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Abstract

We evaluated 7 C. muridarum ORFs for their ability to induce protection against chlamydial infection in a mouse intravaginal
infection model. These antigens, although encoded in C. muridarum genome, are transcriptionally regulated by a cryptic
plasmid that is known to contribute to C. muridarum pathogenesis. Of the 7 plasmid-regulated ORFs, the chlamydial
glycogen phosphorylase or GlgP, when delivered into mice intramuscularly, induced the most pronounced protective
immunity against C. muridarum intravaginal infection. The GlgP-immunized mice displayed a significant reduction in vaginal
shedding of live organisms on day 14 after infection. The protection correlated well with a robust C. muridarum-specific
antibody and a Th1-dominant T cell responses, which significantly reduced the severity but not overall incidence of
hydrosalpinx. The GlgP-induced partial protection against upper genital tract pathology suggests that GlgP may be
considered a component for a multi-subunit vaccine. These results have demonstrated that intramuscular immunization of
mice with purified proteins can be used to identify vaccine antigens for preventing intravaginal infection with C. trachomatis
in humans.
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Introduction

Urogenital tract infection with Chlamydia trachomatis is a leading

cause of sexually transmitted bacterial infections [1,2,3]. Although

antibiotics are effective in treating chlamydial infection, due to the

lack of obvious symptoms, many infected individuals don’t seek

treatment, potentially leading to complications characterized with

inflammatory pathologies in the upper genital tract, including

pelvic inflammatory diseases, ectopic pregnancy and infertility

[1,4,5]. Obviously, a most effective means to prevent C. trachomatis-

induced complications is vaccination. However, there is still no

licensed C. trachomatis vaccine [6]. Immunization with formalin-

fixed whole C. trachomatis elementary body (EB) organisms not only

failed to induce long lasting protective immunity against trachoma

but also exacerbated ocular pathologies when some immunized

children were exposed to natural infection [7]. These observations

suggest that the formalin-fixed EB organisms may not only lack

protective antigens or contain protective antigens in incorrect

conformation but also carry pathogenic antigens. It is now known

that many chlamydia-secreted proteins may not be retained in the

EB organisms in any significant amounts [8,9,10,11]. It has also

been shown that the major outer membrane protein (MOMP) in

its native conformation is more powerful than non-native MOMP

in inducing protective immunity against chlamydial challenge

infection [12,13,14]. More importantly, extensive immunological

characterizations of chlamydial infection in animal models have

demonstrated that chlamydial antigen-specific immune responses

mediated by IFNg and dominated by Th1 T cells are essential for

protection against chlamydial infection [6,15,16], Thus, it may be

possible to induce protective immunity using the chlamydial

antigens if prepared and delivered appropriately.

The precise pathogenic mechanisms of C. trachomatis-induced

diseases remain unclear although both intracellular replication of

C. trachomatis organisms and host responses to C. trachomatis

antigens may significantly contribute to inflammatory pathologies

during C. trachomatis infection [17,18,19,20]. C. muridarum organ-

isms deficient in a cryptic plasmid failed to induce pathologies in

the upper genital tract while the wild type organisms were fully

capable of doing so [20,21]. Although C. muridarum organisms

cause no known human diseases, the organisms have been

extensively used to study immunobiology and search for vaccine

antigens of C. trachomatis [6,15,16,19,20,22,23]. Extensive immu-

nological studies, largely based on a C. muridarum intravaginal

infection mouse model, have revealed that a Th1-dominant cell-

mediated immunity is required for protection against Chlamydia

urogenital tract infection [6,15,16]. The plasmid-free C. trachomatis

organisms also displayed a reduced pathogenicity in mice [24].

The cryptic plasmid not only encodes 8 open reading frames
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(ORFs) of its own but also transcriptionally regulates 22 genomic

ORFs [25]. It has been hypothesized that the plasmid-encoded

and/or -regulated ORFs may contribute to chlamydial pathogen-

esis.

In the current study, we used a C. muridarum intravaginal

infection mouse model to identify chlamydial antigens that can

induce protective immunity against chlamydial intravaginal

infection. We focused on chlamydial plasmid-regulated ORFs in

the current study because plasmid-encoded and/or regulated

genes have been proposed to play important roles in chlamydial

pathogenesis [21,25]. Among the 22 plasmid-regulated gene

products, 7 C. trachomatis proteins were significantly recognized

by C. trachomatis-infected women [26]. Since our long-term goal is

to develop a vaccine for humans, we compared the protection

efficacy of these 7 antigens using their orthologs from C. muridarum

in the mouse model. We found that the chlamydial glycogen

phosphorylase (GlgP), when delivered into mice intramuscularly,

induced the most pronounced protective immunity that partially

protected mice from chlamydial live organism infection and the

infection-induced upper genital tract pathology. The partial

protection further correlated with robust C. muridarum-specific

antibody and Th1-dominant T cell responses.

Results

1. Immunization with glycogen phosphorylase
significantly reduced live organism shedding following
an intravaginal infection

The chlamydial plasmid is known to transcriptionally regulate at

least 22 chlamydial chromosomal genes [25]. We screened 7 of the

plasmid-regulated gene products in a mouse intravaginal infection

model for induction of protective immunity (Fig. 1). The 7 proteins

include 3 hypothetical proteins with no known function (HP;

ORFs TC0075, TC0285 & TC0419), 3 glycogen metabolism

enzymes [glycogen synthase (GlgA, TC0181), glycogen branching

enzyme (GlgB, TC0257) & glycogen phosphorylase (GlgP,

TC0519)] and one acyltransferase (1-acyl-sn-glycerol-3-phosphate

acyltransferase or AGPAT, TC0156). The initial screening

experiment included 5 mice in each group. Despite the small

group size, the positive control group immunized with C. muridarum

live organisms (MoPn EBs) completely cleared infection on day 14

(p,0.01 when IFUs were compared, panel A; p,0.05 when the

number of mice with positive shedding was compared, panel B).

More importantly, the mouse groups immunized with the

hypothetical proteins TC0075 or TC0419 or glycogen phosphor-

ylase (GlgP) also displayed statistically significant reduction in

shedding of live organisms on day 14 post infection. However,

after correcting for multiple group comparisons, the p value only

from the GlgP-immunized group remained statistically significant.

2. GlgP-immunized mice displayed significantly less
severe hydrosalpinx

We also monitored the pathologies in the upper genital tract

tissues of the mice described above. The entire urogenital tracts

were visually inspected for both the presence of hydrosalpinx and

severity of hydrosalpinx based on the size of swollen oviducts

relative to the size of ovary on the same side as described

previously [19,20,27]. The overall incidences of hydrosalpinx were

similar between the GlgP-immunized and GST control groups

although the EB immunization group developed significantly

lower rates of hydrosalpinx (Fig. 2 panels A & B). Importantly,

when the severity of hydrosalpinx was compared, the GlgP-

immunized group developed significantly less severe hydrosalpinx

comparing to the GST control group (Fig. 2C). This reduced

severity of hydrosalpinx in the GlgP-immunized group correlated

well with reduced inflammatory infiltration examined under

microscope (data not shown). The GlgP-induced protection was

reproduced when more than 15 mice per group were used (Fig. 3).

Thus, GlgP immunization not only decreased the live organism

shedding from the lower genital tract but also reduced pathologies

in the upper genital tract following a challenge infection with C.

muridarum organisms.

3. Immunization with GlgP induced C. muridarum-specific
immune responses with a minimal cross-reactivity with
host GlgP

The immune responses induced by GlgP immunization were

monitored prior to C. muridarum challenge infection. Antibodies

from GlgP- and EB- but not GST-immunized groups labeled C.

muridarum inclusions in the infected HeLa cells (Fig. 4A). This

immunolabeling was specific since the antibody reactivities were

blocked by pre-absorption with specific antigens. The antibodies

from the GlgP-immunized mice also reacted with purified C.

muridarum EB organisms coated on the ELISA plate although the

titer was not as high as that from the EB-immunized group

(Fig. 4B). When the C. muridarum-specific antibodies were analyzed

for isotypes, both EB- and GlgP-immunized mice developed high

levels of IgG2a than IgG1 (Fig. 4C), indicating that both groups of

mice developed a Th1 dominant T cell response. Indeed,

splenocytes from both GlgP- and EB-immunized mice produced

high levels of the Th1 cytokine IFNg upon in vitro restimulation

with either EB or GlgP antigens (Fig. 5). GlgP is a highly conserved

phosphorylase and the chlamydial GlgP share ,50% amino acid

identity with GlgPs from mice (NP_722476 from brain,

NP_035354 from muscle or NP_573461 from liver) or human

(AAC18079) (http://www.ncbi.nlm.nih.gov/blast). We then tested

whether antibodies produced in mice immunized with chlamydial

GlgP could cross-react with mouse GlgP (Fig. 6). Surprisingly,

despite the high level of amino acid sequence homology, the anti-

chlamydial GlgP antibodies did not recognize GlgP from mouse

liver, brain or muscle tissues although under the same condition,

the chlamydial GlgP was significantly recognized. As a control, a

commercial rabbit anti-mouse GlgP antibody recognized both

mouse and chlamydial GlgP.

Discussion

To search for chlamydial vaccine candidate antigens, we used a

C. muridarum intravaginal infection mouse model to evaluate the

immunogenicity of and the ability to induce protective immunity

by C. muridarum antigens. The C. muridarum antigens were selected

when their counterparts in C. trachomatis were significantly

recognized by antibodies from women urogenitally infected with

C. trachomatis [26,27]. Since plasmid-free chlamydial organisms

failed to induce pathologies [21,25], it is assumed that plasmid-

encoded and/or regulated genes play important roles in

chlamydial pathogenesis. The chlamydial plasmid encodes 8 of

its own genes and regulates 22 genes encoded in the genome.

Among the 22 plasmid-regulated gene products, 7 C. trachomatis

proteins were significantly recognized by C. trachomatis-infected

women [26]. We compared the protection efficacy of the 7

antigens using the corresponding C. muridarum orthologs in mice

and found that chlamydial GlgP-immunized mice developed the

most pronounced protective immunity against C. muridarum

intravaginal infection with a significant reduction in vaginal

shedding of live organisms on day 14 after infection. The severity

of oviduct hydrosalpinx was significantly reduced in GlgP-

immunized mice although the overall incidence of hydrosalpinx

Protection Induced by a Glycogen Phosphorylase
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was not significantly different between immunized and control

mice. Since the severity of hydrosalpinx can reflect the duration of

tubal blockage and contribute to clinical complications such as

infertility, reducing the severity of hydrosalpinx through vaccina-

tion is medically relevant.

The protective immunity induced by chlamydial GlgP is

somewhat unexpected given the high level of amino acid sequence

homology between chlamydal and host GlgPs. Among the 7

antigens tested, 3 are hypothetical proteins with no significant

homology with any mammalian proteins. Yet, these antigens failed

to induce significant protective immunity. Nevertheless, chlamyd-

ial antigens with amino acid sequence homology with their

counterparts in mammalian hosts have been shown to be

immunodominantly recognized by the mammalian hosts [26,28],

suggesting that the orthologous chlamydial antigens can be

immunogenic in mammalian hosts. Interestingly, antibodies from

the chlamydial GlgP-immunized mice failed to recognize any

GlgPs in mouse tissues, demonstrating that in response to

chlamydial GlgP immunization, the inbred mice selectively

produced antibodies against the variable regions of GlgP and

maintained tolerance to the conserved epitopes. However, it will

be very difficult to predict whether similar tolerance can be

maintained after the repeated injections are applied to outbred

humans during human vaccination. Thus, caution needs to be

taken when considering chlamydial GlgP as a vaccine antigen for

humans.

The GlgP-induced partial protection correlated with GlgP-

specific antibody and Th1-dominant cellular responses. Although

these correlative observations cannot tell us exactly which immune

responses are required for the GlgP-induced protection, evidence

accumulated in the past half century has demonstrated that a Th1-

dominant CD4+ T cell response is essential for controlling

chlamydial urogenital infection [6,15]. Thus, we can reasonably

assume that a GlgP-specific Th1-dominant cellular response may

play a critical role in GlgP-induced protective immunity, which

means that GlgP has to be processed and GlgP-derived epitopes

must be presented by both antigen presentation cells such as

dendritic cells during immunization (for priming naı̈ve T cells into

Figure 1. Evaluation of 7 plasmid-regulated antigens for inducing protective immunity against C. muridaum intravaginal infection.
(A) Groups of female Balb/c mice with 5/each were immunized intramuscularly with three doses of corresponding antigens plus adjuvant (CpG+IFA)
as indicated in the figure. One month following the final immunization, mice were challenged intravaginally with 26104 IFUs of C. muridarum
organisms. Vaginal swabs were taken weekly as indicated along the x-axis for measuring the number of live organisms (IFUs). The IFUs from each
swab was converted into Log10, and the log10 IFUs were used to calculate mean and standard deviation for each mouse group as displayed along
the y-axis. The log10 IFUs were compared between 9 groups of mice at each time point using ANOVA test, followed by a two-tailed Student’s t-test
for comparing between the GST control group and a test antigen group. ** indicates p,0.01 while *, p,0.05. Although three antigen groups
(TC0075, TC0419 & TC0519 or GlgP) displayed significant reduction in live organism shedding, only the GlgP-immunized group maintains a statistic
difference after correcting multiple group comparison. (B) Number of mice with detectable infectious units (IFUs) from each group and at each time
point was listed. The rates of IFU positivity were compared between the GST control and a test group using the Fisher’s exact test. * indicates p,0.05.
Three of the 5 mice immunized with GlgP cleared infection on day 14 post infection.
doi:10.1371/journal.pone.0032997.g001

Protection Induced by a Glycogen Phosphorylase
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effective/memory T cells) and the infected epithelial cells following

intravaginal infection (for T cell recognition of target cells). Since

GlgP is localized within the chlamydial inclusion and most likely

associated with the organisms (Fig. 4A & B of current study), it

would be difficult for the infected cells to access to GlgP from live

organism-laden inclusions. Most likely, the newly infected cells

may take up and process GlgP from dead organisms released from

the burst of previously infected cells. This is possible since

chlamydial inhibition of phagolysosomal fusion is only restricted to

the live organism-laden inclusions/vacuoles [29]. In addition,

presentation of chlamydial GlgP by nearby uninfected epithelial

cells and macrophages may also provide ligands for recognition by

GlgP-specific CD4+ T cells. These T cell recognitions can lead to

a robust production of IFN-gamma and activation of other

immune effector mechanisms at the site of infection or the site

where the infection spreading occurs. IFN-g produced at high

concentrations at the site of infection may significantly inhibit

chlamydial replication and effectively block spreading. The

dependence of GlgP-induced protection on the processing of

GlgP released from already infected cells may partially explain the

result that a significant reduction in live organism shedding in the

GlgP-immunized group occurred only 14 days after infection but

not earlier as in the live organism-immunized group. An earlier

protection may be offered via T cells primed by the antigens that

can be processed and presented by target cells upon an initial

infection. In addition, antibody responses to organism surface-

exposed epitopes may be more robust in reducing the initial

infection. Since the GlgP-immunized mice produced antibodies

that were able to recognize whole EBs in an ELISA, anti-GlgP

antibodies may also play an important role in GlgP-induced

protective immunity. However, it is not clear at this moment

whether GlgP is exposed on live infectious EBs. In any case,

defining the precise molecular and cellular mechanisms of GlgP-

induced protective immunity needs further investigations. Regard-

less of the precise mechanisms involved, the current study has

presented convincing evidence for a proof of concept that

intramuscular immunization with purified chlamydial proteins

can be used to identify vaccine candidate antigens for preventing

C. trachomatis infection and diseases. Efforts are underway to screen

other immunodominant antigens for inducing protective immunity

using the C. muridarum intravaginal infection model. Once

additional protective antigens are identified, more definitive

approaches will be used for comparing their protective mecha-

nisms. Given the complex chlamydial organism structures and

Figure 2. Effect of immunization on genital tract pathologies induced by intravaginal chlamydial infection. The 9 groups of mice
described in Fig. 1 legend were sacrificed for evaluating pathologies of the mouse genital tract tissues. (A) The genital tract gross appearance images
from all 9 groups of mice were presented with each group marked with the name of the corresponding antigens used to immunize the groups. The
entire genital tract from vagina to ovary was displayed from left to right (left panels) and the oviduct and ovary regions were amplified (right panels).
Each oviduct was scored for hydrosalpinx severity under naked eye and a numerical score was assigned for each oviduct as shown in the
corresponding images. The scoring criteria were described in the method section. (B) The number of mice with unilateral or bilateral hydrosalpinx
from each group was summarized. Note that 4 of 5 mice in GST while only 1 of 5 in EB-immunized groups developed hydrosalpinx. (C) The
hydrosalpinx severity scores from each group of mice (indicated along the x-axis) were displayed along the Y-axis. Note that both the EB- and GlgP-
immunized groups developed significantly reduced oviduct pathologies. The hydrosalpinx severity scores were compared between different groups
using ANOVA followed by the two-tailed Student t test. * indicates p,0.05.
doi:10.1371/journal.pone.0032997.g002
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chlamydial infection biology, it is likely that immunization with

combinations of various antigens with each able to induce unique

effector mechanisms to simultaneously attack multiple stages of the

infection processes may be necessary to achieve a full protection

against chlamydial infection and chlamydial diseases.

Materials and Methods

Ethics Statement
The studies described in the manuscript do not involve human subjects or

non-human primates, thus no institutional review board approval is required.

The use of mice in the manuscript was approved by the University of Texas

Health Science Center at San Antonio Animal Use Protocol Committee. The

protocol number is 09053, which has been evaluated annually. The current

version is valid till April 1 2012.

1. Chlamydial organisms and chlamydial infection in cell
culture

C. muridarum Nigg strain (also called MoPn) organisms were

grown, purified and titrated as described previously [20]. Aliquots

of the organisms were stored at 280uC till use. HeLa cells (ATCC,

Manassas, VA 20108) were maintained in DMEM (GIBCO BRL,

Rockville, MD) with 10% fetal calf serum (FCS; GIBCO BRL) at

37uC in an incubator supplied with 5% CO2. To prepare

chlamydial infection samples for various assays, HeLa cells grown

in tissue culture flasks or on glass coverslips in 24 well plates were

pretreated with DMEM containing 30 mg/ml of DEAE-Dextran

(Sigma, St Luis, MO) for 10 min. After the DEAE-Dextran

solution was removed, chlamydial organisms diluted in DMEM

were added to the monolayers and allowed to attach to the cell

monolayers for 2 h at 37uC. The infected cells were continuously

cultured in DMEM with 10% FCS and 2 mg/ml of cycloheximide

(Sigma) and processed at various time points after infection as

indicated in individual experiments. The infectious dose was pre-

titrated and an infection rate of *50% or less was applied to

samples for immunofluorescence assays or 90% or higher for

Western blot assays or making cell lysates.

2. Prokaryotic expression of chlamydial fusion proteins
and protein purification

Seven ORFs (open reading frames) from C. muridarum genome

were used for the current study: TC0075, TC0285, TC0419 (all

three are hypothetical proteins), TC0181 (glycogen synthase or

GlgA), TC0257 (glycogen branching enzyme or GlgB), TC0519

(glycogen phosphorylase, GlgP) & TC0156 (1-acyl-sn-glycerol-3-

phosphate acyltransferase or AGPAT; (http://www.ncbi.nlm.nih.

gov/sites/entrez). These 7 ORFs are among the 22 chromosomal

genes transcriptionally regulated by the cryptic plasmid [24] and

their counterparts in C. trachomatis were significantly recognized by

C. trachomatis-infected women while the remaining 15 were not. The

7 ORFs were cloned into pGEX vectors (Amersham Pharmacia

Biotech, Inc., Piscataway, NJ) and expressed as fusion proteins with

glutathione-s-transferase (GST) fused to the N-terminus. Expression

of the fusion proteins was induced with isopropyl-beta-D-thioga-

lactoside (IPTG; Invitrogen, Carlsbad, CA) and the fusion proteins

were extracted by lysing the bacteria via sonication in a Triton-

X100 lysis buffer (1% Triton-X100, 1 mM PMSF, 75 units/ml of

aprotinin, 20 mM leupeptin and 1.6 mM pepstatin). After a high-

speed centrifugation to remove debris, the fusion protein-containing

supernatants were purified using glutathione-conjugated agarose

beads (Pharmacia). While some of the bead-bound fusion proteins

were used to deplete antigen-specific antibodies from antiserum

samples, others were further used to purify soluble proteins by

cleavage (for TC0075, TC0156 or AGPAT, TC0181 or GlgA,

TC0257, TC0285 & TC0519 or GlgP) with a precision protease

(Pharmacia) or by elution (TC0419) with reduced glutathione

(Sigma). The cleaved or eluted chlamydial proteins were concen-

trated via centricon (Millipore, Billerica, MA) and used to immunize

mice for antibody production or evaluating protective immunity as

described previously [27,30].

3. Mouse immunization and urogenital tract infection
For the initial screening experiment, female Balb/c mice were

purchased at the age of 3 to 4 weeks old from Charles River

Figure 3. Enhanced resolution of C. muridarum genital tract
infection by GlgP immunization. GlgP along with two control
groups (GST as negative and EB as positive controls) of mice
(15,17mice/group) were immunized and infected as described in
Fig. 1 legend. (A) Both the EB- and GlgP-immunized groups displayed
significantly reduced levels of live organism shedding on day 14
postinfection and 9 of 15 mice from the EB-immunized group cleared
infection on this day. (B) The incidence of hydrosalpinx from the 3
groups of mice was summarized. (C) The hydrosalpinx scores from each
group were displayed along the Y-axis. ** indicates p,0.01 while * for
p,0.05. The quantitative IFU and semi-quantitative hydrosalpinx score
data were analyzed with Student t test while number of mice with
positive IFUs or with hydrosalpinx were analyzed with Fisher’s Exact
Test.
doi:10.1371/journal.pone.0032997.g003
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Laboratories, Inc. (Wilmington, MA) and divided into 9 different

groups with 5 in each group. All mice were immunized

intramuscularly (i.m.) for a total of 3 times on day 0, day 20 and

day 30 respectively. A total of 30 mg protein antigen or 106 IFUs of

C. muridarum (or MoPn) EBs plus 10 mg of CpG in 50 ml PBS

emulsified in 50 ml of IFA (incomplete Freund’s Adjuvant, Sigma-

Aldrich, St. Luis, MO) was given to each mouse at each time. The

first group was given GST protein as negative and the second

group with EBs as positive control. The remaining 7 groups were

each immunized with one of the 7 test antigens. The CpG with a

sequence of 59-TCC.ATG.ACG.TTC.CTG.ACG.TT-39 (all nu-

cleotides are phosphorothioate-modified at the 39 internucleotide

linkage) was used (Integrated DNA Technologies, IDT, Coralville,

IA). We used the CpG-IFA as adjuvant for the intramuscular

injection because it has been previously shown to induce Th1

dominant immune responses. Thirty days after the third

immunization, each mouse was inoculated intravaginally with

26104 IFUs of live C. muridarum organisms in 20 ml of SPG. Five

days prior to infection, each mouse was injected with 2.5 mg

Depo-provera (Pharmacia Upjohn, Kalamazoo, MI) subcutane-

ously. One day before the infection, all mice were bled from the

tail for monitoring antibody responses. In some experiments, mice

Figure 4. Induction of C. muridarum-specific immune responses with GlgP immunization. Three groups of mice with 5 in each group
immunized with GST, C. muridarum (or MoPn) EB or GlgP as described in Fig. 1 legend were sacrificed prior to challenge infection for collecting blood
and splenocytes. (A) The antisera after pooling from each group were used to detect the endogenous C. muridarum antigens in the infected cells
using an immunofluorescence assay. The mouse antibody binding (red) was visualized with a goat anti-mouse Cy3 conjugate (red) and co-labeled
with a rabbit anti-chlamydial organism antibody visualized with a goat anti-rabbit Cy2 conjugate (green) and a DNA dye (blue). To confirm the
staining specificity, the antisera from GlgP- (panels b, d & f) and EB (panels c, e & g)-immunized groups were pre-absorbed with either GST-GlgP
(panels d & e) or C. muridarum-infected cell lysates (f & g). The pooled anti-GlgP antisera were no longer able to label any endogenous antigens after
pre-absorption with either GST-GlgP or C. muridarum-HeLa lysates. However, the binding to endogenous antigens by the pooled anti-EB antiserum
was only blocked by C. muridarum-HeLa lysates. (B) Individual antisera from the 3 groups of mice, after serial dilution, were reacted with purified EBs
coated onto ELISA plates. Antisera from the GlgP-immunized mice significantly recognized the whole organisms although with much lower titers
comparing to the EB-immunized mice. (C) The reactivity of individual antisera from EB (1:800 dilution) or GlgP (1:400) -immunized mice with the
whole organisms coated onto the ELISA plates was also probed with goat anti-mouse Ig isotype-specific secondary antibodies. Both EB- and GlgP-
immunized mice preferentially produced higher levels of IgG2a, indicating the dominance of Th1 cytokines in these mice. ** indicates p,0.01.
doi:10.1371/journal.pone.0032997.g004

Protection Induced by a Glycogen Phosphorylase
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were sacrificed prior to infection for monitoring both antibody and

cellular responses. The GlgP immunization experiment was

repeated several times with a total of 15 to 17 mice per group.

4. Monitoring mouse vaginal live chlamydial organism
shedding and evaluating upper genital tract pathologies

To monitor live organism shedding, vaginal swabs were

collected weekly for 4 weeks after intravaginal infection. Each

swab was soaked in 0.5 ml of SPG, and after vortexing, the

chlamydial organisms released into the supernatants were titrated

on HeLa cell monolayers in duplicates as described previously

[19,20,27]. Briefly, serially diluted swab samples were inoculated

onto HeLa cell monolayers grown on coverslips in 24 well plates.

After incubation for 24 hours in the presence of 2 mg/ml

cycloheximide, the cultures were processed for immunofluores-

cence assay as described below. The inclusions were counted

under a fluorescence microscope. Five random fields were counted

per coverslip. The total number of IFUs per swab was calculated

based on the number of IFUs per field, number of fields per

coverslip, dilution factors and inoculation and total sample

volumes. An average was taken from the serially diluted and

duplicate samples for any given swab. The calculated total number

of IFUs/swab was converted into log10 and the log10 IFUs were

used to calculate means and standard deviation for each group at

each time point. Mice were sacrificed 60 days after infection and

the mouse urogenital tract tissues were isolated for gross pathology

evaluation as described previously [19,20]. Both incidence and

severity of hydrosalpinx were recorded for each mouse and

compared between different groups. The severity of hydrosalpinx

was scored based on the following criteria: No hydrosalpinx is

assigned a score of zero (0); Hydrosalpinx is only visible after

amplification (1); Hydrosalpinx is clearly visible with naked eye but

the size is smaller than that of ovary (2); The size of hydrosalpinx is

similar to that of ovary (3); If larger than ovary (4). Apparently, the

hydrosalpinx severity (scored based on the size of the affected

oviduct) largely reflects the amounts of fluids accumulated in the

oviduct. The fluid accumulation may be impacted by both the

duration of the oviduct blockage and the extent of the

inflammatory responses in the oviduct. Regardless how the fluids

are accumulated, the severity of hydrosalpinx has clinical

significance. Numerous clinical studies have shown that women

with more severe tubal damage or larger hydrosalpinges have

statistically significant lower rates of pregnancy and live birth

following in vitro fertilization (IVF) and surgical treatment of

severe hydrosalpinages prior to IVF can significantly increase the

live birth rate [31,32,33,34]. Thus, scoring the hydrosalpinx

severity is a medically relevant measurement.

5. Immunofluorescence assay
HeLa cells grown on glass coverslips in 24 well plates with or

without chlamydial organisms were fixed with 2% paraformalde-

hyde for 30 min, followed by permeabilization with 2% saponin

(Sigma) for an additional 1 h. After washing and blocking, the cell

samples were labeled with Hoechst (blue, Sigma) for visualizing

DNA and a rabbit anti-chlamydial chaperon cofactor antibody

(unpublished data) plus a goat anti-rabbit IgG conjugated with

Cy2 (green; Jackson ImmunoResearch Laboratories, Inc., West

Grove, PA) for visualizing chlamydial inclusions. In some

experiments, the monolayers were co-stained with mouse anti-

chlamydial protein antibodies plus a goat anti-mouse IgG

conjugated with Cy3 (red; Jackson ImmunoResearch Laborato-

ries). The immuno-labeled cell samples were quantitated as

described above and used for image analysis and acquisition with

Figure 5. Detection of a Th1-dominant cellular response in
GlgP-immunized mice. Splenocytes harvested from EB (open bar) or
GlgP (hatched bar) -immunized mice as described in Fig. 4 legend were
in vitro re-stimulated with UV-inactivated Chlamydia muridarum EB
organisms at 16106 IFUs per well, 10 mg/ml GlgP or medium alone
(none) as indicated at the bottom of the figure. Three days after the
stimulation, the culture supernatants were collected for IFNg and IL-5
detection and the results were expressed as pg or ng/ml as displayed
along the Y-axis (mean 6 SD). Note that both EB and GlgP-immunized
mice produced much higher concentrations of IFNg than IL-5,
indicating a Th1 dominant cellular response in theses mice.
doi:10.1371/journal.pone.0032997.g005

Figure 6. Minimal cross-reactivity of chlamydial GlgP-induced
mouse antibodies with mouse tissue GlgP molecules. C.
muridarum-infected HeLa lysate (lane 1) or extracts from mouse liver
(lanes 2–4), muscle (5–7) and brain (8–10) were resolved in a SDS
polyacrylamide gel and the protein bands were blotted onto
nitrocellulose membrane for Western blot detection with an rabbit
anti-mouse GlgP (panel a) or the pooled mouse anti-chlamydial GlgP
(b). Note that the mouse anti-chlamydial GlgP antibodies preferentially
recognized chlamydial GlgP without any significant cross-reactivity with
mouse tissue GlgP.
doi:10.1371/journal.pone.0032997.g006

Protection Induced by a Glycogen Phosphorylase

PLoS ONE | www.plosone.org 7 March 2012 | Volume 7 | Issue 3 | e32997



an Olympus AX-70 fluorescence microscope equipped with

multiple filter sets (Olympus, Melville, NY) as described previously

[35,36,37,38]. All microscopic images were processed using the

Adobe Photoshop program (Adobe Systems, San Jose, CA).

6. Enzyme-linked immunosorbent assay (ELISA)
The cytokines in the supernatants of the in vitro stimulated

lymphocyte cultures were measured using standard cytokine

ELISA kits (mouse IFNg kit, cat# DY485 & IL-5 (cat# DY405,

both from R&D Systems, Inc., Minneapolis, MN) as instructed by

the manufacturer and described previously [19,39]. Briefly,

splenocytes were harvested from immunized mice prior to MoPn

infection and stimulated in vitro with UV-inactivated MoPn EBs,

chlamydial GlgP or medium alone for 3 days. The culture

supernatants were collected for cytokine measurements using 96

well ELISA microplates precoated with the corresponding capture

antibodies. The capture antibody-bound cytokines were detected

with biotin-conjugated antibodies and horseradish peroxidase

(HRP)-conjugated Avidin. The cytokine concentrations were

calculated based on absorbance values, cytokine standards and

sample dilution factors and expressed as ng or pg per ml.

7. Western blot assay
The Western blot assay was carried out as described elsewhere

[40,41]. Briefly, either the C. muridarum GlgP or mouse tissue

samples were solubilized in 2% SDS sample buffer and loaded to a

SDS–polyacrylamide gel. After electrophoresis, the resolved

protein bands were transferred to nitrocellulose membranes for

blotting with primary antibodies, including the mouse pAb against

C.muridarum GlgP or a rabbit anti-mouse liver GlgP antibody

(Rabbit pAb against liver glycogen phosphorylase, cat#15851-1-

AP, ProteinTech Group, Chicago, IL) and the mouse pAb against

C.muridarum TC0519. The primary antibody bindings were probed

with an HRP (horse radish peroxidase)-conjugated goat anti-

mouse or rabbit secondary antibodies and visualized with an

enhanced chemiluminescence (ECL) kit (Santa Cruz Biotechnol-

ogy, Inc., Santa Cruz, CA). The various tissue samples harvested

from mouse brain, liver or muscle were homogenized in ice-cold

buffer containing 50 mM HEPES (pH 7.6), 150 mM sodium

chloride, 20 mM sodium pyrophosphate, 20 mM beta-glycero-

phosphate, 10 mM sodium fluoride, 2 mM sodium orthovana-

date, 2 mM EDTA, 1.0% Igepal (a nonionic, nondenaturing

detergent), 10% glycerol, 2 mM phenylmethylsulfonyl fluoride,

1 mM magnesium chloride, 1 mM calcium chloride, 10 mg/ml

leupeptin, and 10 ı̀g/ml aprotinin. Tissue homogenates were

centrifuged and the supernatants were resolved in SDS-polyacryl-

amide gel and blotted onto nitrocellulose membrane for antibody

detection.

8. Statistical analysis
ANOVA test (http://www.physics.csbsju.edu/stats/anova.

html) was performed to analyze data from multiple groups and a

two-tailed Student’s t-test (Microsoft Excel) to compare the means

between two groups. A Fisher’s Exact test was used for comparing

the incidences between two groups.
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