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Abstract: Theophrasite β-Ni(OH)2 nanocluster were fabricated via the sonochemical-assisted bio-
genic method using chia seeds extract as a reducing and stabilizing agent. The optical and morpho-
logical feature of the synthesized nanocluster was characterized using UV-Vis, FTIR, FE-SEM-EDS,
HR-TEM, DLS, XPS, and XRD analysis. According to FE-SEM and HR-TEM images of the synthesized
materials, β-Ni(OH)2 nanocluster illustrates the hexagonal particle shape with an average size of
5.8 nm, while the EDS results confirm the high purity of the synthesized nanocluster. Moreover, the
XRD pattern of the synthesized materials shows typical peaks that match the reference pattern of the
Theophrasite form of β-Ni(OH)2 with a hexagonal crystal system. The XPS analysis illustrates that the
prepared samples exhibit both Ni2+ and Ni3+ with the predominance of Ni2+ species. Additionally
the in-vitro cytotoxic activity of β-Ni(OH)2 nanocluster is tested against the MCF7 cell lines (breast
cancer cells). The MTT assay results proved that the synthesized β-Ni(OH)2 nanocluster has potent
cytotoxic activity against breast cancer cell lines (IC50: 62.7 µg/mL).

Keywords: β-Ni(OH)2; chia extract; nanocluster; cytotoxicity; sonochemical

1. Introduction

Nanoscale materials have recently gained great attention in the scientific disciplines
due to their unfamiliar physical and chemical properties compared to their bulk compo-
nents [1,2]. Many potential applications were reported for these materials such as pharma-
ceutical research, catalysis, fabrication of semiconductors, electronic manufacturing, and
recently medical application, especially for antitumor therapy [3–7]. Various nanoparticles
are tested for the in-vitro cytotoxicity on a wide range of cancer cell types [8]. The Toxicity
effect depends on the physicochemical properties of metal nanoparticles such as structure
and crystal morphology [9]. Huang et al. reported that amorphous TiO2 nanoparticles have
higher reactivity in the generation of reactive oxygen species (ROS) compared to the anatase
and rutile analogs. The cubic and octahedron CeO2 showed a less toxic response toward
RAW264.7 cells than the rod-shaped CeO2 [10]. The charge of the nanomaterial surface
may also affect the toxicity influence. The positively charged ZnO nanoparticles showed a
higher toxic effect against A549 cells than the negatively charged particles [11]. Different
positive charges of Fe nanoparticles (Fe3O4, carbon-coated Fe, and oleic acid-coated Fe3O4)
produced toxic responses in BEL-7402 cells, the worse toxic response was correlated to a
higher positive charge [12,13].

For decades, nickel hydroxide was studied and has attracted considerable attention
due to its important applications such as photocatalysis [1], oxidation of alcohol as active
electrode material, hybrid-super capacitors, and batteries [14]. Furthermore, Ni(OH)2
has been reported to induce inflammation in the lungs of rodents [15].The cytotoxicity of
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(Ni(OH)2 nanoparticles was examined in a comparison with (NiO) nanoparticles in the
range of 10 to 100 µg/mL toward human bronchoalveolar carcinoma (A549) and human
hepatocellular carcinoma (HepG2) cell lines. The results demonstrate that Ni(OH)2 was
more toxic than NiO nanoparticles [9]. Nickel hydroxide exists in two main crystalline
phases (α-Ni(OH)2 and β-Ni(OH)2). α-Ni(OH)2 is stacked randomly along the axis (001)
due to the presence of the anions between layers accompanied by water molecules, whereas
the β-Ni(OH)2 is perfectly stacked as hexagonal crystals. The morphological control for
both morphologies of Ni(OH)2 can be achieved by synthetic conditions as well as the
incorporation of polymers or surfactants [16].

Various techniques have been developed for the production of metal nanoparticles
with high energy consumption and longer reaction time strategies such as chemical depo-
sition [17], sol-gel technique [18], co-precipitation [19], green methods [20,21], hydrother-
mal [22], solvothermal and sonochemical synthesis [23]. The sonochemical-assisted synthe-
sis method has several advantages, such as morphology control, homogeneity of mixing,
and decreased product agglomeration [24]. Using the green protocol such as plant extracts,
Microorganisms, and enzymes in nanoparticle synthesis is a new approach nowadays.
The plant extract shows various benefits including the lack of any toxins and contami-
nants as well as being environmentally safe [25–27]. Recently it has been reported that
herbal and medicinal plants were rich in many biologically active components such as
flavonoids, amino acids, alkaloids, tannins, terpenoids, saponins, and phenolics which can
be responsible for the reduction of metal to metal nanoparticles [27–30].

Salvia hispanica L. is one of the seasonal herbaceous plants that belongs to the Lami-
aceae family, commonly known as Chia, it can be found as dark and white small seeds. The
chia seeds are well known and valued as high sources of protein, dietary fiber, minerals,
polyphenolic compounds, and oils. In addition, Chia is known for high contents of natural
antioxidants such as flavonoids, phenolic compounds, caffeic acid, kaempferol, and chloro-
genic acid that can be beneficial to human health [31]. These antioxidants can scavenge free
radicals, chelate ions, and donate hydrogens [32]. It usually decreases chronic disease risk
(cancer and heart attack), and also offers protection against some diseases such as diabetes
and Alzheimer’s [29]. Chia seeds extract is also known to have antimicrobial efficiency as
reported by G. K. Divyapriya et al. [33]. Accordingly, these chemical compounds in the
chia seeds extract can be considered a model candidate for the reduction and stabilization
process of nanomaterials. The dark or white chia seed extract has been applied in the
synthesis of Ag nanoparticles [34], CuO and NiO nanoparticles [35]. In the present work
chia seeds extract is employed to synthesize β-Ni(OH)2 nanocluster using the sonochemical
assisted biogenic method as a unique, fast, effective, and eco-friendly method. In addition,
the in-vitro cytotoxic activity of β-Ni(OH)2 nanocluster is examined against the MCF7 cell
lines (breast cancer cells).

2. Excremental and Methods
2.1. Materials

Nickel (II) chloride hexahydrate (NiCl2·6H2O, 99.9%), and potassium hydroxide (KOH,
≥85.0%) were purchased from Sigma-Aldrich, St. Louis, MO, USA. White chia seeds were
collected from the local market in Hufof, eastern province, Saudi Arabia.

2.2. Preparation of Chia Extract

4.0 g of chia seeds were crushed, added to deionized water (100 mL), and heated for
15 min at 80 ◦C then it was double-filtered using a home sieve system and a Whatman filter
paper. Finally, the extract was refrigerated at 4 ◦C for future use.

2.3. Synthesis of β-Ni(OH)2 Nanocluster

For the synthesis of Ni(OH)2 0.1 M NiCl2·6H2O was mixed with chia seeds extract
with a volumetric ratio (1:1) at room temperature with constant stirring, then the pH was
adjusted to 11.0 by dropwise addition of 1.0 M of KOH solution. The pH measurements
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were carried out using Orion 2 Star (Thermo Fisher Scientific, Waltham, MA, USA) pH
meter. The reaction mixture was then subjected to ultrasonication for 30 min using Power-
Sonic 405 (Hwashin, Seoul, Korea) with a working frequency of 40 kHz and a maximum
input power of up to 350 W. Finally, the synthesized material was rinsed five times with
deionized water and allowed to dry at room temperature.

2.4. Characterization of β-Ni(OH)2 Nanoparticles

Various analytical techniques are used to investigate the chemical and physical proper-
ties of the synthesized β-Ni(OH)2. The optical characteristics of the synthesized sample are
investigated to confirm the bio-genic synthesis of β-Ni(OH)2 by monitoring the absorption
spectra of the solution using a Shimadzu UV–vis spectrophotometer (Kyoto, Japan). DLS
(Dynamic light scattering) measurements provide further information about the average
hydrodynamic particle diameter (d, nm). FT-IR spectroscopy is used to detect different
phytochemical functional groups responsible for the production and stabilization of β-
Ni(OH)2. The FT-IR analysis was recorded using a Cary 630 FT-IR spectrophotometer
(South San Francisco, CA, USA). To study the surface morphology of the synthesized
β-Ni(OH)2, the FE-SEM (Field emission-Scanning electron microscopy) is recorded using
FEI, QUANTA FEG, 250 high-resolution field emission electron microscope (Thermo Fisher
Scientific, Hillsboro, OR, USA), linked with a high-angle dark-field detector and X-ray
energy dispersive spectroscopy device (EDS). Furthermore, TEM images were collected
using (JEOL-JEM-2100, JEOL, Peabody, MA, USA) transmission electron microscopy at
90 kV acceleration voltage by dispersing the sample in ethanol by sonication for 30 min
and placing one drop of the suspension on the carbon-coated copper grid (400 mesh) and
allowed to dry at room temperature. The particle size distribution was calculated using
ImageJ software. X-ray diffraction spectroscopy (XRD) was carried out using an Empyrean
X-ray diffractometer, Malvern, UK (Cu Ka radiation with a wavelength of 1.54◦ A) to
determine the crystalline phase of the synthesized Ni(OH)2. The nano-crystallite size was
calculated using Debye- Scherrer equation from the width of the XRD peaks. The XPS,
X-ray photoelectron spectroscopic analysis is used to study the surface composition and
the oxidation state of the synthesized samples. The XPS spectrum was recorded using K-
ALPHA (Thermo Fisher Scientific, USA) equipped with a monochromatic X-ray Al K-alpha
radiation (10 to 1350 eV), 400 µm spot size at pressure 10−9 mbar with full-spectrum pass
energy 200 eV and at narrow-spectrum 50 eV.

2.5. Anticancer Activity Studies
2.5.1. Cell Culture

A human Caucasian breast cancer cell line (MCF7) was obtained from the American
Type Culture Collection (Rockville, MD, USA). The cancer cells were cultured in DMEM
(Dulbecco’s Modified Eagle Medium) containing 10% fetal bovine serum (FBS) 100 U/mL of
penicillin and streptomycin. The cells were cultivated at 37 ◦C in a humidified environment
with 5% CO2.

2.5.2. In-Vitro Cytotoxic Activity β-Ni(OH)2 by MTT Assay

MTT, 3-[4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay was ap-
plied to assess the cytotoxicity of the bio-synthesized β-Ni(OH)2 against the MCF7 cell line.
The MTT assay relay on the cleavage of tetrazolium salt by mitochondrial dehydrogenases
in live cells [35,36]. Before the MTT assay, the cells were put in 96-well sterilized microplates
(5 × 104 cells/well) and kept at 37 ◦C with DMSO solutions of the test compounds for 48 h
in a serum-free medium. The medium culture without the tested compounds was used
as a negative control. After incubation, the media in each well was securely removed and
replaced with 40 µL of 2.5 mg/mL MTT. Then the samples were incubated for additional
4 h. 200 µL of DMSO was added to solubilize the purple formazan dye crystals. After that,
a SpectraMax Paradigm Multi-Mode microplate reader is used to measure the absorbance
at 570 nm. The relative cell mortality is the quantification of the mean percentage of dead



Nanomaterials 2022, 12, 1919 4 of 13

cells compared to the control sample [37]. All trials were carried out on different days in
triplicate. The obtained values are recorded as the mean ± SD. The probit analysis was
performed using SPSS software (SPSS Inc., Chicago, IL, USA) to determine IC50 values.

3. Results and Discussions
3.1. Characterization
3.1.1. UV-Vis Spectroscopy

The optical properties of Ni(OH)2-nanocluster and chia seeds extract were evaluated
using UV-Vis Spectroscopy. Figure 1a represents the absorption spectra of Ni(OH)2 nan-
ocluster and chia seeds extract. The absorption spectrum of chia seeds extract reveals two
main peaks in the range of 250–350 nm. The peak centered at 280 nm could be assigned to
the xylose and glucose content of chia extract [38] while the peak at 320 could be attributed
to the protein content of the chia seeds extract [39]. Due to its weak light-harvesting
characteristics, Ni(OH)2 has more linear absorption spectra in both the UV and visible
regions [40].
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3.1.2. FT-IR Spectroscopy

Chia seeds are high in omega-3, polyunsaturated fatty acids, fibers, and proteins,
which provide all of the necessary amino acids [41]. FT-IR spectroscopy is performed for
chia seeds powder and the synthesized Ni(OH)2 nanocluster to identify the functional
groups that are responsible for the reduction and stabilization of the prepared nanoclus-
ter. Figure 1b shows the FTIR spectra of chia seeds powder and the bio-synthesized
Ni(OH)2 nanoclusters. The chia protein characteristic bands are observed in the region at
3200–3500 cm−1. The broadband at 3300 cm−1 is related to the N-H and/or O-H stretching
vibration of protein content. The protein amide I groups have characteristic bands in
the range 1745–1460 cm−1 of C=O bonds. The bands at 2923–2850 cm−1 represent the
C-H stretching frequency of the methyl and methylene backbones of lipids. The bands at
3014 and 1645 cm−1 represent the C=C of linolenic acid and cis-olefins, respectively. The
observed band at 714 cm−1 is attributed to the bending vibrations of methylene groups in
cis-disubstituted olefins [40,41].

The FT-IR spectrum of β-Ni(OH)2 shows a characteristic stretching vibrational mod at
3647 cm−1 that represents the nonhydrogen bonded (–O–H) groups present in Ni(OH)2.
Whereas the broad peak at 3170 cm−1 is assigned to the stretching vibrations of hydrogen-
bonded (–O–H) groups [14]. The bands at 611 and 500 cm−1 are related to Ni–O–H
bending vibrations. The band at 417 cm−1 is related to the stretching vibration of the Ni–O
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bond [42–44]. The residual function groups of chia seed extract are responsible for the
appearance of the bands in the range 1702–1451 cm−1 [45]. The results confirm the effective
biogenic production of β-Ni(OH)2 nanocluster.

3.1.3. FE-SEM and EDS Analysis

FE-SEM, field emission-scanning electron microscopy, and energy-dispersive X-ray
spectroscopy (EDS) are used to investigate the morphological, structure properties, and the
composition of the bio-synthesized β-Ni(OH)2 nanocluster. Figure 2a,b show the images of
β-Ni(OH)2 with different magnification scales. It can be seen that the synthesized materials
seem similar to a cluster of nanoparticles. The chia extract is worked as a capping agent for
the particles, and they are probably attached by the hydroxyl groups in the molecules, so it
gives the appearance of a nanocluster molecule [45–47].
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Figure 2c shows the energy-dispersive spectroscopy (EDS) microanalysis profile of the
β-Ni(OH)2 nanocluster. The data illustrates the existence of Ni and O elements only in the
nanoparticles which indicates the purity of the synthesized material [48,49].

3.1.4. HR-TEM and DLS Analysis

Figure 3a,b display HR-TEM images of Ni(OH)2 nanocluster. The HR-TEM images
show that Ni(OH)2 exists as hexagonal thin segments. Figure 3d represents the histogram of
particle size distribution calculated using ImageJ software. The estimated average particle
size of the nanoparticle from the TEM measurement was 5.8 nm with a standard deviation
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of 1.48 nm. Figure 2d represents the size distribution for the as-grown nanocluster by the
dynamic light scattering (DLS) analysis. The average particle size calculated from DLS is
(~2860 nm) with a standard deviation of (~1500 nm). The particle size calculated based on
DLS analysis is much greater than that calculated from TEM analysis. TEM measurements
reflect only the metal core while the DLS analysis includes the metal core, surface surround-
ing molecules, and the hydration sphere around the nanoparticle [50]. Another possible
explanation for the difference between DLS and TEM particle size measurements is due to
the presence of attached layers of different organic molecules (from chia seed extract) to the
material nanoparticles, these organic molecules are electron transparent and didn’t appear
in TEM [51]. These observations suggest the effective production of Ni(OH)2 nanoclusters
using chia extract as a capping agent. In the formation of the nanocluster the nickel ions
associate with the chia extract molecule as a capping agent. Finally, after completing the
nucleation stage, coalescence, Ostwald-ripening, and growth steps Ni(OH)2 nanocluster
was formed [46]. SAED, the selected area electron diffraction, the pattern of Ni(OH)2
nanocluster is shown in Figure 3c, which reveals multi-layered patterns, indicating the
polycrystalline nature of the produced Ni(OH)2 nanocluster [52].
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3.1.5. XRD Analysis

The crystal phase of the prepared Ni(OH)2 nanocluster was examined by X-ray diffrac-
tion spectroscopy. Figure 4 shows the XRD pattern of the Ni(OH)2 nanocluster. The peaks
at 2θ values of 19.2◦, 33.1◦, 38.5◦, 39.0◦, 52.1◦, and 59.5◦ can be assigned to the diffraction
plans (001), (100), (101), (002), (102) and (110), respectively [53,54]. The resulting diffraction
pattern matches the reference pattern of the Theophrasite form of β-Ni(OH)2 with a hexag-
onal crystal system according to pdf card number # 014-0117 [55]. The crystallite size of the
particles can be estimated by applying the Scherrer Equation (1) [56]:

D =
Kλ

βcosθ
(1)

where D is the average particle diameter, K = 0.9 and is related to the crystallite shape, λ
refers to the X-ray radiation wavelength and equals 0.15406 Å, θ is the peak angle, and β is
the width at half maximum (FHWM) of the corresponding XRD peak. The average particle
size is determined using the Scherrer equation for β-Ni(OH)2 nanocluster and found to be
5.5 nm which agrees with the estimated average size from TEM analysis.
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3.1.6. X-ray Photoelectron Spectroscopy (XPS) Analysis

The XPS analysis was performed to study the elemental compositions of the Ni
nanoparticle’s surface. Figure 5a shows the survey scan spectrum which indicates the
presence of Ni, O, and C elements in the synthesized sample. Figure 5b represents the
Ni 2p high-resolution spectrum that contains two spin-orbit doublets of Ni 2p3/2 and Ni
2p1/2 components at binding energies of 856.6 and 874 eV, respectively with a spin energy
separation of 17.4 eV as previously reported for Ni2+ in β-Ni(OH)2 [53]. Furthermore,
the peaks at 862.5 and 879.8 eV are attributed to the shake-up structures of Ni 2p. The
de-convolution of the Ni 2p3/2 peak results in two peaks located at 856.6 and 860.2 eV, in
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agreement with the BE values reported for Ni2+ and Ni3+. The presence of Ni3+ on the
surface of NP may be due to surface oxidation of β-Ni(OH)2 by air [57].
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Figure 5. X-ray photoelectron (a) Survey scan (b) Ni (2p) (c) O (1s) and (d) C (1s) spectra for the
synthesized β-Ni(OH)2 nanocluster.

The XPS spectrum of O 1s is shown in Figure 5c. It has a broad peak that The peak at
531.7 eV that can be de-convoluted into two components: the one at 530.9 eV relates to the
characteristic oxygen band in (Ni–OH), whereas the peak at 532.6 eV refers to the (–O–H)
group of absorbed water molecules (H–OH) on Ni–NP surface, which appears to agree
with the previous results of β-Ni(OH)2 [58].

The C 1s spectrum of XPS consists of one main peak as shown in Figure 5d. This
peak can be de-convoluted to three characteristic peaks at 284.8, 286.3, and 287.4 eV, which
are related to C–C, C–O, and C=O, respectively [59]. The presence of C in the β-Ni(OH)2
environment is related to the chia extract used in the biogenic synthesis of the material
and is proof of the formation of the nanocluster [43]. The binding energy, FWHM, and the
atomic percentages of all peaks are listed in Table 1.

Table 1. Binding energy (eV), FWHM, and atomic percentage for the synthesized β-Ni(OH)2.

β-Ni(OH)2 Peak (BE) FWHM (eV) Atomic%

Ni 2p 857.27 5.52 22.95
O 1s 532.77 4.26 58.95
C 1s 286.51 4.35 18.01
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3.2. Cytotoxicity Evaluation of β-Ni(OH)2

Due to the fast developments in the field of nanotechnology, an enormous num-
ber of nanomaterials with distinctly shaped nanostructures were produced by different
methods [60]. The metal hydroxide and oxide nanostructured materials have a variety of
applications due to their distinct properties, such as large surface area, strong reactivity, and
small size in the form of various-shaped nanostructures, which are extensively employed
as commercial goods such as cosmetics products, food products, medications, textiles, and
other applications. Due to their small sizes, nanomaterials may readily penetrate living
cells and influence different human organs. Scheme 1 displays the possible mechanism of
the cytotoxic effect of nanomaterials as previously reported in the literature [13,61]. The
produced nanoparticles may trigger cell death by interacting with the cells, altering the
balance between the oxidants and reductants, and generating reactive oxygen species (ROS).
The produced ROS species increase the cytosolic Ca2+ concentration or trigger the translo-
cation of transcription factors to the nucleus subsequently assembling pro-inflammatory
genes. On the other hand, increasing oxidative stress may stimulate the antioxidant defense
system and even lead to cell death [62].
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Scheme 1. The possible mechanism of the cytotoxic effect of nanomaterials.

In this work, the human breast cancer cell line MCF7 was used to evaluate the cytotox-
icity effect of the bio-synthesized β-Ni(OH)2 using an MTT assay. Figure 6 shows the cell
death percentage at different concentrations of β-Ni(OH)2 in the range (1.0–100 µg/mL).
The cytotoxic effect of β-Ni(OH)2 is increasing with increasing the concentration of Ni(OH)2
nanocluster indicating a dose-dependent effect on the MCF7 cell line. The IC50 value calcu-
lated was 62.7 µg/mL and the maximum cell death was found to be 83.2 at 100 ppm.
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4. Conclusions

In this study, β-Ni(OH)2 nanocluster have been synthesized successfully in an aqueous
medium by sonication chia seeds extract as a capping and reducing agent. Different analysis
techniques were used to study nanoclusters’ physical and chemical properties. According
to the results, the synthesized materials are on the nanoscale and have a cluster shape with
an average particle size of 5.8 nm as measured by TEM. SEM, EDS, and XRD results indicate
that the produced nanoparticles reveal a hexagonal shape of the Theopharasite form of pure
β-Ni(OH)2. The XPS results show the presence of peaks related to Ni2+, Ni-OH, O-H, C-C,
C-O, and C=O confirming the successful biogenic synthesis of Ni(OH)2 nanocluster. The
in-vitro cytotoxic activity β-Ni(OH)2 nanocluster synthesized by using chia seeds extract
was tested by using MTT assay. The cytotoxicity of β-Ni(OH)2 nanocluster was measured
on the MCF7 cell line. The results reveal that β-Ni(OH)2 nanocluster were found to be toxic
to the studied cell lines with a maximum cell death percentage of 83.2% at 100 ppm of the
samples. The number of dead cells indicated the association of the dose toxicity along with
a concentration-dependent exposure time.
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