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Identification of signature of gene expression in 
biliary atresia using weighted gene co-expression 
network analysis
Yongliang Wang, MSa , Hongtao Yuan, BAa,*, Maojun Zhao, MSb, Li Fang, MDc

Abstract 
Biliary atresia (BA) is the most common cause of obstructive jaundice during the neonatal period. This study aimed to identify 
gene expression signature in BA. The datasets were obtained from the Gene Expression Omnibus database. Weighted gene 
co-expression network analysis identified a critical module associated with BA, whereas Gene Ontology (GO) enrichment 
analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed the functions of the essential 
modules. The high-connectivity genes in the most relevant module constructed protein–protein interaction networks via the 
string website and Cytoscape software. Hub genes screened by lasso regression consisted of a disease classification model 
using the randomforest method. Receiver operating characteristic curves were used to assess models’ sensitivity and specificity 
and the model was verified using the internal and external validation sets. Ten gene modules were constructed by WGCNA, 
of which the brown module had a strong positive correlation with BA, comprising 443 genes. Functional enrichment analysis 
revealed that module genes were mainly involved in biological processes, such as extracellular matrix organization, cell adhesion, 
inflammatory response, and the Notch pathway (P < .001), whereas these genes were involved in the metabolic pathways 
and cell adhesion molecules (P < .001). Thirty-nine high-connectivity genes in the brown module constructed protein-protein 
interaction networks. keratin 7 (KRT7) and C-X-C motif chemokine ligand 8 (CXCL8) were used to construct a diagnostic model 
that had an accuracy of 93.6% and the area under the receiver operating curves for the model was 0.93. The study provided 
insight into the signature of gene expression and possible pathogenesis of BA; furthermore, it identified that the combination of 
KRT7 and CXCL8 could be a potential diagnostic model for BA.

Abbreviations:  AUC = area under curves, BA = biliary atresia, CXCL8 = C-X-C motif chemokine ligand 8, DAVID = annotated, 
visualized, and integrated Discovery Database, GEO = Gene Expression Omnibus, GO = Gene Ontology, GS = genes traits 
significance, KEGG = Kyoto Encyclopedia of Genes and Genomes, KRT7 = = keratin 7, ME = module eigengene, MM = module 
membership, NC = normal control group, Non-BA = control group for hepatobiliary diseases without the biliary atresia, PPI = 
protein–protein interaction, ROC = receiver operating characteristic, WGCNA = Weighted Gene Go-expression Network Analysis.
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1. Introduction

Biliary atresia (BA) is one of the most severe diseases of the 
hepatobiliary system in infancy and is the most common cause 
of liver transplantation in children.[1] BA also is the most com-
mon cause of neonatal cholestasis (25%–55%).[2] The patho-
logical changes include bile duct hyperplasia, cell infiltration, 
portal fibrosis,[3] and the absence of sinusoidal fibrosis, cul-
minating in cirrhosis. The early operation, including Kassai 
and its variants, is key to a better prognosis; thus, early diag-
nosis of BA is crucial.[4] Diagnosis of BA was screened by 
clinical manifestation, laboratory examination, and imaging 

examination, confirmed by liver biopsy and intraoperative 
cholangiography.[5] Nevertheless, as an invasive operation, 
the appliance of intraoperative cholangiography is limited. 
Despite the high diagnostic accuracy of liver biopsy for BA,[6] 
some hepatobiliary diseases have histological features that 
overlap with BA,[2] including MDR3 (multidrug resistance pro-
tein 3) deficiency disease, cystic fibrosis, doublecortin domain 
containing 2 disease, alpha1-antitrypsin deficiency, and par-
enteral nutrition-associated cholestasis, with their histology 
features involving duct proliferation, portal tract fibrosis, 
inflammation, bile plugs.[7–11] In the early stage of disease, the 
classic histological changes of BA might be atypical, resulting 
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in false-negative diagnoses.[5,12] So a series of liver biopsies 
are necessary.[13] Clinical features, laboratory parameters, and 
genetic testing are essential to arrive at a correct diagnosis, 
as distinguishing early BA from the above disorders by histo-
logical features is a challenge.[14] As a complementary method, 
kinds of molecular markers, such as interleukin-33, matrix 
metallopeptidase 7, interleukin -8, and microRNAs, have been 
shown to be diagnostically effective in BA.[15–18] Therefore, we 
hope to exploit varied analytic tactics to mine more potential 
molecular biomarkers of BA from existing data, supplement 
current diagnostic tools, and improve the diagnostic accu-
racy of BA. Weighted gene co-expression network analysis 
(WGCNA) is a method to analyze the complicated relation-
ship between gene and phenotype, which has been utilized in 
various research of biological contexts[19] and can instruct the 
association of the module with disease results.[20] A unique 
advantage of the WGCNA is that it retains the continuous 
nature of the underlying correlation information for construc-
tion of a network based on soft thresholding of the correlation 
coefficient, compared to the unweighted network requiring the 
choice of a hard threshold.[19,21] The data, divided into multiple 
groups, requires repeated pairwise comparisons and multiple 
hypothesis tests when performing the differentially expressed 
genes (DEG) analysis, whereas, unlike DEG analysis, WGCNA 
directly modularization relationship between gene expression 
and phenotype, reducing computational effort. Therefore, we 
utilized this method to analyze expression profiles of BA in the 
Gene Expression Omnibus (GEO) database and to discover 
the genetic signature of BA.

2. Materials and Methods

2.1. Materials

The workflow was shown in (Supplementary Digital Content 
1, http://links.lww.com/MD/H91). The mRNA profiles of 
GSE46960 (85 liver samples from age-matched infants and 
10 liver samples from adults) and GSE84954 (11 liver, 13 fat, 
and 13 muscle samples from children) were downloaded from 
the GEO database (https://www.ncbi.nlm.nih.gov/gds/?term=). 
All adults and nonliver samples were excluded. According to 
the known diagnosis, eligible samples were grouped as BA 
group (biliary atresia group), Non-BA group (control group 
for hepatobiliary diseases without the BA), and normal control 
group (NC group). GSE46960 contained 64 BA samples; 14 
non-BA samples; 7 NC samples. In GSE84954, 11 liver sam-
ples were picked out and divided into BA group (6 samples) 
and non-BA group (5 samples). Samples’ detail were recorded 
in (Supplementary Digital Content 2, http://links.lww.com/
MD/H92).

Data were analyzed and plotted using R 4.12 and R Studio 
1.4.1717 software. Additionally, these R-packages,“oligo,”[22] 
“WGCNA,”[20] “glmnet,”[23] “pROC,”[24] “randomForest,”[25] 
“caret,”[26] “dplyr,”[27] “kknn”[28] were used for statistical anal-
ysis. The following R-packages were used to plot: “ggplot2,”[29] 
“Pheatmap,”[30] “treemap,”[31] “simplifyEnrichment,”[32] “cor-
plot.”[33] String website (https://string-db.org) and Cytoscape 
software (v3.8.2) to construct the protein–protein interaction 
network. Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) analysis were by the database 
annotation, visualized, and integrated discovery (annotated, 
visualized, and integrated Discovery Database [DAVID], https://
david.ncifcrf.gov/).

2.2. Data processing

Normalization could eliminate the variations in expression 
(Intensity) caused by experimental techniques, and keep the 
data at the same level for each sample and parallel experi-
ments. Downloaded microarray data were read and proceeded, 

including robust multichip average background correction, 
quantile normalization, base 2 logarithmic conversions, and 
probe ID transformation. The data without corresponding 
gene symbol or duplicate gene symbols were removed. The 
genes with low expression values and missing values were 
then filtered out. Relative expression plots of datasets are 
shown in (Supplementary Digital Content 3, http://links.lww.
com/MD/H93).

2.3. Construction of co-expression network

The genes with the top 5000 absolute median deviations in 
GSE46960 have been used to construct a co-expression net-
work via the “WGCNA” R package. First, cluster analysis was 
performed on the samples using the class average method to 
remove the outliers. According to sample cluster analysis, 
there were no outliers in GSE46960. Next, an appropriate soft 
threshold power was calculated based on the scale-free topol-
ogy criterion, with the optimal soft threshold power of 12 and 
the corresponding scale-free R2 of 0.9. The co-expression net-
work was constructed based on the soft threshold power, and 
then the cluster dendrogram of gene modules was plotted after 
hierarchical clustering and branching cuts. The minimum size of 
the module was set to 30 and CutHeight = 0.25 and the above 
parameters were used to merge the colser modules into new 
modules.

2.4. Identification of significant module and high-
connectivity genes

The WGCNA package reckoned each sample’s module eigen-
gene (ME) matrix, figured the correlation matrix and cor-
relation P value between ME and clinical traits, plotted the 
“module-trait relationship” heatmap, and selected the module 
with the strongest correlation to the group BA. The verboseS-
catterplot of the engaging module was depicted based on the 
Module Membership (MM) value of genes and genes traits 
significance (GS). Following this, genes with high MM and GS 
were used to construct protein–protein interaction networks 
on the String website (https://string-db.org). The connectiv-
ity degree and combination score of genes were entered into 
Cytoscape software to output the protein-protein interaction 
(PPI) network plot.

2.5. Detection of module function

Enrichment analyses of GO and KEGG pathways for module 
genes were performed on the DAVID website, and a P value of < 
0.05 for GO terms or KEGG terms was considered statistically 
significant.

2.6. Compressing variates

The expression heatmap of genes in the PPI network was pre-
sented. The number of variates needs to be compressed, as 
there were still too many variates that can build diagnostic 
models. Lasso regression was selected to compress variates. 
Since the NC group could be easily distinguished from the BA 
group by laboratory examination and clinical manifests, the 
NC group was no longer included in the subsequent analysis. 
Sixty percent of the remaining were set as a training set and 
40% as the test. The training set was used to build a lasso 
regression model. The minimum λ value of the training set was 
determined by tenfold cross-validation and the minimum λ 
was brought into the test set to work out variates’ coefficients. 
Those genes retaining coefficients were viewed as nominated 
genes to construct a diagnostic model by randomforest; mean-
while, the correlation matrix of genes in the PPI network was 
plotted.

http://links.lww.com/MD/H91
https://www.ncbi.nlm.nih.gov/gds/?term=
http://links.lww.com/MD/H92
http://links.lww.com/MD/H92
https://string-db.org
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
http://links.lww.com/MD/H93
http://links.lww.com/MD/H93
https://string-db.org
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2.7. Construction of the diagnostic model

Various randomforest models were constructed by different 
collocations of the above-nominated genes, and their diagnos-
tic accuracy was calculated respectively. As for the accuracy of 
model = 100-OOB (Out of Bag or estimated error rate), the best 
model was identified by comparing the parameters of models, 
the receiver operating characteristic (ROC) curve of the models 
was plotted to assess the diagnostic ability of the model, and 
the area under the curve of models was ciphered. The principal 
component analysis (PCA) of original data was compared with 
PCA of diagnostic model to evaluate the classification effective-
ness of the model.

2.8. Validation for the model

In GSE46960, the expression level of model genes in the BA was 
contrasted with other groups to verify the difference in model 

genes between the BA and other groups. Tukey honestly signif-
icant difference (Honestly Significant Difference) was executed 
on the outcomes; P < .05 was considered statistically significant. 
For testing the diagnostic ability of the model in external data, 
the model predicted the grouping results of data in GSE84954 
utilizing randomforest and k-nearest neighbors algorithm 
(KNN). Ultimately, the accuracies were calculated.

3. Results

3.1. Construction of co-expression network & identification 
of significant module

A systematic clustering tree of gene modules was illustrated 
in Figure  1A, including 10 gene modules. The label heatmap 
“Module-trait relationship” showed the correlation of module 
with clinical traits (Fig. 1B). The correlations contained positive 
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and negative correlations, with color depth representing the 
strength of the correlation. The brown module (cor = 0.73, P 
= 8 × 10-17) had the highest positive correlation with BA among 
these modules. VerboseScatterplot (Fig. 1C) corresponded to the 
MM and GS values of genes in the brown module. In addition, 
the 84 genes (Supplementary Digital Content 4, http://links.lww.
com/MD/H94) in the upper right quadrant of the verbosescat-
terplot (MM > 0.8, GS > 0.6) formed the PPI network, which 
is shown in Figure 1D based on connectivity degree and com-
bination score.

3.2. Function enrichment analysis of significant module

Cellular Component enrichment analysis showed that genes 
mainly existed in the cytoplasm, extracellular exosome, and 
cytosol (Fig.  2A). The main molecular functions referred to 
protein binding, transcription factor activity, DNA binding, 
and calcium ions binding (Fig.  2B). The biological processes 
involved include the Notch signaling pathway, signal transduc-
tion, positive regulation of transcription from RNA polymerase 
II promoter, and inflammatory response. (Fig. 2C). KEGG path-
way enrichment analysis showed that genes in the module were 
mainly involved in the metabolic pathways, axon guidance, and 
cell adhesion molecules (CAMs; Fig. 2D).

3.3. Compressing variates

Figure 3A exhibited the expression heatmap of 39 genes in the 
PPI networks. Thirty-nine genes were clearly expressed differ-
ently between the BA and NC groups, in contrast, a few genes 
were significantly differentially expressed between the BA and 
the non-BA groups. According to the result of lasso regression, 
5 variates still owned coefficients, when minimal λ = 0.0497 
(Table 1). The correlation matrix of genes in the PPI network 
(Fig.  3B) demonstrated the robust correlation between the 5 
genes and other genes.

3.4. Construction of the diagnostic model

Model constituted of keratin 7 (KRT7), KRT19, Versican 
(VCAN), Annexin A2 (ANXA2), and C-X-C motif chemokine 
ligand 8 (CXCL8) possessed the highest classification accuracy 
of 94.5% (Table  2, Supplementary Digital Content 5, http://
links.lww.com/MD/H95); moreover, the model only containing 
CXCL8 and KRT7 owned a similar accuracy of 93.6%, which 
was as high as the above-stated model. CXCL8 and KRT7 for 
the BA group had a classification error rate of <2%, while the 
non-BA group had a classification error rate of 29%. Figure 4 
showed the ROC and area under curve (AUC) for the 2 models; 
The AUC equated to 0.93 and 0.92. Finally, the model consisting 
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of CXCL8 and KRT7 was selected as best model, because it had 
a high accuracy and minor number of genes. Figure 5A and B 
exhibited that the PCA of the model could better separate BA 
and Non-BA, compared to the PCA of primitive data.

3.5. Validation for the model

In GSE46960, the expression level of KRT7 in the BA group was 
significantly higher than in other groups (F = 42.65, BA vs NC 
P < .001; BA vs non-BA P < .001), and the expression level of 
CXCL8 in the BA group also was significantly higher than other 
groups (F = 74.74, BA vs NC P < .001; BA vs non-BA P < .001) 
(Fig. 6A). In the data set GSE84954, the classification accuracy of 
the model utilizing randomforest was 73% (95% confidence inter-
val: 0.39–0.94). The result of classification is predicted as shown 
in Table 3. Figure 6B revealed the probability of each sample being 
classified as BA calculated by the randomforest and the expression 
level of KRT7 and CXCL8 in the corresponding sample. A sam-
ple with consistently high expression of KRT7 and CXCL8 has a 
high probability of being identified as the BA. GSM2254637 and 
GSM2254649 were misclassified as the BA, whereas GSM2254643 
was incorrectly assigned to non-BA. KNN algorithm (3 folds cross-
ing validation) had better results, with the mean accuracy rising 
slightly around 0.83 (Table 4). Comparing randomforest, similarly, 
GSM2254637 and GSM2254649 were also misclassified as BA.

4. Discussion
The etiology and mechanism of BA are still obscure, and there 
are many hypotheses for its pathogenesis, including abnormal 
bile duct development, inflammation, genetic variants, and 
immune disorder caused by a viral infection and even the occur-
rence of BA may be an end-stage phenotype induced by multiple 
mechanisms.[34]

The study found that the brown module genes most closely 
associated with BA enriched in Cell adhesion molecule (CAM), 
extracellular matrix (ECM) organization, inflammatory response, 

and notch pathway. One concept is that biliary epithelium cells 
actively participate in the pathogenesis of cholangiopathies via 
their transformation into reactive cholangiocytes; they have a 
critical role in biliary fibrosis via crosstalk with ECM-producing 
cells, inflammatory cells, and ECM, and also promote fibrosis 
via the secreting of proinflammatory or chemotactic cytokines 
and the expression of adhesion molecules.[35] Laminin Subunit 
Gamma 1 (LAMC1) is an ECM glycoprotein that participated in 
many processes, such as cell adhesion, and its location on the base 
membrane and the positive association between LAMC1 and 
liver fibrosis was discovered long ago.[36] Integrins (ITG), one of 
cellular receptors of the LAMC family, bind to LAMC and trans-
mit base membrane signals to cells.[37] LAMC binds to ITGA/B 
and formats the focal adhesion pathway in which Focal adhe-
sion kinase regulates downstream hedgehog pathway in response 
to injury of liver or biliary, fibrosis.[38] Yu et al[39] of Nanjing 
Medical University proved expression of LAMC1 was modu-
lated via rs3768617 of LAMC1, thereby affecting the binding of 
miRNA-548b-3p to LAMC1, which could be a potential thera-
peutic target for BA. CAMs like Intercellular Adhesion Molecule 
1 (ICAM1), Vascular Cell Adhesion Molecule 1 (VCAM1), and 
E-selectin are overexpressed in patients’ liver tissue and serum 
with BA.[40,41] When the injury occurred, CAM mediated cell-cell 
contact and recruited leukocytes to the site of injury, followed 
by sustained inflammation.[42] A process that also existed in the 
biliary epithelium was infected by the virus and led to BA.[5] The 
activity of CAM might reflect inflammation of the biliary ducts 
and the development of cirrhosis.[41] During follow-up to the BA 
patients after operation, Professor Shan Zheng’s team at Fudan 
University found that patients with their jaundice not elimi-
nated possessed high expression levels of VCAM1, suggesting 
that VCAM1 may play an important role in the pathogenesis 
of liver fibrosis in infants with BA.[43] The same phenomenon 
was detected in patients with primary biliary cirrhosis, primary 
sclerosing cholangitis, and alcoholic liver disease.[44] In addition, 
the excessively accumulated extracellular matrix represents the 
process of liver fibrogenesis; extracellular affords complex func-
tions, such as cell adhesion, cell migration, and proliferation.[45,46] 
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Figure 3. (A) Heatmap of the hub genes in the PPI network. (B) Correlation matrix of the hub genes in the PPI network. The deeper color indicated a stronger 
correlation. BA = biliary atresia, NC = normal control group, Non-BA = control group for hepatobiliary diseases without the biliary atresia, PPI = protein–protein 
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These pathological changes match the progress of BA. The notch 
pathway is an evolutionarily conserved intercellular signaling 
pathway to maintain progenitor cells.[47] It is a regulator in the 
shape of the intrahepatic bile duct.[48] The abnormal alterations 
of the notch pathway and its ligand Jagged Canonical Notch 
Ligand 1 (JAG1) are the etiology of Alagille syndrome char-
acterized by a paucity of intrahepatic bile ducts.[49] The notch 
pathway plays a key role in BA, promoting the differentiation 
of hepatic progenitor cells into cholangiocytes for repairing bile 

duct epithelium.[50–52] KRT7 and KRT19 were reported as mark-
ers of biliary epithelium, which appeared on biliary progenitor 
cells during development and regeneration,[53,54] a process, how-
ever, led to the obstruction of the bile ducts.

The PPI network exhibited that hub genes of brown mod-
ule principally converged to 3 centers: Epithelial Cell Adhesion 
Molecule (EPCAM) and JAG1, ANXA2, Fibrillin 1(FBN1), 
which were associated with notch pathway, annexins family, 
and elastin respectively. Notch pathway had been described in 
the above statement, likewise, annexins family and elastin were 
also in charge of the BA process. Annexins were involved in 
tissue regeneration as these genes are involved in cell-to-cell 
communication and extracellular matrix growth.[55] A hallmark 
of liver cirrhosis was the accumulation of large amounts of 
elastic fiber.[56] FBN1, usually together with elastin, was a com-
ponent of the extracellular matrix[57] and was regularly co-ex-
pressed with elastin in children with cholestatic diseases.[58] 
FBN1 in cholestatic disease was characterized as an appar-
ent high expression with fibrosis of the bile duct, such as BA, 
sclerosing cholangitis, FBN1 cross-linked with tropoelastin to 
format microfibrils, further formed elastic fiber with elastin.[59] 
TGF-beta is one of the most crucial cytokines regulating elastin 
expression levels and is perceived as the most potent fibrogenic 
cytokine in the liver; FBN1 could bind TGF-beta to modulate 
levels of TGF-beta.[60,61]

Table 1

Lasso regression coefficients of 39 hub genes.

Symbol Coefficient 

VCAN −0.84
KRT23  
LUM  
CCDC80  
EPCAM  
CLIC6  
STMN2  
ANXA13  
CXCL8 −0.10
SLIT2  
KRT7 −1.04
KRT19 −0.10
EPHA3  
SCTR  
ASPN  
SULF1  
JAG1  
ANXA4  
FBN1  
PLXDC2  
UGCG  
CEP170  
IGFBP7  
FSTL1  
VIM  
MMP14  
DPYSL3  
ENAH  
MAML2  
CTTNBP2NL  
PDP1  
DBN1  
ANXA2 −2.50
MED17  
ANXA11  
CLIC1  
LUZP1  
ABI1  
JAK1  

Table 2

Parameters of different model.

Model Accuracy 95% CI Sensitivity Specificity 

ANXA2+KRT19+VCAN+CXCL8+KRT7 0.95 (0.87–0.99) 1.0 0.71
ANXA2+KRT19+VCAN+CXCL8 0.91 (0.82–0.96) 0.97 0.64
ANXA2+VCAN+CXCL8 0.91 (0.82–0.96) 0.95 0.71
ANXA2+VCAN+CXCL8+KRT7 0.94 (0.86–0.98) 0.98 0.71
ANXA2+VCAN+KRT7 0.90 (0.81–0.95) 0.95 0.64
ANXA2+VCAN 0.85 (0.75–0.92) 0.92 0.50
KRT19+CXCL8+KRT7 0.92 (0.84–0.97) 0.98 0.64
CXCL8+KRT7 0.94 (0.86–0.98) 0.98 0.71
KRT7 0.78 (0.67–0.87) 0.89 0.28
KRT19+KRT7 0.83 (0.73–0.91) 0.92 0.43
CXCL8 0.90 (0.81–0.95) 0.94 0.71

ANXA2 = annexin A2, CI = confidence interval, CXCL8 = C-X-C motif chemokine ligand 8, KRT7 = keratin 7, KRT19 = keratin19, VCAN = versican.
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Figure 4. ROC curves of 2 models. Model 1: KRT7 and CXCL8, Model 2: 
VCAN, ANXA2, KRT7, KRT19, and CXCL8. ANXA2 = annexin A2, AUC = 
area under curves, CXCL8 = C-X-C motif chemokine ligand 8, FPR = false 
positive rate, KRT7 = keratin 7, KRT19 = keratin 19, ROC = receiver operating 
characteristic, TPR = true positive rate, VCAN = versican.
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Next, KRT7 and CXCL8 were found to play a core role 
among all genes. CXCL8 chiefly responded for specificity, distin-
guishing non-BA liver diseases from BA. Therefore, CXCL8 plus 
KRT7 elevated the correct rate of identifying BA. The accuracy of 
combining KRT7 and CXCL8 was very close to the model con-
sisting of VCAN, ANXA2, CXCL8, KRT19, KRT7, which only 
misidentified a BA as a non-BA. In contrast, the model’s accu-
racy descended to 74.74% in external validation set GSE84954. 
Through in-depth analysis, the classification error of GSE46960 
mainly occurred when the Non-BA group was classified as BA 
group, and the samples misclassified were principally idiopathic 
cholestasis. In GSE84954, the propensity for error was similar 
to GSE46960; non-BA diseases miscategorized separately were 
biliary cirrhosis and alpha-1-antitrypsin deficiency.

Furthermore, samples with the higher expression level of 
KRT7 and CXCL8 tended to be sorted as BA to a great extent, a 
phenomenon that was striking as shown by Figure 6B. The errors 
would occur when one of KRT7 and CXCL8 was expressed at 
an extremely high or low level, and another gene was expressed 
at a normal level. Given the expression of KRT7 and CXCL8 
observed in GSE46960, thereby we took into account that the 
reason that induced the low accuracy of the model in GSE84954 
mostly was the deviation of the results arising from the smaller 
sample size. The overall accuracy of the model, which was dis-
turbed for errors caused by aberrant values, may improve with 
increasing sample size. Another reason we speculated on was 
that not all cholestatic diseases suited the model to differentiate.

In our study, the result of WGCNA analysis and function 
enrichment disclosed the changes of mRNA profiles with BA 

were in line with previously identified pathogenesis of cholestatic 
diseases containing BA and implied the core role of biliary pro-
genitor, ECM and Notch pathway in the progress of BA. A novel 
diagnostic model was developed by lasso regression and ran-
domforest algorithm, which was comparable in accuracy to the 
model comprised of CXCL8 and LAMC2 originating from the 
same dataset. This conclusion inferred that the model of KRT7 
and CXCL8 might be worthy of further study and made us notice 
the unique value of CXCL8 to discriminate BA with several 
cholestatic diseases. As the overlap in pathogenesis characteristic 
between BA and partial cholestasis, no single preoperative exam-
ination that enables the diagnosis of BA to be made certainty and 
thus a complex model that incorporates clinical manifest, labora-
tory examinations, image examinations, histological cachet, and 
biomarkers might be promising. Patients who opt for diagnosis 
by an exploratory laparotomy will benefit from it.

Given the limitations of our study in the cohort size (14 dis-
ease control samples) and the small size of the external validation 
set (11 samples), the outcome should be investigated in a broader 
context. Another aspect, since these data were from European 
and American countries, the practical value of the model in the 
mainland China needs to be inspected with native biospecimen.

5. Conclusion
WGCNA constructed a co-expression net encompassing ten 
modules and identified that the brown module is mainly related 
to BA. GO and KEGG enrichment analysis uncovered the genes 
of the brown module are predominantly enriched in biological 
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Figure 5. (A) PCA of original data. (B) PCA of the model of KRT7 and CXCL8. BA = biliary atresia, CXCL8 = C-X-C motif chemokine ligand 8, KRT7 = keratin 7, 
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processes of CAM, extracellular matrix organization, inflam-
matory response, and notch pathway. Thirty-nine hub genes 
from the brown module consisted of a PPI network. KRT7 and 
CXCL8 were screened out from the 39 genes by lasso regression 
and a diagnostic model was formed using a randomforest algo-
rithm to distinguish between BA and non-BA with an approxi-
mate accuracy of 93.6% and an AUC of 0.93.
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Table 3

Confusion matrix of predicting classification in GSE84954 
(randomforest).

      Reference

BA Non-BA 

Liver tissue Prediction BA 5 2
Non-BA 1 3

BA = biliary atresia, Non-BA =control group for hepatobiliary diseases without the biliary atresia.

Table 4

Confusion matrix of predicting classification in GSE84954 (KNN).

      Reference

BA Non-BA 

Liver tissue Prediction BA 6 2
Non-BA 0 3

BA = biliary atresia, KNN = k-nearest neighbors algorithm, Non-BA = control group for 
hepatobiliary diseases without the biliary atresia.
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