_{min}* is deleted from current protein complex CPC can increase the fitness of CPC, and the inner node *node_{min}* is removed from *CPC*. This process is performed iteratively until |I(CPC)| < 4 and adjust == 0. Steps 1 and 2 are executed circularly until the number of iterations exceeds two or the current protein complex is no longer changed (lines 28-30). For the current protein complex core CPC, if its fitness(CPC) is larger than 0, and its size is larger than or equal to 3, the detected protein complex is inserted into identified protein complexes (CPCs) (lines 32-35). These steps are repeated until the protein complex cores (CPCs) are empty (lines 1-36). Considering that some protein complexes may be the same, this paper eliminates these redundant protein complexes (line 37). This way, the candidate protein complex set *CPCs* is generated (line 38).

```
Algorithm 3 Forming protein complexes
Input: Weighted PPI network, G = (V, E, W), and protein complex cores, PCCs.
Output: Candidate protein complexes, CPCs
1: for each protein complex core PCC in PCCs\ do
       initialize a candidate protein complex, CPC = PCC, mark = 1,count = 0;
3
       Obtain the direct neighbors of CPC, N(CPC);
 4
       while mark do
5:
           initialgraph = copy.deepcopy(CPC);
6:
          initialize addiust = 1:
           while |N(CPC)| \ge 2 and addjust == 1 do
8:
              Find the node_{max} in N(CPC) that has the maximum value of Attachscore(v, CPC) according
    to Eq.(9);
Q٠
              Calculate the fitness of CPC \cup \{node_{max}\} and the fitness of CPC based on Eq.(8);
               if fitness(CPC \cup \{node_{max}\}) > fitness(CPC) then

CPC = CPC \cup \{node_{max}\};
10:
11:
12:
                  N(CPC) = N(CPC) - \{node_{max}\};\
13:
               else
14:
                  addjust = 0;
15:
               end if
16:
            end while
            Obtain the inner nodes based on CPC, I(CPC);
17:
18:
           initialize deljust = 1; while |I(CPC)| \ge 4 and deljust == 1 do
19:
               Find the node_{min} in I(CPC) that has the minimum value of Attachscore(v, CPC - \{node_{min}\})
20:
    according to Eq.(9);
21:
               Calculate the fitness of CPC - \{node_{min}\} and the fitness of CPC based on Eq.(8);
               if fitness(CPC - \{node_{min}\}) > fitness(CPC) then

CPC = CPC - \{node_{min}\};
22:
23:
24:
               else
25:
                  deljust = 0;
26:
               end if
27
            end while
28:
           if count >= 2 or set(CPC) == set(initialgraph) then
29:
               mark = 0;
30:
           end if
31:
        end while
32:
        Calculate the value of fitness(CPC):
33:
        if |CPC| \ge 3 and fitness(CPC) > 0.0 then
34:
            CPCs = CPCs \cup CPC;
35
        end if
36: end for
37: Eliminate redundant protein complexes in CPCs;
38: return Candidate protein complexes, CPCs.
```

Filtering candidate protein complexes

Functional annotations are used to filter the detected protein complexes. The post-processing subroutine for filtering identified protein complexes is shown in Algorithm 4. Based on functional annotations, for each candidate protein complex, *CPC* in the identified candidate protein complexes *CPCs*, a filtered protein complex *FPC* is first initialized (line 1). Then the functional annotation term with the most common proteins in the candidate protein complex is determined, *term*_{maxcommon} (lines 3-4). Next, for each protein *u* in the candidate protein complex *CPC*, the set of functional annotation terms, i.e., *FAT*(*u*), is obtained (lines 5-6). If the protein *u* has *term*_{maxcommon}, the protein *u* is added to the filtered protein complex *FPC* (lines 7-9). This process is continued until all proteins in the detected candidate protein complex *CPC* are analyzed (lines 5-10). Furthermore, if the size of the filtered protein complex *FPC* is larger than or equal to 3, then *FPC* is kept (lines 11-13). As a result, the proteins in the filtered protein complex *FPC* have the same functional annotation term, which indicates whether the proteins in the filtered protein complex perform the same function. Finally, the redundant protein complexes in *FPCs* are eliminated (line 15).

Algorithm 4 Filtering candidate protein complexes
Input: Candidate protein complexes, CPCs.
Output: Filtered protein complexes, <i>FPCs</i> .
1: initialize Filtered protein complexes, $FPCs = \emptyset$;
2: for each identified candidate protein complex CPC in CPCs do
3: initialize a filtered protein complex, $FPC = [];$
4: Search for the most common functional annotation term among the identified candidate protein
complex CPC, term _{maxcommon} ;
5: for each protein $u \in CPC$ do
6: Obtain the set of functional annotation terms of protein u , $FAT(u)$;
7: if $FAT(u)$ have $term_{maxcommon}$ then
8: $FPC = FPC \cup \{u\};$
9: end if
10: end for
11: if $ FPC \ge 3$ then
12: $FPCs = FPCs \cup FPC;$
13: end if
14: end for
15: Eliminate redundant protein complexes in $FPCs$;
16: return Output filtered protein complexes, FPCs.

MP-AHSA algorithm

The MP algorithm has three parameters: the gene co-expression threshold (*GCE*), the inflating of the MCL algorithm (*inflate*), and the ratio of seed nodes (*ratio*), which is used in Algorithm 2. In this paper, we design the adaptive harmony search algorithm (AHSA) to obtain appropriate parameter settings for the MP algorithm.

The harmony search algorithm (HSA) [59] is a new intelligent optimization algorithm. It repeatedly adjusts the solution variables in the harmony memory and converges the objective function with increasing iterations. Compared with other intelligent optimization algorithms, it has the following characteristics:

- It solves variables by harmony simulation without complex coding operations;
- In the HSA, the harmony population is small, which leads to fast operation speed and consumes less memory;

ID	Parameters	Abbreviation	Parameter value range and setting
1	Harmony memory	HMs	30
2	Harmony memory considering rate	HMCR	$HMCR_{max} = 0.95 HMCR_{min} = 0.7$
3	Pitch adjusting rate	PAR	$PAR_{max} = 0.5, PAR_{min} = 0.1$
4	Fret width	FW	$FW_{max} = 0.1, FW_{min} = 0.01$
5	The maximum number of iterations	Maxiter	300
6	Gene co-expression threshold	GCE	$GCE_{min} = 0.6, GCE_{max} = 0.9$
7	The inflate of MCL	Inflate	$inflate_{min} = 0.5, inflate_{max} = 4.0$
8	The ratio of initial seeds	Ratio	$ratio_{min} = 0.5, ratio_{max} = 0.9$

Table 2 Main parameters of AHSA

Table 3	Main modifications of AHSA	

Parameters	Adaptive adjustment
HMCRi	$HMCR_i = HMCR_{min} + i/Maxiter * (HMCR_{max} - HMCR_{min})$
PAR _i	$PAR_i = PAR_{max} - i/Maxiter * (PAR_{max} - PAR_{min})$
FWi	$FW_i = FW_{min} + (FW_{max} - FW_{min}) * ((fitnessmax - currentfitness))*$
	(Maxiter — i)/((fitnessmax — fitnessmin) * Maxiter))

i is the times of iteration

- The convergence and search speed of HSA do rely on have little relation with the initial state of the population, and the result is not affected by the initial state;
- Every harmony in the harmony library participates in variation, and a new harmony is generated by fully using the information in the harmony library.

Traditional HSA mainly have three parameters: HMCR, PAR, and FW. These parameters are usually set as constants, but this suffers from slow convergence speed and low search accuracy. Therefore, we propose an adaptive harmony search algorithm (AHSA) to address this issue.

The improvements to the traditional harmony algorithm have two aspects. The main parameters of the AHSA algorithm are first introduced in Table 2. Meanwhile, according to the definition of these parameters in Table 3, HMCR_i: The probability of taking a harmony from an existing harmony library, and it controls the global search capability. When the algorithm starts searching, the value of $HMCR_i$ is relatively small, and the parameter solution space is searched globally to obtain a better solution. As the number of iterations increases, the value of $HMCR_i$ gradually increases to reduce the possibility of a global search. It increases the local search's possibility and makes the algorithm converge as quickly as possible. PAR_i : The probability of finetuning the harmony obtained from the harmony library controls the probability of local search. If it is not set appropriately, it will affect the convergence speed of the algorithm. Note that when harmony reaches the neighborhood of the optimal solution with the increase of the number of iterations, PAR_i should be fine-tuned with a significant probability. When the fitness in the harmony memory is relatively close, PAR_i should be significant. FW_i is the amplitude of pitch fine-tuning, corresponding to the harmony algorithm's search step. The harmony vector is scattered in the

solution space in the initial stage. A large adaptive is conducive to the global search of the algorithm, and the fitness variance of each harmony in the memory is slight, small adaptive step size is conducive to the local search of the algorithm. For the fine-tuning step size problem, this paper uses the number of iterations and the fitness of the current harmony to adjust the parameter FW_i . It can be ensured that the AHSA algorithm has strong adaptability and robustness. Second, a novel parameter adaptive adjustment strategy based on $OF_{fitness}$ and the iteration times *i* are designed to improve the searchability and robustness.

Finally, an optimized objective function is defined to guide the AHSA algorithm in searching for the best parameter value for the MP algorithm. We defined the sum of the fitness function of the detected protein complexes is defined as the objective function, as shown in Eq. (10):

$$OF_{fitness} = \sum_{i=1}^{K} fitness(C_i), \tag{10}$$

where *K* is the number of identified protein complexes, and $fitness(C_i)$ represents the fitness function of the *i*th identified protein complex (C_i). The higher the $OF_{fitness}$ of the identified protein complexes, the better the quality. Therefore, the parameter optimization problem of the protein complex detection algorithm is transformed into a problem of finding the set of identified protein complexes with maximum $OF_{fitness}$ within PPI networks.

As a result, the main parameters of the MP algorithm include *GCE*, *inflate*, and *ratio*. In this paper, the AHSA algorithm is used to optimize the MP algorithm's these parameters (hereafter referred to as the MP-AHSA algorithm). The overall MP-AHSA algorithm is described in Algorithm 5. First, the basic parameters of the AHSA algorithm are set, shown in Table 3 (line 2). Then, the harmony memory *HMs* is initialized based on different parameters and their value ranges, as shown in Table 2 (line 3). Next, the best parameter settings of the MP algorithm are searched repeatedly by creating a new harmony or transforming a harmony from the generated harmony memory (*HMs*) based on $OF_{fitness}$ (lines 4-39). Here, two stages are involved. One selects harmony, and the other adjusts the parameters of the harmony based on the width of the fret *FW*. Additional file 14 shows the flow of the MP-AHSA algorithm to describe it.

In the stage of harmony selection, a variable R1 is randomly generated within [0,1], and it is compared with $HMCR_i$ based on Table 3 (lines 7-8). If $R1 < HMCR_i$, a harmony HM is selected from the harmony memory (HMs) using the roulette wheel selection strategy (line 10). Otherwise, a new harmony is randomly generated according to the parameters and their value ranges in Table 2 (lines 11-17). Then, the maximum and minimum values of $OF_{fitness}$ in HMs are determined and recorded as *fitnessmax* and *fitnessmin*, respectively. Next, the value of FW_i is calculated based on the number of iterations *i*, *fitnessmax*, and *fitnessmin*. If the harmony is obtained from the harmony memory (lines 10 and 20), a random number R2 between [0,1] is generated. The value of PAR_i is calculated (lines 21-22). If R2 < PAR, according to the fine-tuning bandwidth FW_i , the parameters of the harmony HM are adjusted to obtain a new harmony (lines 23-28).

If $R1 \leq HMCR_i$, minor modifications are made to the parameters of the randomly generated harmony HM_{new} based on the fine-tuning bandwidth FW_i (lines 29-34). Then, the $OF_{fitness}(HM_{new})$ is calculated according to Eq. (8) (line 35). Suppose the $OF_{fitness}(HM_{new})$ of the newly improvised harmony is better than the $OF_{fitness}(HMs_{min})$ of the worst harmony in HMs. In that case, it is replaced to update the harmony memory HMs (line 36). Step 3 is repeated many times until a certain termination time *Maxiter* is satisfied (lines 6-39).

Finally, in step 4, according to the $OF_{fitness}$ in Eq. (10), the highest fitness harmony in the harmony memory *HMs* is obtained. It is considered the best clustering output (*HMs*_{best}), and its parameters are appropriate for the input PPI network of the MP algorithm. At this time, this harmony is the identified protein complexes (*IPCs*)(lines 40-42).

Algorithm 5 MP-AHSA algorithm

```
Input: MP algorithm and the weighted PPI network, G(V, E, W).
Output: Identified protein complexes, IPCs
  1: initialize Identified protein complexes, IPCs = \emptyset;
  2: Step 1: Set the parameters of MP-AHSA algorithm according to Table 2;
  3: Step 2: Randomly generate HMs harmony memory based on different parameters and their values
       range and calculated their OF_{fitness}
  4: Step 3: Search the best parameters of MP algorithm based on OF_{fitness} and adaptation harmony
       search algorithm.
  5: initialize i = 0;
       while i < Maxiter do
  6:
              HMCR_i = HMCR_{min} + (HMCR_{max} - HMCR_{min})^*(i/Maxiter);
  7:
              R1 = random.uniform(0.0, 1.0);
 8.
             if R1 < HMCR_i then
 Q٠
                    Randomly select a HM from HMs by roulette wheel selection strategy, and calculate its
10:
       OF_{fitness}, current fitness;
11:
              else
                    GCE_{new} = GCE_{min} + (GCE_{max} - GCE_{min}) * random.uniform(0.0, 1.0);
12:
                    inflate_{new} = inflate_{min} + (inflate_{max} - inflate_{min}) * random.uniform(0.0, 1.0);
13:
14:
                     ratio_{new} = ratio_{min} + (ratio_{max} - ratio_{min})^* random.uniform(0.0, 1.0);
15:
                     HM_{new} = MP \operatorname{algorithm}(GE_{new}, inflate_{new}, ratio_{new}, G(V, E, W));
                    calculate the OF_{fitness} of HM_{new}, current fitness
16:
              end if
17:
              Find the maximum and minimum of OF_{fitness} in HMs, fitnessmax, fitnessmin;
18:
              FW_i = FW_{min} + (FW_{max} - FW_{min}) * ((fitnessmax - current fitness) * (Maxiter - FW_{min}) + (FW_{max} - FW_{min}) + (FW_{min}) +
19:
             ((fitnessmax - fitnessmin) * Maxiter));
       i
20:
              if \exists HM then
21:
                     R2 = random.uniform(0.0, 1.0);
                     PAR_i = PAR_{max}-i/Maxiter*(PAR_{max}-PAR_{min})
22:
23:
                    if R2 > PAR_i then
                           GCE_{Adjust} = HM.GCE + /- FW_i^{*}(GCE_{max}-GCE_{min});
24:
                          inflate_{Adjust} = HM.inflate +/- FW_i^*(inflate_{max}-inflate_{min});
ratio_{Adjust} = HM.ratio+/- FW_i^*(ratio_{max}-ratio_{min});
25:
26:
27:
                            HM_{new} = MP algorithm(GCE_{Adjust}, inflate_{Adjust}, ratio_{Adjust}, G(V, E, W));
28:
                    end if
29:
              else
                     GCE_{Adjust} = GCE_{new} + /- FW_i^*(GCE_{max}-GCE_{min});
30
                    inflate_{Adjust} = inflate_{new} + /- FW_i^*(inflate_{max} - inflate_{min});
ratio_{Adjust} = ratio_{new} + /- FW_i^*(ratio_{max} - ratio_{min});
31:
32:
33:
                     HM_{new} = MP \text{ algorithm}(GCE_{Adjust}, inflate_{Adjust}, ratio_{Adjust}, G(V, E, W));
34:
              end if
              Calculate OF_{fitness}(HM_{new}) according to Eq.(8);
35:
36:
              If OF_{fitness}(HM_{new}) of newly improvised harmony is better than OF_{fitness}(HMs_{min}) of
       the worst harmony in HMs, then replace it;
37:
              i = i + 1;
38: end while
39: Terminate if i \ge Maxiter. Otherwise repeat Step 3;
40: Step 4: Determine the best solution (HMs_{best}) given by the best harmony in HMs according to
       their fitness using Eq.(10), and obtained its parameters;
41: Obtain the identified protein complexes, IPCs = HMs_{best};
42: return Identified protein complexes, IPCs.
```

Results

Datasets

In this study, three PPI networks are used to conduct the verification experiments: the Collins [60], the Gavin [43], the Krogan [61], String(Saccharomyces cerevisiae, and interaction score \geq 997. It can be downloaded from https://cn.string-db.org/cgi/download?s essionId=bjRXzv9e247w), DIP(yeast, and the release date 2015/07/01) [62], and Biogrid (Saccharomyces cerevisiae and these interactions are obtained using different methods from 2020 to 2022 years)) [63] datasets. The detailed properties of these PPI datasets are shown in Table 4. Here, the self-interactions and duplicate interactions are eliminated. If you want to obtain these datasets, please see the Additional files 1, 2, 3, 4, 5, 6 in Supplementary Information.

We used two standard protein complexes of the yeast Saccharomyces cerevisiae (SGD) taken from the literature [36]. The properties of these known protein complexes are shown in Table 5. Standard protein complexes 1 consists of the known protein complexes from MIPS [64], SGD [65], TAP06 [43], ALOY [66], CYC2008 [16], and NEW-MIPS [67]. Standard protein complexes 2 is also a combined protein complex dataset [68], and it consists of the Wodak database, PINdb and GO complexes [68]. If you want to obtain the two standard protein complexes, please see the Additional files 10, 11 in Supplementary Information.

In this study, GO-slim data (available at https://downlo ads.yeastgenome.org) are used to describe the functional similarity of the interactions. Gene expression data is obtained from https://www.ncbi.nlm.nih.gov/sites/GDSbrowser. In addition, subcellular localization data is obtained from https://compartments.jensenlab.org/Dow nloads. If you want to obtain the these biological data, please see the Additional files 7, 8, 9 in Supplementary Information. The stand-alone code of the MP-AHSA algorithm and the datasets are available at: https://github.com/RongquanWang/MP-AHSA.

Evaluation metrics

In the present study, F-measure, accuracy (ACC), maximum matching ratio (MMR), Jaccard, and total score are used as the computational evaluation metrics to evaluate the performance of protein complex detection algorithms, with *S* and *D* denoting the known and identified protein complexes by a detection method, respectively.

Neighborhood affinity

 S_i represents a standard protein complex in S, and D_j is a discovered protein complex D. Thus, their neighborhood affinity score $(NA(S_i, D_j))$ [69] describes the similarity of two protein complexes S_i and D_j as defined by Eq. (11):

$$NA(S_i, D_j) = \frac{|S_i \cap D_j|^2}{|S_i| \times |D_j|},$$
(11)

Generally, if $NA(S_i, D_j)$ is larger than or equal to 0.2, the protein complexes S_i and D_j are regarded as matching [6].

Dataset	Nodes	Edges	Density
Collins	1622	9074	0.006902317076
Gavin	1855	7669	0.004459796985
Krogan	2674	7075	0.001979684934
String	1366	5071	0.005439265468
DIP	4696	21822	0.001979524413
Biogrid	4093	13178	0.001573628198

Table 4 Detailed properties of the experimental PPI networks used in the study

Table 5 Properties of the standard protein complexes used in the study

Datasets	Num	РС	AS
standard protein complexes 1	812	2773	8.92
standard protein complexes 2	1045	2778	8.97

AS: average size of the protein complexes; Num: number of protein complexes; PC: number of proteins

F-measure

With N_{sm} representing the number of standard protein complexes that match at least one detected protein complex, that is, $N_{sm} = |\{s|s \in S, \exists d \in D, NA(s, d) \ge \omega\}|$, and with N_{im} being the number of detected protein complexes that match at least one standard protein complex, that is, $N_{im} = |\{d|d \in D, \exists s \in S, NA(d, s) \ge \omega\}|$, where ω is a pre-defined threshold and is usually set as 0.20; then, recall and precision are defined as *recall* = $\frac{N_{sm}}{|S|}$ and *precision* = $\frac{N_{im}}{|D|}$, respectively. Finally, the F-measure is represented by the compromise between precision and recall, as defined by Eq. (12):

$$F - measure = \frac{2 \times precision \times recall}{precision + recall}.$$
(12)

ACC

 T_{ij} is the number of proteins. These proteins are included in the standard protein complex S_i and the detected protein complex D_j . Then, Sn and PPV are calculated by $Sn = \frac{\sum_{i=1}^{|S|} \max_{j=1}^{|I|} \{T_{ij}\}}{\sum_{i=1}^{|S|} N_i}$ and $PPV = \frac{\sum_{j=1}^{|D|} \max_{i=1}^{|S|} \{T_{ij}\}}{\sum_{j=1}^{|D|} \sum_{i=1}^{|S|} T_{ij}}$, respectively. As a result, ACC is defined by Eq. (13):

$$ACC = \sqrt{Sn \times PPV}.$$
(13)

MMR

The third metric is the MMR [19], which is based on a maximal one-to-one mapping between standard and detected protein complexes. First, each standard protein complex $S_i \in S$ and detected protein complex $D_j \in D$ are connected by the weight $NA(S_i, D_j)$ edge. The MMR is represented as the sum of the weight of all selected edges divided by |S|, as denoted by Eq. (14):

$$MMR = \frac{\sum_{i=1}^{|S|} \max_{j} NA(S_i, D_j)}{|S|}.$$
(14)

Fraction

The fraction criterion [19] is an indicator for identification coverage, which measures the percentage of standard protein complexes matched by detected protein complexes. With *S* representing the set of standard protein complexes and *D* being the set of identified protein complexes, the fraction is defined by Eq. (15):

$$N_{s} = |s|s \in S, \exists d \in D, NA(d, s) \ge w|,$$

$$Frac = \frac{N_{s}}{|S|}.$$
(15)

The fraction of gold standard complexes matches at least one detected protein complex. The threshold ω is set to 0.25, which guarantees that at least half of proteins in a matched standard protein complex are distinguished by at least half of the proteins in a matched detected protein complex.

Jaccard

Jaccard is the final category for measuring the clustering methods. Herein, the Jaccard of a standard protein complex $S_i \in S$ and a discovered protein complex $D_j \in D$ was defined as $Jac(S_i, D_j) = \frac{|S_i \cap D_j|}{|S_i \cup D_j|}$. For a discovered protein complex D_j , its Jaccard is $Jac(D_j) = max_{S_i \in S} Jac(D_i, S_i)$, and for a standard protein complex S_i , its Jaccard is $Jac(S_i) = max_{D_j \in D} Jac(S_i, D_j)$. Then, for detected protein complexes D, its average of the weighted Jaccard is $JaccardD = \frac{\sum_{D_j \in D} |D_j| Jac(D_j)}{\sum_{D_j \in D} |D_j|}$. Similarly, for the standard protein complexes S, its JaccardS is defined by $JaccardS = \frac{\sum_{S_i \in S} |S_i| Jac(S_i)}{\sum_{S_i \in S} |S_i|}$. Finally, the Jaccard is calculated by Eq. (16):

$$Jaccard = \frac{2 \times (JaccardD \times JaccardS)}{JaccardD + JaccardS}.$$
(16)

Total score

To simultaneously consider F-measure, ACC, MMR, Frac, and Jaccard, we use the comprehensive score (total score), given by Eq. (17), to measure the performance of various methods [36].

$$total \ score = F - measure + ACC + MMR + Frac + Jaccard.$$
(17)

Comparison with competing methods

To demonstrate the performance of MP-AHSA, we compared it with 14 state-of-the-art protein complex identification methods using the Collins [60], Gavin [43], Krogan core [61] String, DIP [62], and Biogrid [63] datasets. The competing methods used were MCL [11], IPCA [8], COACH [16], CMC [15], ClusterONE [19], PEWCC [23], WPNCA [17],

WEC [27], ClusterEPs [37], ClusterSS [38], SE-DMTG [20], MPC-C [36] and GCC-v [25]. Generally, it has been found that the author-suggested parameter settings generate the best results. The values of the parameters used in the different methods are shown in Table 6.

Figures 3, 4 and 5 show the comparison results of 14 competing methods concerning six evaluation metrics (F-measure, ACC, MMR, Frac, Jaccard, and total score). As shown in Figure 3, according to the standard protein complexes 1, MP-AHSA achieves the best results on the F-measure, MMR, and total score statistics. MCL obtains the highest ACC in all PPI datasets. In contrast, MP-AHSA ranks fifth concerning ACC on the Collins dataset, which is lower than the MCL outcome. Meanwhile, PEWCC achieves the best score Frac, and SE-DMTG achieves the highest Jaccard. In contrast, MP-AHSA ranks second and third in terms of Frac and Jaccard, respectively. Meanwhile, when standard protein complexes 2 is used as known protein complexes, MP-AHSA achieves the best performance for MMR and Frac except for ACC, Jaccard, and total score metrics in the Collins dataset. In the Gavin dataset is shown in Figure 4, using standard protein complexes 1 as real protein complexes, PEWCC has a total score value of 2.4973, ranking first among all methods. However, it identifies 664 protein complexes, far more than the number of protein complexes our MP-AHSA recognizes. Moreover, MP-AHSA ranks second concerning the F-measure metric. SE-DMTG obtains the highest Jaccard. When using the standard protein complexes 2, MP-AHSA ranks second in F-measure, second for MMR, second for Jaccard, and second for the ACC statistic. Noteworthily, it achieves the best results on the Frac and total score statistics. In the Krogan core dataset is shown in Figure 5, MP-AHSA achieves the best results regarding the MMR, Frac, Jaccard, and total score static, ranking third on the F-measure statistic in standard protein complexes 1. Furthermore, in standard protein complexes 2, the MP-AHSA algorithm shows the best performance concerning F-measure, MMR, Frac, Jaccard, and total score. It reaches the third-highest level in terms of ACC metrics.

To further verify the performance of our algorithm, we also use three new PPI networks to evaluate these identification algorithms. The evaluation results are shown in Additional files 15, 16, and 17. From the experimental results, we can see that the performance of our algorithm on these datasets is consistent with the performance of the Collins, Gavin, and Krogan datasets. These experimental results show that the MP-AHSA algorithm has strong adaptability and stability to different PPI networks from different datasets.

Altogether, these comparative experimental results show that the MP-AHSA can achieve a higher total score than all the compared methods in most datasets. According to the above-described analysis, multiple PPI datasets and standard protein complexes are used. The MP-AHSA algorithm consistently achieves superior results in most evaluation metrics.

Case study

In this study, we provide an example of the 148th protein complex comprising 6 proteins in standard protein complexes 1 to show the performance of the described approach. Figure 6 shows the results of different methods used for identifying the protein complex

ID	Year	Algorithm	Parameters
1	2004	MCL	inflation=2
2	2008	IPCA	$S=3,P=2,T_{in}=0.6$
3	2008	COACH	w=0.225
4	2009	CMC	min_deg_ratio=1,min_size=3, overlap_thres=0.5,mergethres=0.25
5	2010	SPICi	Graph mode=0,minimum support threshold= 0.5, minimum cluster size= 3, minimum density threshold=0.5
6	2012	ClusterONE	Density=auto,Overlap threshold=0.8
7	2013	PEWCC	Overlap=0.8,-r=0.1,Re-join=0.3
8	2015	WPNCA	lambda=0.3,minimum cluster size=3
9	2016	WEC	Balance factor (λ)=0.8,Edge weight (T_w)=0.7,Enrichment(T_e)=0.8, Filtering(T_f)=0.9
10	2018	ClusterEPs	NEPs of Complexes(minimum support threshold=0.4,maximum support threshold=0.05);
			NEPs of non-complexes(maximum support threshold=0.05, minimum support threshold=0.4)
			;maximum overlap=0.9,Maximum size of clusters=100
11	2018	ClusterSS	numEpochs = 500,learnRate =0.2,thresholdIn=1.0,thresholdOut=1.02, negativeTime=20, minimum cluster size=3
12	2019	SE-DMTG	minimum cluster size=3
13	2020	MPC-C	Overlap threshold=0.8,minimum cluster size=3
14	2021	GCC-v	Minimum cluster size=3

 Table 6
 Parameters of each method used in the study

in the Gavin dataset. We define an output format to assist the readers in a more straightforward assessment of the information. For example, MP-AHSA-0.83-5 means that the neighborhood affinity Eq. (11) between our algorithm and the 148th protein complex is 0.83 and that our algorithm contains 5 proteins.

As shown in Figure 6, our method achieves the highest ratio of proteins in the 148th protein complex. Specifically, only MP-AHSA covers the 5 standard proteins and misses one standard protein. ClusterONE, ClusterSS, ClusterEPs, COACH, IPCA, MCL, MPC-C, GCC-v, PEWCC, SE-DMTG, WEC, and WPNCA all miss a standard protein. Moreover, ClusterONE, ClusterSS, CMC, ClusterEPs, COACH, IPCA, MCL, GCC-v, PEWCC, SE-DMTG, SPICi, WEC, and WPNCA only covered part of the standard proteins and detected some false-positive proteins. In conclusion, our algorithm only misses a standard protein to the 148th standard protein complex and shows the best predictive performance.

Discussion

Functional enrichment analysis

Additionally, we also use the proportion of biologically significant protein complexes to evaluate the detected protein complexes. The p-value of a protein complex C with respect to a functional group F is denoted by Eq. (18):

$$p - value = 1 - \sum_{i=0}^{k-1} \frac{\binom{|F|}{i} \binom{|V| - |F|}{|C| - i}}{\binom{|V|}{|C|}},$$
(18)

Collins dataset and standard protein complexes 1

2.2 2 1.8 1.6 1.4 total score 1.2 1 1 DET'D 0.2040.182 0.164561 0.207 0.160 1 0.8 0.6 0.4 0.2 0 ClusterONE SE: DMTC ClustertPs MPC-C MP-AHSA PENCC WPNCA Clusters coach CMC SPICI WEC IPCA GCC.N WCL

Collins dataset and standard protein complexes 2

F-measure ACC MMR Frac Jaccard

Fig. 3 Comparative analysis of identified protein complexes from different approaches in Collins PPI network and two standard protein complexes. The comparative analyses are based on a total score that is a sum of ACC, F-measure, MMR, Frac, and Jaccard (see Evaluation metrics)

where *k* represents the number of proteins covered in *C* and *F*, and *V* represents the set of proteins in a PPI network. If the smallest p-value of *C* concerning all functional groups is smaller than 0.01, the detected protein complex *C* was regarded as biologically significant. Herein, we use the fast tool LAGO [70] to compute the p-value of the detected protein complexes.

Gavin dataset and standard protein complexes 1

Gavin dataset and standard protein complexes 2

Fig. 4 Comparative analysis of identified protein complexes from different approaches in Gavin PPI network and two standard protein complexes. The comparative analyses are based on a total score that is a sum of ACC, F-measure, MMR, Frac, and Jaccard (see Evaluation metrics)

Comparison with functional enrichment

To further estimate the effectiveness of the MP-AHSA algorithm, we investigate the biological significance of the identified protein complexes. Here, each protein complex is identified by the various methods associated with a p-value for GO annotation. The percentage of biological significant protein complexes detected by different methods is

Krogan dataset and standard protein complexes 2

Fig. 5 Comparative analysis of identified protein complexes from different approaches in Krogan PPI network and two standard protein complexes. The comparative analyses are based on a total score that is a sum of ACC, F-measure, MMR, Frac, and Jaccard (see Evaluation metrics)

shown in Table 7 and Additional file 18. Herein, the number and percentage of the identified complexes, for which p-value was in the range of \leq E-20, [E-20, E-15), [E-15, E-10), [E-10, E-5), [E-5, 0.01), \leq 0.01, are listed in Table 7 and Additional file 18.

As Table 7 shows, in the Collins dataset, our MP-AHSA achieves second in the percentage of biologically significant protein complexes, reaching 97.1%, which is lower

Fig. 6 The 390th protein complex in standard protein complexes 1 detected by different methods based on the Gavin dataset. True positive, false-positive, and false-negative proteins are shown in red, blue, and yellow, respectively

Method	<(E -20)	[E-20,E-15)	[E-15,E-10)	[E-10,E-5)	[E-5,0.01)	≼ 0.01
Collins dataset						
MCL	62(39.24%)	9(5.7%)	25(15.82%)	40(25.32%)	4(2.53%)	140(88.61%)
IPCA	108(31.58%)	37(10.82%)	63(18.42%)	97(28.36%)	16(4.68%)	321(93.86%)
COACH	64(25.5%)	22(8.76%)	39(15.54%)	80(31.87%)	14(5.58%)	219(87.25%)
CMC	54(30.51%)	17(9.6%)	22(12.43%)	63(35.59%)	8(4.52%)	164(92.66%)
SPICi	62(51.24%)	10(8.26%)	19(15.7%)	25(20.66%)	3(2.48%)	119(98.35%) ^{1st}
ClusterONE	47(23.15%)	19(9.36%)	45(22.17%)	61(30.05%)	11(5.42%)	183(90.15%)
PEWCC	128(30.05%)	21(4.93%)	104(24.41%)	120(28.17%)	18(4.23%)	391(91.78%)
WPNCA	90(33.46%)	33(12.27%)	61(22.68%)	52(19.33%)	7(2.6%)	243(90.33%)
WEC	394(40.74%)	81(8.38%)	174(17.99%)	261(26.99%)	23(2.38%)	933(96.48%)
ClusterEPs	4(0.68%)	13(2.21%)	95(16.18%)	350(59.63%)	74(12.61%)	536(91.31%)
ClusterSS	22(10.05%)	19(8.68%)	48(21.92%)	93(42.47%)	18(8.22%)	200(91.32%)
	28(12.96%)	25(11.57%)	45(20.83%)	85(39.35%)	19(8.8%)	202(93.52%)
SE-DMTG	58(34.73%)	22(13.17%)	29(17.37%)	46(27.54%)	6(3.59%)	161(96.41%)
MPC-C	75(27.37%)	35(12.77%)	49(17.88%)	86(31.39%)	10(3.65%)	255(93.07%)
GCC-v	11(5.16%)	19(8.92%)	28(13.15%)	107(50.23%)	29(13.62%)	194(91.08%)
MP-AHSA	75(27.17%)	36(13.04%)	48(17.39%)	94(34.06%)	15(5.43%)	268(97.1%) ^{2nd}
Gavin dataset						
MCL	24(10.91%)	22(10.0%)	35(15.91%)	72(32.73%)	22(10.0%)	175(79.55%)
IPCA	121(26.08%)	58(12.5%)	70(15.09%)	106(22.84%)	41(8.84%)	396(85.34%)
COACH	124(34.35%)	34(9.42%)	52(14.4%)	83(22.99%)	18(4.99%)	311(86.15%)
CMC	71(24.15%)	15(5.1%)	40(13.61%)	76(25.85%)	21(7.14%)	223(75.85%)
SPICi	47(24.87%)	15(7.94%)	30(15.87%)	54(28.57%)	17(8.99%)	163(86.24%)
ClusterONE	52(20.16%)	11(4.26%)	36(13.95%)	78(30.23%)	20(7.75%)	197(76.36%)
PEWCC	76(11.45%)	51(7.68%)	108(16.27%)	224(33.73%)	77(11.6%)	536(80.72%)
WPNCA	128(26.45%)	32(6.61%)	100(20.66%)	158(32.64%)	19(3.93%)	437(90.29%)
WEC	261(28.87%)	82(9.07%)	151(16.7%)	234(25.88%)	66(7.3%)	794(87.83%)
ClusterEPs	74(27.31%)	35(12.92%)	47(17.34%)	62(22.88%)	22(8.12%)	240(88.56%)
ClusterSS	27(6.47%)	24(5.76%)	57(13.67%)	178(42.69%)	50(11.99%)	336(80.58%)
	30(7.59%)	21(5.32%)	68(17.22%)	165(41.77%)	42(10.63%)	326(82.53%)
SE-DMTG	82(35.65%)	35(15.22%)	38(16.52%)	48(20.87%)	13(5.65%)	216(93.91%) ^{2nd}
MPC-C	124(31.16%)	38(9.55%)	58(14.57%)	152(38.19%)	10(2.51%)	382(95.98%) ^{1st}
GCC-v	13(4.45%)	15(5.14%)	27(9.25%)	101(34.59%)	44(15.07%)	200(68.49%)
MP-AHSA	100(27.17%)	30(8.15%)	58(15.76%)	125(33.97%)	32(8.7%)	345(93.75%)
Krogan dataset	, ,		. ,			, , , , , , , , , , , , , , , , , , ,
MCL	31(8.38%)	23(6.22%)	40(10.81%)	118(31.89%)	31(8.38%)	243(65.68%)
IPCA	101(17.35%)	70(12.03%)	90(15.46%)	218(37.46%)	39(6.7%)	518(89.0%)
COACH	68(19.71%)	33(9.57%)	53(15.36%)	118(34.2%)	27(7.83%)	299(86.67%)
CMC	36(13.64%)	19(7.2%)	38(14.39%)	92(34.85%)	21(7.95%)	206(78.03%)
SPICi	10(4.46%)	17(7.59%)	42(18.75%)	68(30.36%)	25(11.16%)	162(72.32%)
ClusterONE	34(14.17%)	16(6.67%)	34(14.17%)	109(45.42%)	14(5.83%)	207(86.25%)
PEWCC	146(37.53%)	50(12.85%)	71(18.25%)	95(24.42%)	16(4.11%)	378(97.17%) ^{1st}
WPNCA	106(28.73%)	52(14.09%)	61(16.53%)	114(30.89%)	17(4.61%)	350(94.85%)
WEC	171(33.14%)	64(12.4%)	88(17.05%)	141(27.33%)	19(3.68%)	483(93.6%)
ClusterEPs	53(12.93%)	32(7.8%)	57(13.9%)	237(57.8%)	14(3.41%)	393(95.85%)
ClusterSS	35(7.73%)	33(7.28%)	50(11.04%)	188(41.5%)	34(7.51%)	340(75.06%)
	42(17.43%)	33(13.69%)	43(17.84%)	92(38.17%)	12(4.98%)	222(92.12%)
SE-DMTG	33(9.14%)	33(9.14%)	69(19.11%)	173(47.92%)	23(6.37%)	331(91.69%)
MPC-C	93(20.39%)	70(15.35%)	110(24.12%)	160(35.09%)	7(1.54%)	440(96.49%) ^{2nd}
GCC-v	11(3.53%)	9(2.88%)	28(8.97%)	148(47.44%)	29(9.29%)	225(72.12%)
MP-AHSA	75(14.71%)	35(6.86%)	90(17.65%)	232(45.49%)	27(5.29%)	459(90.0%)

Table 7 Functional enrichment analysis of protein complexes detected by different methods in Collins, Gavin and Krogan datasets

Table 7 (continued)

The highest score of each row are shown in bold

than that of the SPICi method. However, SPICi only detected 121 protein complexes, which is also why it can get a higher percentage of biologically significant protein complexes than the output of MP-AHSA. In the Gavin dataset, MPC-C achieves the best percentage of biologically significant protein complexes, which is better than MP-AHSA based on Table 7. In the Krogan dataset, PEWCC achieves the best percentage of biologically significant protein complexes. It outperforms our MP-AHSA algorithm. Two reasons are: (1) MP-AHSA predicted more detected protein complexes than PEWCC, and (2) the average size of the detected protein complexes identified by PEWCC is more significant than that of MP-AHSA. In particular, the average size of the detected protein complexes size of the detected protein complexes is minimal [20]. Note that as the p-value of an identified protein complex is closely associated with the size, the p-value gradually decreases as the size of the detected protein complexes increases [16, 17, 20].

Meanwhile, we also calculate the p-value of three new PPI networks to obtain functional enrichment analysis to measure the biologically significant of identified protein complexes by different algorithms. The evaluation results are shown in Additional file 18. From the experimental results, we can see that the performance of our algorithm on these datasets is the best in all protein complex detection methods. These experimental results illustrate that the MP-AHSA algorithm can identify biological protein complexes, and our method has strong stability in different PPI networks.

In conclusion, MP-AHSA can identify more protein complexes with significant GO terms. Although some of those identified protein complexes are not known, they are more likely to be experimentally verified as factual protein complexes by biologists. Therefore, based on the p-value results, the MP-AHSA algorithm can effectively detect biologically meaningful protein complexes.

Conclusions

Detection of protein complexes is essential to understanding cellular mechanisms. In this study, the MP-AHSA algorithm is proposed to identify protein complexes. First, a weighted PPI network is designed using the TCSS method based on functional annotations. Then, local protein complex cores are identified based on co-subcellular localization and gene co-expression datas. Global protein complex cores are detected using the MCL method. Second, a new fitness function is defined to guide mining attachment proteins. Third, all candidate protein complexes are filtered to obtain the filtered protein complexes. Finally, the AHSA algorithm is used to determine the parameter settings of the MP algorithm based on the input PPI network. The experimental results on widely used PPI networks indicate that the MP-AHSA algorithm outperforms 14 competing methods and can effectively detect biologically meaningful protein complexes. In the future, advanced machine learning techniques, such as ensemble learning and graph attention networks will be applied to this field.

Abbreviations

PPI	Protein-protein interaction
MP	Multiple properties
MP-AHSA	Multiple properties with an adaptation harmony search algorithm
MCL	Markov cluster algorithm
TAP-MS	Tandem affinity purification with mass spectrometry
TCSS	Topological clustering semantic similarity
CC	Cellular component
BP	Biological process
MP	Molecular function
SLD	Subcellular localization data
GED	Gene expression data
HSA	Harmony search algorithm
GCE	Gene co-expression threshold
inflate	The inflate of the MCL algorithm
ratio	The ratio of seed nodes
HMs	Harmony memory
HMCR	Harmony memory considering rate
PAR	Pitch adjusting rate
FW	Fret width
Maxiter	The maximum number of iterations
ACC	Accuracy
MMR	Maximum matching ratio
Frac	Fraction
total score	The composite score of F-measure, ACC, MMR, Frac and Jaccard
Num	Number of protein complexes
AS	Average size of the protein complexes
PC	Number of proteins.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s12859-022-04923-4.

Additional file 1. Collins PPI network. Additional file 2. Gavin PPI network. Additional file 3. Krogan PPI network. Additional file 4. String PPI network. Additional file 5. DIP PPI network. Additional file 6. Biogrid PPI network. Additional file 7. Gene expression data. Additional file 8. Go slim mapping. Additional file 9. Subcellular localization data. Additional file 10. Standardcomplexes1. Additional file 11. Standardcomplexes2 Additional file 12. An example diagram to describe the Algorithm 2. Additional file 13. An example diagram to describe the Algorithm 3. Additional file 14. An example diagram to describe the Algorithm 5. Additional file 15. Experimental results on String dataset. Additional file 16. Experimental results on DIP dataset. Additional file 17. Experimental results on Biogrid dataset.

Additional file 18. Functional enrichment analysis of protein complexes detected in String, DIP and Biogrid datasets.

Acknowledgements

The funders provided financial support to the research but had no role in the study design, analysis, data interpretation, and manuscript writing.

Author contributions

Conceived and designed experiments, methodology, software, validation and writing—original draft preparation: R.W.; Data analyses, formal analysis and writing—review and editing: R.W. and C.W.; Contributed reagents/materials/computer resources: R.W. and H.M.; Supervision and project administration, H.M.; All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the Fundamental Research Funds for the Central Universities (No. FRF-TP-20-064A1Z), the Interdisciplinary Research Project for Young Teachers of USTB (Fundamental Research Funds for the Central Universities) (No.FRF-IDRY-21-001), the R &D Program of CAAC Key Laboratory of Flight Techniques and Flight Safety (NO. FZ2021ZZ05), and the National Natural Science Foundation of China (No. U20B2062 and No. 62172036). The funders provided financial support to the research but had no role in the study's design, analysis, interpretations of data, and writing the manuscript.

Availability of data and materials

The datasets and the stand-alone code of the MP-AHSA algorithm are available in https://github.com/RongquanWang/ MP-AHSA or it is available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Received: 22 April 2022 Accepted: 12 September 2022 Published online: 07 October 2022

References

- De Las Rivas J, Fontanillo C. Protein-protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput Biol. 2010;6(6):1000807.
- Gavin A-C, Bösche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon A-M, Cruciat C-M, et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature. 2002;415(6868):141–7.
- 3. Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Séraphin B. A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol. 1999;17(10):1030–2.
- 4. Berger B, Peng J, Singh M. Computational solutions for omics data. Nat Rev Genet. 2013;14(5):333-46.
- Chien C-T, Bartel PL, Sternglanz R, Fields S. The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc Natl Acad Sci. 1991;88(21):9578–82.
- 6. Li X, Wu M, Kwoh C-K, Ng S-K. Computational approaches for detecting protein complexes from protein interaction networks: a survey. BMC Genomics. 2010;11(1):1–19.
- Wu Z, Liao Q, Liu B. A comprehensive review and evaluation of computational methods for identifying protein complexes from protein-protein interaction networks. Brief Bioinform. 2020;21(5):1531–48.
- Li M, Chen J-E, Wang J-X, Hu B, Chen G. Modifying the DPClus algorithm for identifying protein complexes based on new topological structures. BMC Bioinformatics. 2008;9(1):1–16.
- 9. Jiang P, Singh M. SPICi: a fast clustering algorithm for large biological networks. Bioinformatics. 2010;26(8):1105–11.
- 10. Zahiri J, Emamjomeh A, Bagheri S, Ivazeh A, Mahdevar G, Tehrani HS, Mirzaie M, Fakheri BA, Mohammad-Noori M. Protein complex prediction: a survey. Genomics. 2020;112(1):174–83.
- Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 2002;30(7):1575–84.
- Macropol K, Can T, Singh AK. RRW: repeated random walks on genome-scale protein networks for local cluster discovery. BMC Bioinform. 2009;10(1):1–10.
- King AD, Pržulj N, Jurisica I. Protein complex prediction via cost-based clustering. Bioinformatics. 2004;20(17):3013–20.
- Omranian S, Angeleska A, Nikoloski Z. PC2P: parameter-free network-based prediction of protein complexes. Bioinformatics. 2021;37(1):73–81.
- 15. Liu G, Wong L, Chua HN. Complex discovery from weighted PPI networks. Bioinformatics. 2009;25(15):1891–7.
- Wu M, Li X, Kwoh C-K, Ng S-K. A core-attachment based method to detect protein complexes in PPI networks. BMC Bioinform. 2009;10(1):1–16.
- Peng W, Wang J, Zhao B, Wang L. Identification of protein complexes using weighted pagerank-nibble algorithm and core-attachment structure. IEEE/ACM Trans Comput Biol Bioinf. 2014;12(1):179–92.
- Wang J, Ren J, Li M, Wu F-X. Identification of hierarchical and overlapping functional modules in PPI networks. IEEE Trans Nanobiosci. 2012;11(4):386–93.
- Nepusz T, Yu H, Paccanaro A. Detecting overlapping protein complexes in protein-protein interaction networks. Nat Methods. 2012;9(5):471–2.
- Wang R, Wang C, Sun L, Liu G. A seed-extended algorithm for detecting protein complexes based on density and modularity with topological structure and go annotations. BMC Genomics. 2019;20(1):1–28.
- Lei X, Fang M, Guo L, Wu F-X. Protein complex detection based on flower pollination mechanism in multi-relation reconstructed dynamic protein networks. BMC Bioinform. 2019;20(3):63–74.

- 22. Wang R, Ma H, Wang C. An improved memetic algorithm for detecting protein complexes in protein interaction networks. Front Genet. 2021;12:794354–794354.
- 23. Zaki N, Efimov D, Berengueres J. Protein complex detection using interaction reliability assessment and weighted clustering coefficient. BMC Bioinform. 2013;14(1):1–9.
- 24. Wang R, Liu G, Wang C. Identifying protein complexes based on an edge weight algorithm and core-attachment structure. BMC Bioinform. 2019;20(1):1–20.
- 25. Omranian S, Angeleska A, Nikoloski Z. Efficient and accurate identification of protein complexes from proteinprotein interaction networks based on the clustering coefficient. Comput Struct Biotechnol J. 2021;19:5255–63.
- 26. Omranian S, Nikoloski Z. Cubco: prediction of protein complexes based on min-cut network partitioning into biclique spanned subgraphs. In: International conference on complex networks and their applications. 2021. pp. 605–15.
- 27. Keretsu S, Sarmah R. Weighted edge based clustering to identify protein complexes in protein-protein interaction networks incorporating gene expression profile. Comput Biol Chem. 2016;65:69–79.
- Yao H, Shi Y, Guan J, Zhou S. Accurately detecting protein complexes by graph embedding and combining functions with interactions. IEEE/ACM Trans Comput Biol Bioinf. 2019;17(3):777–87.
- 29. Lei X, Zhang Y, Cheng S, Wu F-X, Pedrycz W. Topology potential based seed-growth method to identify protein complexes on dynamic PPI data. Inf Sci. 2018;425:140–53.
- 30. Zhang J, Zhong C, Huang Y, Lin HX, Wang M. A method for identifying protein complexes with the features of joint co-localization and joint co-expression in static ppi networks. Comput Biol Med. 2019;111:103333.
- 31. Wu Z, Liao Q, Liu B. idenPC-MIIP: identify protein complexes from weighted PPI networks using mutual important interacting partner relation. Brief Bioinform. 2021;22(2):1972–83.
- Wu Z, Liao Q, Fan S, Liu B. idenPC-CAP: Identify protein complexes from weighted RNA-protein heterogeneous interaction networks using co-assemble partner relation. Brief Bioinform. 2021;22(4):372.
- Srihari S, Leong HW. Temporal dynamics of protein complexes in PPI networks: a case study using yeast cell cycle dynamics. In: BMC Bioinform. 2012;13:1–9.
- Hanna EM, Zaki N, Amin A. Detecting protein complexes in protein interaction networks modeled as gene expression biclusters. PLoS ONE. 2015;10(12):0144163.
- Wang J, Peng X, Li M, Pan Y. Construction and application of dynamic protein interaction network based on time course gene expression data. Proteomics. 2013;13(2):301–12.
- 36. Wang R, Wang C, Liu G. A novel graph clustering method with a greedy heuristic search algorithm for mining protein complexes from dynamic and static ppi networks. Inf Sci. 2020;522:275–98.
- Liu Q, Song J, Li J. Using contrast patterns between true complexes and random subgraphs in PPI networks to predict unknown protein complexes. Sci Rep. 2016;6(1):1–15.
- Dong Y, Sun Y, Qin C. Predicting protein complexes using a supervised learning method combined with local structural information. PLoS ONE. 2018;13(3):0194124.
- Zaki N, Singh H, Mohamed EA. Identifying protein complexes in protein-protein interaction data using graph convolutional network. IEEE Access. 2021;9:123717–26.
- 40. Mei S. A framework combines supervised learning and dense subgraphs discovery to predict protein complexes. Front Comp Sci. 2022;16(1):1–14.
- 41. Liu G, Liu B, Li A, Wang X, Yu J, Zhou X. Identifying protein complexes with clear module structure using pairwise constraints in protein interaction networks. Front Genet. 2021;12:1–2.
- 42. Wang R, Ma H, Wang C. An ensemble learning framework for detecting protein complexes from PPI networks. Front Genet. 2022;13:839949–839949.
- 43. Gavin A-C, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen LJ, Bastuck S, Dümpelfeld B, et al. Proteome survey reveals modularity of the yeast cell machinery. Nature. 2006;440(7084):631–6.
- 44. Srihari S, Ning K, Leong H.W. Refining markov clustering for protein complex prediction by incorporating coreattachment structure. In: Genome informatics 2009: Genome informatics series 2009;23, 159–168
- 45. Wu M, Li X-L, Kwoh C-K, Ng S-K, Wong L. Discovery of protein complexes with core-attachment structures from tandem affinity purification (tap) data. J Comput Biol. 2012;19(9):1027–42.
- 46. Ma X, Gao L. Predicting protein complexes in protein interaction networks using a core-attachment algorithm based on graph communicability. Inf Sci. 2012;189:233–54.
- 47. Lu H, Shi B, Wu G, Zhang Y, Zhu X, Zhang Z, Liu C, Zhao Y, Wu T, Wang J, et al. Integrated analysis of multiple data sources reveals modular structure of biological networks. Biochem Biophys Res Commun. 2006;345(1):302–9.
- Tuo S, Li C, Liu F, Li A, He L, Geem ZW, Shang J, Liu H, Zhu Y, Feng Z, et al. MTHSA-DHEI: multitasking harmony search algorithm for detecting high-order SNP epistatic interactions. Complex Intell Syst. 2022. https://doi.org/10.1007/ s40747-022-00813-7.
- Sun L, Liu G, Su L, Wang R. HS-MMGKG: a fast multi-objective harmony search algorithm for two-locus model detection in GWAS. Curr Bioinform. 2019;14(8):749–61.
- Balamurugan R, Natarajan A, Premalatha K. A modified harmony search method for biclustering microarray gene expression data. Int J Data Min Bioinform. 2016;16(4):269–89.
- Tuo S, Liu H, Chen H. Multipopulation harmony search algorithm for the detection of high-order SNP interactions. Bioinformatics. 2020;36(16):4389–98.
- 52. Jain S, Bader GD. An improved method for scoring protein-protein interactions using semantic similarity within the gene ontology. BMC Bioinform. 2010;11(1):1–14.
- Engel SR, Balakrishnan R, Binkley G, Christie KR, Costanzo MC, Dwight SS, Fisk DG, Hirschman JE, Hitz BC, Hong EL, et al. Saccharomyces genome database provides mutant phenotype data. Nucleic Acids Res. 2010;38((suppl-1)):433–6.
- 54. Watts DJ, Strogatz SH. Collective dynamics of 'small-world' networks. Nature. 1998;393(6684):440-2.
- 55. Jeong H, Mason SP, Barabási A-L, Oltvai ZN. Lethality and centrality in protein networks. Nature. 2001;411(6833):41–2.
- 56. Zhang J, Small M. Complex network from pseudoperiodic time series: topology versus dynamics. Phys Rev Lett. 2006;96(23):238701.

- 57. Kalna G, Higham DJ. A clustering coefficient for weighted networks, with application to gene expression data. Al Commun. 2007;20(4):263–71.
- Dezső Z, Oltvai ZN, Barabási A-L. Bioinformatics analysis of experimentally determined protein complexes in the yeast saccharomyces cerevisiae. Genome Res. 2003;13(11):2450–4.
- 59. Geem ZW, Kim JH, Loganathan GV. A new heuristic optimization algorithm: harmony search. Simulation. 2001;76(2):60–8.
- Collins SR, Kemmeren P, Zhao X-C, Greenblatt JF, Spencer F, Holstege FC, Weissman JS, Krogan NJ. Toward a comprehensive atlas of the physical interactome of saccharomyces cerevisiae. Mol Cell Proteomics. 2007;6(3):439–50.
- Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP, et al. Global landscape of protein complexes in the yeast saccharomyces cerevisiae. Nature. 2006;440(7084):637–43.
- Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D. The database of interacting proteins: 2004 update. Nucleic Acids Res. 2004;32(suppl-1):449–51.
- Stark C, Breitkreutz B-J, Reguly T, Boucher L, Breitkreutz A, Tyers M. BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 2006;34(suppl-1):535–9.
- Mewes H-W, Amid C, Arnold R, Frishman D, Güldener U, Mannhaupt G, Münsterkötter M, Pagel P, Strack N, Stümpflen V, et al. MIPS: analysis and annotation of proteins from whole genomes. Nucleic Acids Res. 2004;32(suppl-1):41–4.
- Hong EL, Balakrishnan R, Dong Q, Christie KR, Park J, Binkley G, Costanzo MC, Dwight SS, Engel SR, Fisk DG, et al. Gene ontology annotations at SGD: new data sources and annotation methods. Nucleic Acids Res. 2007;36(suppl-1):577–81.
- Aloy P, Boettcher B, Ceulemans H, Leutwein C, Mellwig C, Fischer S, Gavin AC, Bork P, Superti-Furga C, Serrano L. Structure-based assembly of protein complexes in yeast. Science. 2004;303(5666):2026–9.
- Friedel CC, Krumsiek J, Zimmer R. Bootstrapping the interactome: unsupervised identification of protein complexes in yeast. J Comput Biol. 2009;16(8):971–87.
- Ma C-Y, Chen Y-PP, Berger B, Liao C-S. Identification of protein complexes by integrating multiple alignment of protein interaction networks. Bioinformatics. 2017;33(11):1681–8.
- Brohee S, Van Helden J. Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinform. 2006;7(1):1–19.
- Boyle EI, Weng S, Gollub J, Jin H, Botstein D, Cherry JM, Sherlock G. Go: Termfinder-open source software for accessing gene ontology information and finding significantly enriched gene ontology terms associated with a list of genes. Bioinformatics. 2004;20(18):3710–5.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

