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Abstract: Chiroptical spectra such as electronic circular dichroism (ECD) are said to be much
more sensitive to conformation than their non-chiroptical counterparts, however, it is difficult to
demonstrate such a common notion in a clear-cut way. We run DFT and TDDFT calculations on two
closely related 1,1-diarylmethanols which show mirror-image ECD spectra for the same absolute
configuration. We demonstrate that the main reason for the different chiroptical response of the two
compounds lies in different conformational ensembles, caused by a single hydrogen-to-methyl
substitution. We conclude that two compounds, having the same configuration but different
conformation, may exhibit mirror-image ECD signals, stressing the importance and impact of
conformational factors on ECD spectra.

Keywords: stereochemistry; conformational analysis; absolute configuration; electronic circular
dichroism calculations; vibronic circular dichroism; benzene sector rules

1. Introduction

Electronic circular dichroism (ECD), the differential absorption of left- vs. right-circularly polarized
light in the domain of electronic transitions, is the most popular and widespread chiroptical technique
used for the characterization of chiral non-racemic samples [1]. ECD is the chiroptical counterpart of
UV-Vis absorption spectroscopy, in the same way all other chiroptical techniques, such as vibrational
CD (VCD), optical rotation dispersion (ORD), circularly polarized luminescence (CPL), etc., have
their non-chiroptical counterparts, respectively infrared (IR) spectroscopy, refractive index dispersion,
luminescence emission spectroscopy, and so on [2]. The main advantage of chiroptical spectroscopies
over their non-chiroptical analogues is obviously the fact that the former ones are sensitive to the
molecular and supramolecular chirality. In fact, each band in a chiroptical spectrum may have either a
positive or negative sign, which is always opposite for the two enantiomers of the same substance.
Hence, the main application of these spectroscopies is in the assignment of absolute configuration [1,2].
However, it is often said that chiroptical spectroscopies are also more sensitive to the molecular
conformation than their non-chiroptical analogues [3]. This means that, when assigning absolute
configurations, the molecular conformation must be studied as well; but, also, that (especially) ECD
and VCD lend themselves as tools for studying molecular and supramolecular conformation [1,4,5].
In more fundamental terms, ECD and VCD spectra, including their sign, are determined not only
by the molecular configuration, but also by the molecular conformation, and more generally by a
combination thereof.

The dependence of ECD on conformational factors has been discussed in several instances,
especially in combination with ECD quantum-chemical calculations [6–19]. In fact, it is easy
to demonstrate “in silico” that different conformations of the same molecule exhibit different
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chiroptical responses. It is of course much more difficult to get a valid experimental proof of
the same phenomenon. To this end, one must resort to more or less complex systems such as
conformation-dependent chiroptical switches [20–22] or achiral compounds forming chiral crystals
by spontaneous resolution [23]. Only the use of emerging or niche techniques such as two-photon
ionization CD and photoelectron CD may offer an actual snapshot of molecules entrapped in a specific
conformation [24,25].

In a much simpler but very clever and didactic way, a good means of demonstrating the impact
of molecular conformation on ECD spectra would consist in finding a pair of compounds with a
very similar skeleton and consistent absolute configuration, but showing very different ECD spectra,
possibly even the mirror image of each other. A very nice example of this kind was reported in
1997 by Sandström and co-workers concerning two analogous spiro compounds which would show
mirror-image ECD spectra for the same configuration at the spiro center, due only to a different
cycle size (5- vs. 6-membered) [26]. Unfortunately, we showed recently that this example is faulty,
because one absolute configuration was wrongly assigned [27]. A second good example is offered
by the two compounds investigated here, (2-methylphenyl)(phenyl)methanol (1, Scheme 1) and
(2,6-dimethylphenyl)(phenyl)methanol (2). These two alcohols were reported in 2002 by Harada,
Pirkle and coworkers [28]. They were prepared in enantiopure form and their absolute configuration
was unambiguously assigned by X-ray, taking advantage of a chiral derivatizing agent based on
camphorsultam dichlorophthalic acid [28,29]. The two compounds differ only for one methyl group
attached at position 6’ of one phenyl ring (Scheme 1). For the same absolute configuration (R) of
the carbinol carbon, the two compounds display almost mirror-image ECD spectra over the whole
available range 210–300 nm (Figure 1) [28,30]. The authors stressed that the empirical comparison
between the ECD spectra of 1 and 2 would lead to an incorrect assignment of one absolute configuration.
Such empirical comparisons were still quite popular at the time of the original publication, while they
are heavily discouraged nowadays [1,2]. The authors postponed to a future study the reason why
compounds (R)-(+)-1 and (R)-(−)-2 show opposite ECD spectra. However, although the original paper
has been quoted several times as a warning against empirical spectral comparisons [27,30–34], an
interpretation of the observed phenomenon has not been provided yet, to the best of our knowledge.
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In the present paper, we report the results of a computational study on 1 and 2 by means of 
density functional theory (DFT) calculations. Our approach was able to reproduce the experimental 
spectra of (R)-(+)-1 and (R)-(−)-2, including the vibrational fine structure (vibronic ECD calculations 
on 2 have been reported previously) [35]. We shall see that the difference in the ECD spectra of (R)-1 
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conformational factors on the appearance of ECD spectra. In conclusion, we shall demonstrate that 
two simple compounds 1 and 2 with the same absolute configuration at the chiral centers display 
almost mirror image ECD spectra because of their different conformation. 
  

Scheme 1. Chemical structures of (R)-(2-methylphenyl)(phenyl)methanol (R)-(1) and (R)-(2,6-dimethylphenyl)
(phenyl)methanol (R)-(2).

In the present paper, we report the results of a computational study on 1 and 2 by means of
density functional theory (DFT) calculations. Our approach was able to reproduce the experimental
spectra of (R)-(+)-1 and (R)-(−)-2, including the vibrational fine structure (vibronic ECD calculations
on 2 have been reported previously) [35]. We shall see that the difference in the ECD spectra of (R)-1
and (R)-2 is mainly a consequence of different conformational ensembles, stressing the impact of
conformational factors on the appearance of ECD spectra. In conclusion, we shall demonstrate that
two simple compounds 1 and 2 with the same absolute configuration at the chiral centers display almost
mirror image ECD spectra because of their different conformation.
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Figure 1. Experimental UV (top) and ECD (bottom) spectra of (R)-1 (black lines) and (R)-2 (red lines) 
recorded in ethanol. Reproduced from Ref. [28] with permission of Taylor & Francis Ltd., 
www.tandfonline.com. 

2. Results 

2.1. Experimental and Calculated ECD Spectra 

The absorption and ECD spectra of compounds (R)-(+)-1 and (R)-(–)-2 are reproduced in Figure 1. 
They show the typical bands of substituted benzene chromophore [36], namely: (a) the 1Lb band 
between 250–275 nm, with low intensity and characteristic vibrational structure [37]; (b) the 1La band 
between 210–250 nm, with relatively higher intensity both in the UV and ECD spectra. Unfortunately, 
the high energy region corresponding to the 1Bb band is not covered [28,30]. While the UV spectra of 
the two compounds are very similar to each other, the ECD spectra look almost the mirror image of 
each other over the whole available range. 

To simulate the ECD spectra of 1 and 2, we used a consolidated computational procedure [38,39]. 
First, we investigated the conformational energy surface by means of conformational searches with 
the Monte Carlo algorithm implemented in Spartan’16 [40] using the Merck Molecular Force Field 
(MMFF). MMFF torsional energy scans were also run on the relevant torsional modes to assure that 
all possible conformers had been detected. All MMFF structures were optimized with DFT at ωB97X-
D/def2-TZVP level including a polarizable continuum solvent model (PCM) for ethanol [41]. We 
found six low-energy conformers for (R)-1 and three low-energy conformers for (R)-2, described in 
Table 1 and Figure 2. The accuracy of relative energy estimates was checked for (R)-2 with several 
other computational methods, including the augmentation of the basis set, the use of a double hybrid 
functional (B2PLYP) or coupled-cluster calculations (CCSD), and a different solvation model, as 
reported elsewhere [35]. Since no significant differences were found with respect to ωB97X-D/def2-
TZVP/PCM, this latter method was used thoroughly in the present work. 
  

Figure 1. Experimental UV (top) and ECD (bottom) spectra of (R)-1 (black lines) and (R)-2 (red
lines) recorded in ethanol. Reproduced from Ref. [28] with permission of Taylor & Francis Ltd.,
www.tandfonline.com.

2. Results

2.1. Experimental and Calculated ECD Spectra

The absorption and ECD spectra of compounds (R)-(+)-1 and (R)-(–)-2 are reproduced in Figure 1.
They show the typical bands of substituted benzene chromophore [36], namely: (a) the 1Lb band
between 250–275 nm, with low intensity and characteristic vibrational structure [37]; (b) the 1La band
between 210–250 nm, with relatively higher intensity both in the UV and ECD spectra. Unfortunately,
the high energy region corresponding to the 1Bb band is not covered [28,30]. While the UV spectra of
the two compounds are very similar to each other, the ECD spectra look almost the mirror image of
each other over the whole available range.

To simulate the ECD spectra of 1 and 2, we used a consolidated computational procedure [38,39].
First, we investigated the conformational energy surface by means of conformational searches with the
Monte Carlo algorithm implemented in Spartan’16 [40] using the Merck Molecular Force Field (MMFF).
MMFF torsional energy scans were also run on the relevant torsional modes to assure that all possible
conformers had been detected. All MMFF structures were optimized with DFT atωB97X-D/def2-TZVP
level including a polarizable continuum solvent model (PCM) for ethanol [41]. We found six low-energy
conformers for (R)-1 and three low-energy conformers for (R)-2, described in Table 1 and Figure 2.
The accuracy of relative energy estimates was checked for (R)-2 with several other computational
methods, including the augmentation of the basis set, the use of a double hybrid functional (B2PLYP)
or coupled-cluster calculations (CCSD), and a different solvation model, as reported elsewhere [35].
Since no significant differences were found with respect to ωB97X-D/def2-TZVP/PCM, this latter
method was used thoroughly in the present work.
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Table 1. Low-energy conformers of compounds (R)-1 and (R)-2 calculated atωB97X-D/def2-TZVP/PCM
level with relative energies and populations.

(R)-1 (R)-2

Conf. 1 Energy 2 Pop. 3 ϕ 4 Energy 2 Pop. 3 ϕ 4

#1 0 41.0 72.5 0 52.3 −61.6
#2 0.139 32.4 74.5 0.366 28.3 −70.7
#3 0.748 11.7 −60.4 0.592 19.4 −60.8
#4 0.996 7.69 156.3
#5 1.444 3.62 −66.8
#6 1.451 3.59 −61.7

1 Structures shown in Figure 2; 2 Internal energy in kcal/mol, relative to the absolute minimum for each compound;
3 Percent Boltzmann population at 300 K, estimated from internal energies; 4 Dihedral angle defined by carbon
atoms 1′′–1–1′–2′, in deg (indicated in Figure 2).
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ECD calculations were run on compounds (R)-1 and (R)-2 with the time-dependent DFT (TDDFT)
method [39] at the ωB97X-D/def2-TZVP/PCM level. It is well known that excited-state TDDFT
calculations of benzene derivatives are heavily affected by the nature of the density functional [42–45].
The present choice was based on our previous experience with this class of compounds [35,46,47],
as well as on the general good performance ofωB97X-D functional [48] in the prediction of chiroptical
spectra [38]. Consistent results were obtained at the CAM-B3LYP/def2-TZVP/PCM level. The ECD
spectra calculated for each conformer were averaged using Boltzmann factors evaluated at 300 K from
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internal energies. We are aware that different averaging strategies which take into account low-energy
internal motions and/or based on free energies, may lead to different and possibly more accurate
average ECD spectra [38]. However, a few more sophisticated strategies were tested for compound 2
without leading to significantly different or improved results with respect to the straightforward
Boltzmann averaging employed here [35].

The average calculated UV and ECD spectra for (R)-1 and (R)-2 are reported in Figure 3 along
with the experimental spectra, for an immediate comparison (full calculated spectra including the
1Bb-band region are shown in Figure S1, Supplementary Material). The calculations suffer from an
underestimation of the energy difference between 1La and 1Lb bands, which is related to the functional
employed [42–45]. Most importantly, however, they predict the correct sign for all ECD bands in the
1La and 1Lb regions for both compounds. This is a prerequisite as we wish to use (TD)DFT calculations
to understand the origin of the different ECD spectra of (R)-1 and (R)-2. To reproduce the vibrational
pattern seen in the experimental spectra, electronic CD calculations are of course not sufficient and
vibronic ECD calculations must be employed, as described in the next subsection.
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(bottom) spectra of (R)-1 (panel a) and (R)-2 (panel b). Calculated spectra plotted as sums of Gaussians
with 0.15 eV exponential band-width, shifted by +15 nm and scaled for better comparison. Experimental
spectra reproduced from Ref. [28] with permission of Taylor & Francis Ltd., www.tandfonline.com.

2.2. Vibronic ECD Calculations (1Lb Band)

The vibrational progression seen in the experimental UV and ECD spectra of compounds 1 and
2 (Figure 1) is typical for the electric-dipole forbidden 1Lb transition of simple aromatic molecules
containing substituted phenyl rings [47,49,50]. We studied previously this aspect for a few benzene
derivatives, including the present compound 2 [35,47]. We refer the reader to the quoted papers
for the details of the computational approach, the analysis of the vibronic coupling mechanism and
the ECD spectra obtained thereof. Here we applied the Vertical Hessian (VH) model, by computing
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explicitly the Hessian of the first two excited states for each molecule [51]. The VH model takes into
account both the effect of frequency changes between the ground and excited states, and Duschinsky
mixings. A development version of the FCclasses code [52] was employed in vibronic calculations; the
Franck-Condon terms were estimated at 0 K, using internal coordinates (the so-called VHint model) [53]
and including the first two transitions for each compound (one 1Lb-type transition localized on each
ring). The calculations were run on all low-energy conformers of 1 and 2 and averaged similarly to
ECD spectra.

Calculated vibronic ECD spectra in the 1Lb region for compounds (R)-1 and (R)-2 are shown in
Figure 4 and compared with the experimental spectra (see Figure S2, Supplementary Material, for the
corresponding absorption spectra). The calculations are able to reproduce the pattern of vibronic ECD
bands reasonably well. In particular, the dominant sign of the vibronic progression (positive for (R)-1
and negative for (R)-2) is reproduced, and it is consistent with that of purely electronic CD calculations
discussed above (Figure 3). Some minor details of the spectra are not captured by the calculations, for
example the intensity of the first two peaks found for (R)-2 at 270 and 276 nm. A complete treatment
of these issues falls outside the scope of the present paper, and has been already discussed elsewhere
for compound 2 [35]. Moreover, they do not affect the following discussion which aims at elucidating
the conformational dependence of the ECD spectra of (R)-1 and (R)-2.
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Gaussians with 0.025 eV exponential band-width, shifted by +30 nm and scaled by a factor 5 for better
comparison. Experimental spectra reproduced from Ref. [28] with permission of Taylor & Francis Ltd.,
www.tandfonline.com.

Similarly to what was previously observed for compound 2 [35], the vibronic transitions
responsible for the observed progressions are fundamental bands of modes with frequencies of
1050–1250 cm−1, involving combined C–H bendings and C–C stretchings of the phenyl rings (ring
breathing). For the second excited state, moreover, significant progressions are also seen along
low-frequency bending modes of both phenyl rings. In summary, the apparent vibronic progression of
1000–1200 cm−1 is due to the combination of fundamentals of the mentioned high-frequency modes,
and simultaneous excitations of high- and low-frequency modes.

3. Discussion

In this section, we will try to identify the major source of the differences seen in the ECD spectra
of (R)-1 and (R)-2, in particular the almost mirror-image relationship between their ECD spectra.
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Because of the close structural relationship between the two compounds, it was anticipated that the
sign reversal might occur for two possible reasons: (a) a change in the direction of the transition dipole
moment due to the so-called substituent spectroscopic moment [54,55]; (b) a different conformational
situation. The first reason would emphasize the small but non-negligible spectroscopic moment of
the methyl group attached at C-6′ in 2 with respect to the corresponding H-6′ in 1. This kind of effect,
namely a rotation of transition moment directions due to the aromatic ring substituents, has been
invoked a few times to justify unexpected ECD properties, including sign reversal [56,57]. However,
in the present case, a major role is in fact played by conformational factors. As reported in Section 2.1,
compounds 1 and 2 vary substantially in their conformational ensemble. Because of the 2′,6′-dimethyl
substitution, compound 2 is relatively rigid. The three possible conformers differ practically only in
the rotation of the OH group, while the reciprocal arrangement of the aromatic rings is consistent.
This is demonstrated by the torsion angle ϕ (defined by carbon atoms 1”–1–1′–2′) measured on
DFT-optimized geometries, which attains values between −60 and −70 deg for all conformers of 2
(Table 1 and Figure 2). As a consequence, the ECD spectra calculated for the various conformers are
very similar to each other (Figure S4, Supplementary Material). The 1La band has a negative sign and
similar intensity for all conformers; the 1Lb band is weak and negative for conformers #1 and #3 and,
as the only exception, bisignate for conformer #2. The situation does not change much by including
vibronic effects [35].

With respect to compound 2, compound 1 is relatively more flexible: the fact that the C-6′ ortho
carbon is not substituted, allows a further degree of conformational freedom around the C-1/C-1′ bond.
In fact, the dihedral angle ϕ now varies a lot among the various conformers, assuming either positive or
negative values (Table 1 and Figure 2). As a consequence, the calculated ECD spectra vary a lot among
the various conformers (Figure S3, Supplementary Material). The decisive difference with respect to
2 is, however, the relative arrangement of the aromatic rings found in the dominant conformation.
The conformational ensemble found for 1 includes three conformers (#3, #5 and #6, Figure 2) which
roughly correspond to those found for 2 (#1, #2 and #3, respectively) as for the orientation of the
aromatic rings (see negative values of angle ϕ in Table 1) and OH group. However, they account for
only 18.9% of the overall population; the two most stable conformers of 1 (#1 and #2), accounting for
73.4% population, feature a different orientation of the aromatic rings (with positive values of angle ϕ,
Table 1). The situation is well described by using space-filling models to account for steric effects. In
Figure 5, we compare the lowest energy conformer of 2 with the 2nd-lowest energy conformer of 1 (the
choice is dictated by the consistent orientation of the OH group in the two structures). The favored
conformation observed for compound 1 cannot be assumed by compound 2, because it would imply a
steric clash between the 6’-methyl and the OH group. To avoid such contact, the substituted phenyl
ring in 2 is rotated ≈40 deg clockwise around the C-1′′/C-1 bond (the movement is depicted by the
top blue curved arrow in Figure 5). At that point, the same methyl group would collapse with the
ortho-hydrogen of the phenyl ring, which is avoided by rotating this latter ≈90 deg clockwise around
the C-1′/C-1 bond (bottom blue curved arrow).

The effect of the different conformation of 1 and 2 on the ECD spectra is displayed in Figure 6,
which shows the ECD spectra calculated in the 1La/1Lb regions for the two structures just discussed.
For (R)-1 (conformer #2), the first three calculated transitions have positive rotational strengths, while
for (R)-2 (conformer #1), the corresponding transitions have negative rotational strengths. These are
the same signs found for the average calculated spectra, as well as for the experimental ones (Figure 3).
Thus, the different conformations are truly responsible for almost mirror-image ECD spectra, despite
the same absolute configurations.
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Figure 5. Space-filling models (90% Van der Waals radii) of the lowest-energy conformer of (R)-2 (right)
and the second lowest-energy conformer of (R)-1 (left), and hypothetical structure of (R)-2 in the same
conformation of (R)-1 (middle). In this latter, the atoms highlighted in yellow have short contacts
(distance < sum of VdW radii), which are relieved by means of the rotations indicated by the blue
arrows (leading to the lowest-energy structure on the right).
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To gain insight into the effective structure-to-spectra relationship, one must focus on a specific
mechanism of optical activity [58,59]. At first look, one may expect for compounds 1 and 2 that the
presence of two aromatic rings would yield an exciton coupling interaction, that is, a “dynamic”
coupling between the chromophores. This is however not the case for the 1Lb bands, because of their
electric-dipole forbidden character, leading to negligible exciton-coupled rotational strengths [60].
Our expectation is confirmed by the fact that the two rotational strengths in the 1Lb region have the
same sign for most low-energy conformers of 1 and 2 (see for example Figure 6). An explicit calculation
of the coupling potential between the 1Lb transition densities led to values reaching at most 30 cm−1

for some conformer of 1. Therefore, for the 1Lb bands, we must look at a “static” mechanism of optical
activity, whereby the transition of each aromatic chromophore is perturbed by the fragments in its
surrounding, which act as perturbers [58,59]. The situation for the 1La band is more complex because
both static and dynamic mechanisms are likely to concur, however, the following reasoning applies
similarly well at least to the static component.
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To illustrate how the static mechanism operates on the present compounds, we will make use of
sector rules. Semi-empirical sector rules have been very popular in the past as tools to predict ECD
spectra of various molecules [61,62]. Their use is discouraged today in favor of non-empirical methods
of analysis, however, the basic theory behind sector rules remains valid and offers a simple and
effective way for understanding the relation between molecular structure and ECD signals. Any sector
rule is valid for a specific electronic excitation, and it is based on three conceptual steps [1]: (1) dissect
the molecule into chromophore(s) and perturber(s); (2) partition the space around the chromophore
into sectors, delimited by nodal planes allied with the symmetry of the electronic excitation; (3) look
at the occupation of each sector by the various perturbers, possibly in reference with their relative
polarizability. Two sector rules exist for predicting the sign of 1La and 1Lb ECD bands of simple
benzene derivatives [63–65], illustrated in Figure 7.Molecules 2018, 23, 128 9 of 14 
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situation occurs for the 1La band, namely, the perturbation of each aromatic ring on the second one 
makes a positive contribution for (R)-1 and a negative one for (R)-2. In this case, the static mechanism 
is however also accompanied by exciton coupling. 

 

Figure 8. Application of the sector rule for 1Lb ECD band to (R)-1 (conformer #2) and (R)-2 (conformer 
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ring plane; light blue or cyan: perpendicular to ring plane) divide the space into sectors. A substituent,
or a piece of a substituent, is viewed as a perturber placed in each sector and is represented by a sphere.
Its contribution to the ECD band has the sign drawn on the spheres (blue, positive; red, negative).
In the presence of further substituents on the ring (e.g., methyl groups attached at 2′ and 6′), the vertical
nodal planes may be rotated around the vertical axis by an angle proportional to the substituent
spectroscopic moment.

Because compounds 1 and 2 contain two different benzene rings, to apply the sector rules we
must consider one benzene ring at a time, and look at the other ring as a perturber of the first
one. The situation for the 1Lb ECD band is depicted in Figure 8. For compound (R)-1 (conformer
#2), the two structures on the left show that the sign of the perturbation exerted by the phenyl
ring on the 2-methylphenyl (structure a) is positive, as it is that of the perturbation exerted by the
2-methylphenyl on the phenyl (structure b). For compound (R)-2 (conformer #1), the situation is
exactly the opposite: the perturbations exerted by the phenyl ring on the 2,6-methylphenyl (structure
c), and by the 2,6-methylphenyl on the phenyl (structure d), are both negative. It can be argued that
the same situation occurs for the 1La band, namely, the perturbation of each aromatic ring on the
second one makes a positive contribution for (R)-1 and a negative one for (R)-2. In this case, the static
mechanism is however also accompanied by exciton coupling.
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Figure 8. Application of the sector rule for 1Lb ECD band to (R)-1 (conformer #2) and (R)-2
(conformer #1). The colored spheres indicate the dominant contribution of one benzene acting as a
perturber for the other ring. Structure (a), sector contribution of the phenyl ring on the 2-methylphenyl
ring in (R)-1; (b), contribution of 2-methylphenyl on phenyl in (R)-1; (c), contribution of phenyl on
2,6-dimethylphenyl in (R)-2; (d), contribution of 2,6-dimethylphenyl on phenyl in (R)-2.

The above analysis proves that the mirror-image appearance of the ECD spectra of compounds
1 and 2 in the 1La/1Lb regions may be rationalized taking into account the different conformation
assumed by the two compounds. In particular, the two aromatic rings perturb each other differently
in the two compounds, because of a different reciprocal orientation. The sign of the contribution
to the ECD band, predicted by means of sector rules, is opposite for (R)-1 and (R)-2. Whether the
static mechanism of optical activity is dominant or not, our analysis demonstrates that the different
conformation has a major impact on the ECD spectra of the two compounds.

4. Materials and Methods

Conformational searches were run with Spartan’16 [40] using the Monte Carlo algorithm and
the Merck Molecular Force Field (MMFF) with standard parameters and convergence criteria. DFT
and TDDFT calculations were run with Gaussian’16 [66] with default grids and convergence criteria.
DFT geometry optimizations and frequency calculations were run at theωB97X-D/def2-TZVP level
of theory including the integral equation formalism of the polarizable continuum solvent model
(IEF-PCM) for ethanol. TDDFT calculations were run at the ωB97X-D/def2-TZVP/PCM level of
theory for the first 24 excited states. Calculated spectra were plotted as sums of Gaussians with
0.15 eV exponential half-width using the program SpecDis [67,68], using dipole-length rotational
strengths. The results obtained with dipole-velocity rotational strengths were fully consistent. Vibronic
absorption and ECD spectra were calculated at the same level of theory using a development version
of the FCclasses code [52] and adopting the Vertical Hessian model with internal coordinates (VHint)
on the first two excited states of each molecule. The vibronic line-shape was simulated adopting
a time-dependent approach [69] with a Gaussian envelope having a half-width at half maximum
(HWHM) of 0.03 eV. Average computational wall-times for each conformer (16-cores workstation,
memory 24 Gb): ground state optimization/frequency, 2 h; TDDFT, 1.5 h; excited state frequency
(analytical), 3.5 h.

5. Conclusions

We analyzed by means of DFT and TDDFT calculations the conformation and chiroptical (ECD)
response of two structurally related 1,1-diarylcarbinols (1 and 2). These two compounds exhibit almost
mirror-image ECD spectra in the region corresponding to benzene 1La and 1La bands, for the same
absolute configuration at the carbinol center. Our calculations proved that the main discrepancy
between 1 and 2 is a very different conformational situation. While compound 2 is more rigid,
the absence of one ortho methyl group makes 1 more flexible and favors a different arrangement
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between the aromatic chromophores, which is the ultimate reason for the appearance of such diverse
ECD spectra. We demonstrated that, in the case of compounds 1 and 2, mirror-image ECD spectra
arise—for the same absolute configuration—from a different conformation. Such a finding offers a
good proof, which is immediately appreciable by students and non-experts, of the crucial impact that
conformational factors may have on ECD spectra. More in general, all chiroptical properties result
from an interplay of both configuration and molecular conformation, and should be analyzed and
exploited consequently.

Supplementary Materials: Supplementary materials are available online. Figure S1: Calculated weighted-average
ECD spectra in the 185–260 nm range, Figure S2: Calculated weighted-average vibronic absorption spectra in the
1Lb region, Figures S3 and S4: Calculated ECD spectra for conformers #1-#6 of (R)-1 and #1-#3 of (R)-2.
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