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Abstract

Hippocampal sharp wave/ripple oscillations are a prominent pattern of collective activity,

which consists of a strong overall increase of activity with superimposed (140 − 200 Hz) rip-

ple oscillations. Despite its prominence and its experimentally demonstrated importance for

memory consolidation, the mechanisms underlying its generation are to date not under-

stood. Several models assume that recurrent networks of inhibitory cells alone can explain

the generation and main characteristics of the ripple oscillations. Recent experiments, how-

ever, indicate that in addition to inhibitory basket cells, the pattern requires in vivo the activity

of the local population of excitatory pyramidal cells. Here, we study a model for networks in

the hippocampal region CA1 incorporating such a local excitatory population of pyramidal

neurons. We start by investigating its ability to generate ripple oscillations using extensive

simulations. Using biologically plausible parameters, we find that short pulses of external

excitation triggering excitatory cell spiking are required for sharp/wave ripple generation with

oscillation patterns similar to in vivo observations. Our model has plausible values for single

neuron, synapse and connectivity parameters, random connectivity and no strong feedfor-

ward drive to the inhibitory population. Specifically, whereas temporally broad excitation can

lead to high-frequency oscillations in the ripple range, sparse pyramidal cell activity is only

obtained with pulse-like external CA3 excitation. Further simulations indicate that such short

pulses could originate from dendritic spikes in the apical or basal dendrites of CA1 pyramidal

cells, which are triggered by coincident spike arrivals from hippocampal region CA3. Finally

we show that replay of sequences by pyramidal neurons and ripple oscillations can arise

intrinsically in CA1 due to structured connectivity that gives rise to alternating excitatory

pulse and inhibitory gap coding; the latter denotes phases of silence in specific basket cell

groups, which induce selective disinhibition of groups of pyramidal neurons. This general

mechanism for sequence generation leads to sparse pyramidal cell and dense basket cell

spiking, does not rely on synfire chain-like feedforward excitation and may be relevant for

other brain regions as well.
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Author summary

During certain phases of sleep, rest and consummatory behavior the hippocampus brain

area generates strong high frequency oscillations. These oscillations are important for

memory formation and consolidation. To date, the mechanisms underlying their genera-

tion remain incompletely understood. We find that in unstructured networks, carefully

designing how excitation is transmitted within the hippocampus is required for the gener-

ation of robust fast oscillations. Broad, temporally extended excitation of cells results in

unrealistic single cell activity, whereas temporally narrow input that differs from cell to

cell gives rise to oscillations with realistic single cell and network activity. We show that

the biophysical mechanism to generate the required temporally narrow excitation may be

related to spiking events in the dendrites, which are triggered by coincident input. Our

results in structured networks suggest that the interplay of hippocampal excitation and

inhibition can serve as a means to generate robust sequential activity, which is thought to

be crucial for memory formation and recall. The sequence generation mechanism also

leads to strong high frequency oscillations with sparse excitatory cell and frequent inhibi-

tory cell spiking, as observed in the hippocampus.

Introduction

Hippocampal sharp wave/ripples (SPW/Rs) are remarkable both from a neurophysiological

viewpoint and in their behavioral impact: On the one hand, they consist of strong increases of

spiking activity in large parts of local neuron populations (the sharp wave) together with oscil-

latory, extraordinarily coherent neuronal discharges (ripples). On the other hand, SPW/Rs

have directly been shown to be important for memory consolidation [1–6] and might be

involved in planning of future actions [1, 7]. Perhaps the most striking signature of memory

consolidation is the phenomenon of hippocampal replay (see [8] for a recent review). During

replay events co-occurring with SPW/R complexes, sequences of pyramidal cell action poten-

tials encoding location, so-called place cells [9], are repeated on a faster timescale.

SPW/Rs are most prominently observed in the hippocampal region CA1. The main source

of external excitation arriving in CA1 during a SPW/R event is a sharp, wave-like depolariza-

tion from area CA3 delivered via the Schaffer collaterals (SCs) to the basal and proximal apical

dendrites of CA1 pyramidal cells [1, 10–12]. This input likely generates the sharp wave of spik-

ing activity in CA1. We note that in in vitro experiments, SPW/Rs can also be generated in the

isolated region CA1 [13–15]. A typical sharp wave has a duration of 40 − 100 ms [1]. The co-

occurring ripple oscillations were first observed as oscillations in the local field potential (LFP)

recorded in the CA1 stratum pyramidale [10, 11, 16]. Direct measurements of spiking activity

and modeling studies show that these LFP ripples are mainly caused by the temporally precise,

sparse firing of excitatory pyramidal cells [17–19], possibly with a smaller contribution from

interneuronal activity [1, 19].

The onmodulated CA1 ripples are uncorrelated with weaker, lower frequency ripples

occurring in CA3 and are thus considered to be generated by CA1 networks [11, 20]. How

CA1 generates the fast ripple oscillation is to date not clear; the focus of this article is to design

minimal CA1 network models that incorporate plausible CA1 connectivity and produce SPW/

Rs with realistic network and single-cell activity.

Several classes of distinct models exist for ripple generation: interneuron ripples, pyramidal

interneuron ripples and pyramidal ripples (see also Discussion for an overview figure). Each

model class puts a different emphasis on the contributions of excitatory (E) and inhibitory (I)
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neurons. The first class, which we term interneuron ripples, (narrowing down the definition of

inhibition-first ripples given in [21]) are models where mainly the inhibitory neurons generate

the rhythm and entrain the excitatory ones. The standard, network model of this class (inter-
neuron network ripples) posits that the ripples in CA1 are generated by tonic excitation of a

recurrent network of fast-spiking basket cells (BCs) of the parvalbumin-positive (PV+) immu-

noreactive type [21–28]. The oscillation unfolds according to a mechanism also thought to

underlie certain gamma oscillations (interneuron network gamma, ING) [29–33]. In support

of this mechanism, theoretical studies have shown that fast oscillations in the ripple range can

be generated easily in the presence of short synaptic time constants for the recurrent GABAer-

gic inhibitory currents [23, 34], both in integrate-and-fire (IF) [34] and more detailed Hodg-

kin-Huxley conductance-based neuron models [23]. Such models have recently been

successfully applied to explain phenomena such as intraripple frequency accommodation and

the dependency of the network frequency on GABA modulators [21]. Another model that falls

within the interneuron ripple class proposes that a single neuron mechanism underlies the rip-

ple rhythm: calcium spikes in the dendrites of PV+BCs generate high-frequency oscillations in

the membrane potential and output action potentials occur preferentially at the oscillation

peaks [35].

Recently it has become clear, however, that an interneuron ripple model may be an insuffi-

cient description of the ripple mechanism. In vivo experiments [19, 36] suggest a crucial

involvement of the local pyramidal E cell population in ripple generation. It was shown that

optogenetic excitation of a small number of E cells in CA1 can generate high-frequency (rip-

ple-like) oscillations (HFOs) and prolongs SPW/R events. Simultaneous optogenetic activation

of I neurons was not necessary. Further, optogenetic activation of inhibitory interneurons did

not generate LFP ripples and stopped them during SPW/Rs events; some coherent spiking

activity in the ripple range could, however, be generated. I cell spiking caused by local excit-

atory-to-inhibitory connections was necessary for the ripple oscillations. It was thus proposed

that interactions between E and I cell populations after external excitation of E cells are both

necessary and sufficient to generate ripple oscillations in vivo [19]. (In contrast, ref. [25] found

in CA3 slices that GABAergic interneurons are both necessary and sufficient to generate ripple

oscillations in the LFP, even when excitation is blocked.) These results suggest for CA1 a sec-

ond class of models, which are the focus of the present article and which may be called pyrami-
dal interneuron ripples. In them, both populations are similarly important for rhythm

generation. In the standard, network model of this class (pyramidal interneuron network rip-
ples), the ripple oscillation is generated by an interplay of the two recurrently connected E and

I cell populations, where the E population receives external drive. The excitatory-inhibitory

loop then generates an oscillation according to a mechanism that is called pyramidal interneu-

ron network gamma (PING) in the context of gamma oscillations [30–33]: The excitatory pop-

ulation excites the inhibitory population, which in turn transiently reduces E cell activity.

After enough excitation has built up in the E cell network, the cycle restarts. If the interneuron

network alone can already oscillate due to its recurrent inhibition, adding an excitatory popu-

lation yields, for weak synchrony, a compromise between the oscillations that emerge due to

the two mechanisms [23, 34] or, for strong synchrony, competition between them [33, 37].

Networks of the former, weakly synchronized type have been suggested as model for ripple

oscillations [34, 38]. Adding the excitatory population usually decreases the oscillation fre-

quency of the network, but can also increase it [23, 34].

In the last class of models, which we term pyramidal ripplemodels (equivalent to the excita-

tion-first class in [21]), the excitatory neuron population mainly governs the ripple rhythm

[39–42] and entrains the inhibitory neurons by local excitatory-to-inhibitory synaptic
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connections. The presence of inhibition can nevertheless be crucial, as it may sharpen the rip-

ples and prevent unrhythmic pathological spiking activity [41].

The historically first subclass of pyramidal ripple models posits that gap junctions between

the axons of pyramidal cells enable spike propagation in the axonal plexus. Through anti-

dromic invasion into the somata, these generate pulses of somatic spikes at ripple frequency

[13, 15, 39, 40, 43, 44]. While there is no concluding, ultrastructural evidence for axo-axonic

gap junctions between CA1 pyramidal cells [45], ref. [43] showed that axons of CA1 pyramidal

neurons are dye coupled. Further, gap junctions have been ultrastructurally demonstrated

between dendritic and somatic locations in CA1 pyramidal neurons [46] and between axons of

granule cells of the dentate gyrus [47]. Experiments, however, indicate that somatic spikes are

generated by orthodromic excitation during SPW/Rs in vivo [48].

The second subclass of pyramidal ripple models proposes that synchrony propagation sup-

ported by nonlinear dendrites underlies SPW/Rs [41, 42, 49–53]. Specifically, it assumes that

spikes in the basal dendrites of CA1 pyramidal neurons are generated by sufficiently synchro-

nous recurrent excitation [41, 42]. Whether the recurrent excitatory connectivity in CA1,

which is very sparse (typical values for coupling probabilities are between 1 and 2% [54, 55]),

suffices to generate these dendritic spikes, is currently unclear. Models incorporating such

non-linearities [41, 42] have successfully reproduced many experimental findings, including

sparse firing of pyramidal cells, different CA1 and CA3 ripple frequencies and the phase rela-

tion of the excitatory and inhibitory cell population activity.

A successful model for CA1 ripple generation must reproduce the main properties of ripple

oscillations in CA1. The most important criterion is that the activity of E and I cell populations

should be modulated at a frequency in the ripple range, between 140 and 200 Hz. In vivo CA1

ripples lie in the lower (slow wave sleep ripples) and middle (awake ripples) part of this range

[1, 17, 19, 56], in vitro ripples in the upper part. A model for in vivo and in vitro ripples must

therefore be able to cover the entire frequency range [1, 13, 15].

The second main property of ripple oscillations is that pyramidal neurons fire one to two

orders of magnitude less frequently than interneurons [17, 57]. During SPW/Rs, pyramidal

cells have firing rates between 0 and 10 Hz, with a bias towards smaller frequencies, so that the

mean firing rate during ripples is between 1 and 2 Hz [58]. More concretely, pyramidal cells

tend to fire only once during a sharp wave/ripple event [17, 19, 36], which is composed of mul-

tiple ripple waves (or: ripple cycles). This entails that different sets of pyramidal neurons are

active on each ripple wave. Fast-spiking PV+BCs [59] have much higher average firing rates

and often contribute a spike to every ripple wave [10, 17, 36, 60, 61], or even a doublet of spikes

[62]. Their firing rates during SPW/Rs typically lie between 10 and 200 Hz [17, 57, 63]. 10

− 20% of pyramidal cells typically discharge during an SPW/R event, whereas 80% and more

of interneurons fire [17, 19, 64, 65].

In this paper, we first observe that simply augmenting previous inhibition-first models by

adding pyramidal neurons is not sufficient to generate realistic single-cell and network dynam-

ics. We show that nevertheless the generation of high-frequency oscillations in the right fre-

quency range with realistic single-neuron dynamics is possible with random two-population

models if excitation to CA1 pyramidal cells is delivered in an inhomogeneous, temporally nar-

row, fashion. Such inhomogeneity could be brought about by dendritic spikes depolarizing the

soma of CA1 pyramidal cells, which are mediated by coincidence detection from incoming

CA3 spikes. Finally, we show that in structured two-population models robust sequences of

pyramidal cell firing activity and ripple oscillations, as observed during hippocampal replay,

can be generated intrinsically in CA1 by a mechanism involving disinhibition of selected

groups of pyramidal cells.
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Materials and methods

We consider three variants, model 1, 2 and 3, of a two-population model consisting of NE
excitatory pyramidal cells (PCs), the principal cells of hippocampal region CA1, and NI inhibi-

tory parvalbumin-positive BCs (Fig 1). For their implementation we use custom scripts in

brian2 [66].

We model single neurons as conductance-based leaky integrate-and-fire neurons, since we

assume that the SPW/Rs are a network dynamical pattern that does not crucially depend on

the details of subthreshold dynamics and spike generation. The dynamics of a single neuron in

the excitatory population are governed by the equation

CE
dVðtÞ
dt
¼ IEleak þ I

E
exc þ I

E
inh þ IdendriticðtÞ þ I

E
noiseðtÞ : ð1Þ

The leak current is given by IEleak ¼ g
E
l ðE

E
rest � VðtÞÞ and the excitatory and inhibitory currents

are given by IEexc ¼ g
E
totðtÞðE

E
exc � VðtÞÞ and IEinh ¼ g

E
inhðtÞðE

E
inh � VðtÞÞ, respectively. The total

excitatory conductance consists of two parts: gEtotðtÞ ¼ g
E
excðtÞ þ ggextðtÞ, representing input

Fig 1. Model overview. The models consist of a population of NE excitatory and a population of NI inhibitory CA1 neurons, which

are connected with probabilities pαβ, α, β 2 {E, I} (lower panel) and receive different external input from CA3 (upper panel): In

model 1 and 2, it is represented by the excitatory conductances gext (Eq 6) that it evokes in nE CA1 neurons. In model 1, the time

courses of these conductances are broad and for each neuron centered around the same time (upper left panel). In model 2, the

time courses are short, pulse-like and centered around different times (upper middle panel). In model 3, CA3 is represented by a

population of input neurons. Each such neuron fires according to an inhomogeneous Poisson process with Gaussian rate profile

(upper right panel, rate time course (Eq 7, green) is overlaid on spike rastergram). Spike transmission from CA3 to CA1 is then

filtered by a strong apical or basal dendrite of the receiving CA1 neuron: Besides the linear input transmission, sufficiently

coincident input evokes dendritic spikes. These generate somatic currents whose peak strengths follow a lognormal distribution

(the inset shows such a distribution together with its density given by Eq 2 (red dashed)) across neurons.

https://doi.org/10.1371/journal.pcbi.1009891.g001
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from recurrent excitatory synapses and external input. The external input is a direct, not den-

dritically amplified, input present in model 1 and 2. It models input from CA3 or an optoge-

netic stimulation delivered in experiments [19]. γ 2 {0, 1} determines whether this drive is

present in the model, i.e. γ = 1 in models 1 and 2, whereas γ = 0 in model 3. The noise current

IEnoise ¼ sn
ffiffiffiffiffiffiffiffiffiffiffiffi
2gEl CE

p
xðtÞ is a Gaussian white noise input, independent between neurons and

with strength σn = 1 mV.

Idendritic is a somatic current triggered by apical or basal dendritic spikes and only present in

model 3. We implement the generation of dendritic spikes via a temporal coincidence detec-

tion mechanism [41, 42]: As soon as the dendrite receives sufficiently many spikes from its

presynaptic CA3 neurons within the dendritic integration window wD = 2 ms (< 3 ms [67,

68]), a fast and often strong, but not necessarily suprathreshold excitatory current Idendritic is

generated. It depolarizes the somatic membrane potential a delay τD = 2 ms after the coinci-

dence was detected. There is a refractory period tr,D = 5.0 ms during which no further dendritic

spikes are triggered—this means that after a dendritic spike, there cannot be another one for a

duration of tr,D. We checked that our results do not depend critically on the exact value of tr,D
by performing simulations with smaller (tr,D = 2 ms) and larger (tr,D = 10 ms) values. The

results that we will report below for model 3 remained qualitatively unchanged, only the

parameters of the lognormal distribution (Eq 2) where HFOs in the ripple range occur shifted

such that a larger (smaller) tr,D was compensated for by an increase (decrease) in μ and/or σ.

We assume that every pyramidal neuron has one dendritic compartment where it receives

the relevant input from CA3. This models the single main apical dendrite in CA1 pyramidal

neurons [12, 67, 69] and its several oblique ones emanating from it. We do not explicitly

model the compartment in this study, but instead focus on the impact a dendritic spike has on

the somatic membrane voltage. All incorporated inputs from CA3 contribute in the same way

to dendritic spike generation. In particular we do not separately model local effects such as the

generation of weak dendritic spikes in the oblique dendrites [70]. Because innervation by CA3

Schaffer collaterals occurs on both basal and apical dendrites of CA1 pyramidal neurons [12],

the modeled dendrite may alternatively be interpreted as an influential, privileged basal one

[71] (neglecting the contribution of recurrent CA1 excitatory inputs to dendritic spike genera-

tion in such a dendrite—dendritic spikes in our model 3 are generated by feedforward Schaffer

collateral input). Experiments show that the impact of dendritic spikes on the soma can be dif-

ferent depending on the generating dendrite, but also on the depolarization and the somatic

firing history [67, 72, 73]. If not mentioned otherwise we thus assume that the strengths of

dendritic spikes across neurons have a lognormal distribution as experimentally found for sev-

eral other neuronal properties [58, 74]. Specifically the peaks of the currents induced in the

soma have a lognormal distribution across neurons,

Ipeakdendritic

nA
� lognormalðm;sÞ : ð2Þ

μ and σ are dimensionless as the samples are drawn from a lognormal distribution. The current

in the soma induced by the dendritic spike has a rise time of 1 ms and a decay time of 4 ms

[67]. If V starts at its resting potential and noise and further input are absent (σn = 0 in Eq 1),

the minimal peak current to generate a somatic action potential is approximately 1.34 nA.

Stronger dendritic spikes can generate multiple somatic spikes: without further inputs and if

its peak current is at 10 nA, a dendritic spike generates four somatic ones. However, more

than 99.8% of the dendrites in our model 3 simulations without replay have a smaller impact

for representative values of μ = 0 and σ = 0.75 (see Results). This follows from the cumulative

density function CDFðx;m; sÞ ¼
1þerf lnx� mffiffi

2
p
s

� �

2
of the lognormal distribution, which yields CDF(x;
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μ, σ) = 0.9983 with x = 10, μ = 0 and σ = 0.75. We note that somatic action potential bursts in

CA1 pyramidal cells are usually generated by a more involved mechanism, where calcium

spikes in the apical tuft are generated with the support of backpropagating action potentials

[75, 76]. Fig 2 shows examples of dendritic currents and the associated somatic membrane

voltage time courses in our model.

The dynamics of the inhibitory neurons are given by

CI
dVðtÞ
dt
¼ IIleak þ I

I
exc þ I

I
inh þ I

I
noiseðtÞ; ð3Þ

similar to Eq 1. The leak, excitatory and inhibitory currents are IIleak ¼ g
I
l ðE

I
rest � VðtÞÞ; I

I
exc ¼

gIexcðtÞðE
I
exc � VðtÞÞ and IIinh ¼ g

I
inhðtÞðE

I
inh � VðtÞÞ, respectively. IInoise ¼ sn

ffiffiffiffiffiffiffiffiffiffiffi
2CIgIl

p
zðtÞ is a

Gaussian white noise input, independent between neurons and with strength σn = 1 mV.

In both the E and I populations, once a neuron reaches its firing threshold Va
thresh

(α 2 {E, I}), it is reset to Va
reset and remains at this potential during an absolute refractory period

taref . The neurons are connected by chemical synapses, see next section for details. We do not

consider gap junction coupling.

We have chosen the single neuron and network parameters in agreement with neuroana-

tomical and neurophysiological experimental knowledge on the hippocampal area CA1. The

data we refer to come mostly from rats, but also from mice [55]. These parameters (together

with model-specific parameters and a justification for some single cell parameters) can be

found in S1 Appendix.

Synaptic dynamics and connectivity

Dynamics. The excitatory and inhibitory synaptic conductances induced by a presynaptic

spike at time t = 0 are given by a bi-exponential function,

ga
b
ðtÞ ¼ ga

b;peaks
a
b

exp �
t � tl
tab;d

 !

� exp �
t � tl
tab;r

� � !

; ð4Þ

for t� τl, where τl is the transmission delay, and ga
b
ðtÞ ¼ 0 otherwise. sa

b
is a constant ensuring

Fig 2. The impact of dendritic spikes on the soma. A dendritic spike is generated at t = 0 ms, marked by the red dashed

vertical line. It is modeled by the dendritic current Idendritic (lower subpanels in A,B,C) arriving at the soma τD = 2 ms later

(here at 2 ms). For small peak dendritic currents (Ipeakdendritic ¼ 0:1 nA, panel A), the somatic depolarization (upper subpanel) is

small (here: 1.28 mV) when starting at rest. For larger peak dendritic currents, the somatic depolarization increases (12.78

mV for Ipeakdendritic ¼ 1 nA, panel B), but remains subthreshold. For Ipeakdendritic � 1:34 nA, at least one somatic spike is generated;

for Ipeakdendritic ¼ 5 nA (panel C), two spikes are generated and there is significant depolarization visible in the membrane voltage

even after the second spike. The scale for the bottom panels is fixed to facilitate comparison between the different values for

the dendritic peak current.

https://doi.org/10.1371/journal.pcbi.1009891.g002
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that ga
b

has its maximum at ga
b;peak. Suppressing the indices α and β we have

1

s
¼

tr
td

� � tr
td � tr

�
tr
td

� � td
td � tr

: ð5Þ

This setup is similar to that used in [42] and [21]. We show time courses for postsynaptic

potentials, conductances and postsynaptic currents in S1 Fig.

Connectivity. In our unstructured networks, the two neuronal populations are coupled

uniformly at random, with probabilities pαβ, where α 2 {E, I} denotes the presynaptic popula-

tion and β 2 {E, I} denotes the postsynaptic population. If not mentioned otherwise, we set pEE
= 0.0164, pII = 0.2, pIE = 0.1 and pEI = 0.1. In the following, we explain how we arrive at these

specific values. To start, we motivate our choice of NE and NI, the number of E and I neurons

in our models, which we usually choose to be NE = 12000 and NI = 200. This approximately

agrees with the neuron numbers in a typical CA1 slice, of thickness 0.4 mm and a volume of

0.057 mm3 [21]. The numbers respect the ratio of pyramidal cells to PV+BCs in rat CA1,

which is approximately 60:1 [55]. To compute the connection probabilities pαβ, we assume

that all connections between E and I cells are realized in the subset of CA1 neurons we con-

sider. This means that we first determine how many inputs each E or I cell receives from the

other cells in the population and then compute the connection probabilities using the numbers

for NE and NI given above.

A hallmark of CA1 is its very sparse recurrent excitatory connectivity [54, 55]. Every pyra-

midal cell receives input from approximately 197 other pyramidal cells [55]. We set pEE =

1.64% so that for NE = 12000 we have pEENE = 197.

For the I-to-I connectivity, we set pII = 0.2 [55, 77, 78], which, for NI = 200, means that each

basket cell on average receives pIINI = 40 synapses from other PV+BCs in the network. This

value is obtained as follows: a single PV+BC contacts on average 64 other PV+ cells [77], of

which 60% are basket cells [55], such that a single PV+BC contacts 38, approximately 40, other

PV+BCs on average [21].

For the I-to-E synapses, we obtain several estimates, (i) based on the experimentally

observed number of PCs that are postsynaptic to a single PV+BC and (ii) based on the experi-

mentally observed number of PV+BCs that are presynaptic to a single PC. We first consider

ref. [77]: (i) The conducted experiments in CA1 found that basket cells innervate between

D = 1500 and D = 2000 pyramidal cells each. For D = 1500 we obtain, using the assumption of

homogeneous and random connectivity, 1500 = pIENE and thus pIE = 0.125. Analogously,

D = 2000 yields pIE = 0.167. (ii) Ref. [77] further showed that 30 − 40 PV+ cells, of which 60%

are PV+BCs [55], converge on a single CA1 PC. Thus, a single PC should be contacted by 18�

C� 24 PV+BCs. Under the assumption of homogeneous random connectivity, the mean

number of PV+BCs contacting a single PC is given by C = pIENI, which, with the values for pIE
obtained using estimate (i) above (0.125� pIE� 0.167), would result in 25� C� 34. This is

slightly too large in comparison to the experimental values from estimate (ii). Therefore, a

lower value of pIE = 0.1 seems also plausible. The meta-study [55] allows to obtain similar esti-

mates: (i) It was found that each PV+BC contacts on average 943 PCs. This again fixes pIE
because 943 = pIENE, yielding pIE = 0.079. (ii) Ref. [55] further found that each pyramidal cell

is innervated by 17 PV+BCs, such that 17 = pIENI, resulting in a value of pIE = 0.085, which is

also close to 0.1. We thus fix pIE = 0.1 and consider values in the range from 0.08 to 0.17 as bio-

logically plausible.

We first determine pEI for the E-to-I connectivity in an approach analogous to (i) above.

We use the experimental result that each CA1 PC innervates 91 interneurons, of which

approximately 14% are PV+BCs [55]. Therefore each PC diverges to innervate approximately
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D = 13 PV+BCs (D is chosen in analogy to estimate (i) for the I-to-E connectivity above).

Thus, D = pEINI, so that pEI = 6.5%. When trying to obtain the E-to-I connectivity in analogy

to the approach (ii) above, one first notes that the number of excitatory synapses on a PV+BC

is not known [55]. It has, however, been estimated that a hypothetical ‘average interneuron’ in

CA1 receives 2211 excitatory boutons from local collaterals (i.e. local CA1 PCs) [55]. If each

CA1 PC makes on average 3 synapses onto each postsynaptic interneuron [55], this means

that each interneuron is contacted by approximately C� 740 CA1 PCs. This results in

pEI ¼ 740

NE
¼ 0:062. If each CA1 PC made only two synapses onto each postsynaptic interneu-

ron, this would result in C� 1106 and thus pEI ¼ 1106

NE
¼ 0:092. We therefore consider values

6.5%� pE� 10% as biologically plausible. For concreteness, we fix pEI = 0.1 in this study. This

is at the upper end of the biologically plausible values, but acceptable because we will systemat-

ically vary the excitatory drive to the E population in our simulations: Decreasing pEI is similar

to decreasing the number of active E cells since the latter reduces the number of the realized E-

to-I connections that will have a postsynaptic effect. A decrease in the number of active E cells

results in our models from changing the number nE of PCs that receive CA3 drive in model 1

and 2 and by changing the strength of the CA3 drive in model 3, see next section.

In summary, using the values available in the experimental literature [55, 77, 79–82] we

obtained for our networks pEI = 0.1, so that each PV+BC receives on average input from 1200

PCs, and pIE = 0.1, so that each PC receives on average input from 20 PV+BCs. These connec-

tion probabilities are in good agreement with many previous computational studies of CA1

[33, 41, 42]. Notably, [21] use the same values for the connection probabilities except for a

higher value of pIE = 0.3. Our more detailed choice for the connection probabilities differs

from that in ref. 34, where a single value of p = 0.2 for all synapses was assumed. Finally, it

differs from the all-to-all connectivity for all synapses except the E-to-E synapses assumed by

[26].

To conclude, as a result of the considerations in this section we set pEE = 0.0164, pII = 0.2,

pIE = 0.1 and pEI = 0.1 (if not mentioned otherwise).

Excitation of pyramidal cells by CA3

Models 1 and 2. Models 1 and 2 explicitly mimic sharp-wave input from CA3 without

modeling CA3 [21]: a subset nE of the pyramidal cells is driven by time-dependent conduc-

tances gext with a Gaussian profile,

gextðtÞ ¼ g0
ext exp �

ðt � t0Þ
2

2s2
g

 !

: ð6Þ

Model 3. In model 3, CA3 is modeled as a population of NE,CA3 = 15000 excitatory neu-

rons that each spike according to an inhomogeneous Poisson process with rate time course

rðtÞ ¼ r0 exp �
ðt � t0Þ

2

2s2
t

� �

: ð7Þ

The connection probability between CA3 and CA1 is p ¼ 130

NE;CA3
� 1% if not mentioned other-

wise. This means that every CA1 pyramidal neuron on average receives input connections from

130 CA3 pyramidal neurons. The number is comparable to the typical number of active presyn-

aptic CA3 neurons of a CA1 PC during an SPW/R event (120 − 300 active inputs, [42, 83]). This

is much lower than the number of CA3 neurons converging on a single CA1 pyramidal neuron

(15000 − 30000, [55]). However, only approximately 1% of all CA3 pyramidal neurons are active
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during a SPW/R [57, 64]. Assuming that rat CA3 contains approximately 205000 PCs [55] and

that the average connection probability from CA3 to CA1 (neglecting CA3 sublayer specificity)

is between 1 and 8% [55], we obtain between 0.01 � 0.01 � 205000� 21 and 0.01 � 0.08 �

205000 = 164 inputs per CA1 PC, which is consistent with our choice for p given above. In light

of this estimate, we consider one hundred to a few hundreds, but not thousand, active inputs to

a CA1 PC from CA3 to be realistic estimates. Our results do not depend crucially on the exact

size of p. For example, a modest increase in p can be compensated for by a decrease in the aver-

age strengths of the peak dendritic currents (given by Eq 2) or the peak rate r0 in Eq 7, see S3

Appendix for an analytical computation. Importantly, in our model 3 not every CA3 cell is

active, which reduces the average number of active CA3 inputs to a CA1 PC 5-fold from 130 to

26. This shall cover the fact that not all spikes interact nonlinearly, as they can arrive at different

dendritic compartments (Discussion, S3 Appendix). As already mentioned above when intro-

ducing Eq 1, the impact of temporally coincident spikes from CA3 is nonlinearly amplified, in

allNE excitatory cells: if in one of these cells 5 or more spikes arrive in an interval of wD = 2 ms

[67, 68], a dendritic spike is triggered. We additionally require that at that time, the membrane

voltage is above the inhibitory reversal potential EEinh. Due to the noise term in Eq 1, it can occa-

sionally, but rarely, happen that V is slightly driven under the inhibitory reversal potential.

Because dendritic spikes require that the soma is not strongly hyperpolarized [67, 68], we added

this additional condition for the generation of dendritic spikes (see, however, [73] for the

robustness of strong dendritic spikes against recurrent inhibition). We checked that the dynam-

ics of model 3 are qualitatively unchanged without this additional condition.

Irrespective of the coincidence detection mechanism, each CA3 spike impinging on a CA1

PC also causes a small depolarization (rise/decay time 1/2 ms, peak conductance 0.75 nS) with

a delay of 1 ms. The dendritic spike is incorporated in the model by the current Idendritic(t) that

it generates in the soma (see Fig 2). We assume that the impact of the dendritic spike is stereo-

typical, i.e. Ipeakdendritic (cf. Eq 2) is for a given neuron constant over time and independent of the

CA3 inputs that triggered it. This can be motivated by the fact that dendritic spikes are stereo-

typical and couplings between dendrites and soma are reliable [73]. There are thus two sources

of heterogeneity in the excitatory connections from CA3 to CA1. The first source is that the

number of CA3 inputs impinging on a given CA1 cell is variable as only the connection proba-

bility p (see above) is fixed. The second source is the variable peak dendritic current Ipeakdendritic (cf.

Eq 2) which is drawn, for each CA1 PC independently, from a lognormal distribution (Eq 2)

with fixed parameters μ and σ. In our model, not every dendritic spike causes a somatic spike

or even has a discernible influence on the soma (see Fig 2), which is in agreement with experi-

mental observations [73, 84].

Large and small amplitude fast dendritic spikes have been observed in the apical dendrites

of CA1 PCs during SPW/Rs [84]. Large amplitude fast dendritic spikes lead slow dendritic

spike components (see also [68, 70]) and ride on top of them. Slow dendritic spikes and related

bursts of fast ones are not included in our model. Slow dendritic spikes, which are calcium

and/or NMDA channel-dependent, are less sensitive to synchronous input and their genera-

tion can crucially involve backpropagating action potentials [70, 85–87]. This is a caveat,

because it might indicate that dendritic spikes in [84] can be less sensitive to synchrony in the

input from CA3 and their generation can involve other mechanisms such as backpropagating

action potentials.

Results

In the following, we study our three minimal CA1 two-population models (cf. Fig 1) with

respect to the generation of HFOs in the ripple range. In each of the three models, we compute
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the following four quantities for the E and I population: the oscillation frequency of the popu-

lation activity, its standard deviation across different realizations, the number of spikes per

active cell and the fraction of active cells. The first quantities of interest are the frequencies of

the network activity of the I and E population. We compute their means fα (α 2 {E, I}) and

standard deviations std(fα) (α 2 {E, I}) across at least 10 network simulations with independent

random realizations of external noise and connectivity. A small standard deviation indicates

that the oscillation generated by the network is ‘robust’. This is a desirable property because it

indicates that the oscillations are hardly affected by the frozen noise caused by the random

connectivity and the noise on the membrane voltage (cf. Eqs 1 and 3). In addition, to assess the

firing activity of individual cells, we compute the mean number of spikes per active neuron,

Cα, and the fraction of active cells in the population, qα (α 2 {E, I}). This quantity is defined as

the ratio of the number of cells which spiked at least once during the whole simulation and the

total number of neurons Nα (α 2 {E, I}). We chose these basic statistical measures because they

allow for an easy comparison with experimental values. In particular, computing spike counts

instead of rates is suitable for our short simulations.

Temporally broad excitation of pyramidal cells (model 1)

We first study a model in which a subset of the PC population receives temporally broad

input, which peaks at the same time t0, but has a different amplitude for each cell: A subset of

nE PCs is each excited by a time-dependent conductance (Eq 6), which peaks at t0 = 50 ms.

The amplitudes g0
ext of the conductances are distributed according to a Gaussian with mean �g

and standard deviation CVg�g , where CVg is the coefficient of variation, which is kept constant

when we vary �g . The setup is similar to the indirect drive condition in [21]. Following [19],

where it was shown that exciting a small number of CA1 pyramidal cells is necessary and (in

the presence of intact inhibition) also sufficient to induce a ripple oscillation, we first do not

include any external excitatory drive to the inhibitory population of PV+BCs. That inhibition

is necessary ([19]) suggests a model of rhythmogenesis where the excited pyramidal cell sub-

population excites inhibitory cells, which then inhibit their excitatory targets. In such a model,

the network frequency will depend on the recurrent E-to-I and I-to-E connections [34].

To gain intuition, in Fig 3, we show network activities and histograms of spike counts for

the two populations for a fixed level of excitatory drive and a fixed number of excited E cells

(ð�g ; nEÞ ¼ ð65 nS; 400Þ). We see that E cells that are active tend to be active on multiple ripple

waves (i.e. ripple cycles). This is because high external input amplitudes remain high over mul-

tiple ripple waves. Active E cells spike considerably more often than once or twice (on average

they spike approximately 6 times in the event of Fig 3, see also Fig 4B for the corresponding

average over events CE). The spikes do not all occur on the same ripple wave: The absolute

refractory period for a single E cell is 2 ms. A single ripple wave (broad red stripes in Fig 3)

lasts less than 5 ms. It is therefore impossible that an E cell spikes 6 times in a single cycle (rip-

ple wave): the shortest time interval (assuming instant spike generation after the end of each

refractory period) separating 6 spikes would be 5 times the absolute refractory period, that is,

10 ms, which is longer than a single ripple wave.

I cells basically spike on every ripple wave (on average * 7 times in Fig 3). In particular,

nearly all I cells are active, qI� 1. Most E cells, in contrast, remain silent (because nE� NE), as

evidenced by the large peak at 0 in the histogram for the E cell spike counts in Fig 3B, left

panel.

To confirm that dense firing of the active E cells is a generic problem of model 1 and not

due to our choice of �g and nE, we systematically varied these parameters. The results are

shown in Fig 4. We find that robust HFOs in the ripple range accompanied by sparse firing of
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E cells do not occur in model 1: The rainbow coloring in Fig 4A, upper subpanels, marks the

region where the expected PC and PV+BC population activity oscillates in the ripple frequency

range (upper subpanels in A). The magenta part of the lower subpanels indicates the region

where the standard deviation of the oscillation frequencies across different network realiza-

tions is small (lower subpanels in A). Networks with parameters that fall into both regions can

be expected to generate robust ripple frequency oscillations. However, in the entire region

where the expected oscillation frequency is in the ripple frequency range, an active pyramidal

Fig 3. Network activity for temporally broad excitation of E cells (model 1). The population activity of E and I cells oscillates at ripple frequency, but the active E

cells contribute many spikes to a SPW/R event, like I cells. A, upper subpanel: Time courses of sharp wave input to the CA1 E cells (input conductances). The

horizontal red dashed line indicates the mean �g of the sharp wave amplitudes. Middle: spike rastergrams of the CA1 E and I cells (red and blue). Lower: population

rates (red: population of E cells, blue: population of I cells). fE and fI in the lower panel give the oscillation frequency of the E and I population (spectrogram peak). B:

Histograms of spike counts for E (left) and I (right) cells on a logarithmic scale. Dashed vertical lines highlight the average spike count. Parameter values as in Fig 4,

ð�g ; nEÞ ¼ ð65 nS; 400Þ.

https://doi.org/10.1371/journal.pcbi.1009891.g003
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Fig 4. HFOs in networks with temporally broad excitation of E cells (model 1). There is no overlap of the parameter region with

reliable ripple oscillation generation and sparse spiking of E neurons. A, upper subpanel: Frequency of I and E population activity

oscillations fI, fE as a function of mean drive �g and number of excited E cells nE (average taken across different network realizations).

Lower: Corresponding standard deviations across network realizations, std(fI) and std(fE). B, upper subpanels: mean number of

spikes per active inhibitory (excitatory) neuron, CI (CE). Lower: fraction of active neurons (qI and qE). The range for fI and fE
displayed in detail by different colors is the ripple range, [140, 200] Hz. The range for both CI and CE is [0, 20]. Frequency values
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cell spikes on average more than 5 times during the whole SPW/R event (Figs 4B and 3B). This

is in marked disagreement with experimental findings [17], which show that most pyramidal

cells fire once or twice during a SPW/R. More recent experiments even observed that E cells

typically spike only once per SPW/R [19]. The white horizontal line in Fig 4A roughly delimits

the region where E cells spike sparsely. (Notably also the I neurons usually spike sparsely

above the line.) Anywhere below this white line, i.e. for higher values of �g , CE is larger than

two, which is biologically implausible.

Thus, in our model 1 with temporally broad excitation of E cells, in the absence of external

feedforward excitatory drive to inhibitory cells and with unstructured, random connectivity, it

is not possible to reach the ripple frequency range with sparse firing of pyramidal cells by

changing �g and nE. This remains true if pIE is increased from 0.1 to 0.2 (S2 Fig). We increased

pIE because one might expect that more inhibitory inputs received by each PC result in fewer E

spikes; however, there still is no region where HFOs in the ripple range co-occur with small

values for CE. Increasing pIE further and also increasing the width of the sharp wave σg to dis-

tribute the firing of the PCs does not result in lower firing of the E cells but instead lowers the

frequency of the network oscillations to a maximum of approximately 170 Hz (S3 Fig). We

note that larger network frequencies can always be obtained by increasing pII and decreasing

pIE (S4 Fig); however, there still is no region where HFOs in the ripple range co-occur with

small values for CE.

Finally, we include a strong feedforward excitatory drive to the I cell population. Such

strong drive to the I cells renders our model an interneuron ripple model (see Introduction).

This is because the I cell population already generates the observed oscillation, while the

impact of the E cells is small. This is shown in S5 Fig, where each PV+BC is driven with a con-

ductance as in Eq 6 with σg = 10 ms. All I cells get the same amplitude �g ¼ 20 nS, which results

in robust oscillations at fI� 165 Hz in the absence of the pyramidal cell population. With this

modification, we now observe a region in parameter space where, for small nE and �g , robust

HFOs in the ripple range with small CE< 2 are reached. Analogous to Fig 3, we show repre-

sentative network activity in S6 Fig. Due to the weak drive and strong inhibition, E cell spiking

is very sparse: in S6 Fig, less than 30 E cells are active, which is less than 1% of the whole popu-

lation. Therefore, E activity does not discernibly influence the rhythmic I spiking. Although E

cell activity is sparse, some E cells still spike more than twice during the ripple (S6 Fig).

Thus, in the presence of strong feedforward excitation to the inhibitory cells, model 1 leads

to both network and single cell statistics consistent with the experimental data. However, the

experiments of [19], find that strong drive to the I cells is not necessary to optogenetically

evoke SPW/Rs, that it is insufficient to generate LFP HFOs in the ripple range in vivo and in

fact, abolishes ongoing ripples (Fig 5E in [19]). Moreover, we find in our models that with the

inclusion of a strong feedforward drive to the I cells, I cells start to spike before E cells in each

ripple (cf. S6 Fig), which is not observed in experiments, where most E cells spike before I cells

on all ripple cycles [17, 19]. We have not been able to find parameters alleviating the latter

problem, but cannot exclude their existence. Given that strong excitatory feedforward drive to

the I cell population seems to be a prominent feature of CA1 [88, 89], we consider it as an in

principle biologically plausible option to decrease the activity of E cells in our model 1.

below (above) this range are indicated in black (grey). To guide the eye, the white horizontal line indicates a border of the range of

biologically plausible CE; this range lies completely above the line, which is at �g ¼ 16 nS. The white circle indicates

ð�g ; nEÞ ¼ ð65 nS; 400Þ, the parameters used in Fig 3. Standard deviation of the sharp wave peak conductance is CVg = 0.5, width of

sharp waves σg = 10 ms.

https://doi.org/10.1371/journal.pcbi.1009891.g004
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In conclusion, model 1 with broad temporal excitation of E cells and random connectivity

does not appear suitable to describe SPW/Rs, where high network frequencies in the range

from 140 to 200 Hz should co-occur with sparse firing of PCs.

Temporally narrow excitation of pyramidal cells (model 2)

We next ask whether the biologically implausible frequent E cell firing during ripple frequency

oscillations in our two-population models can be avoided by providing excitation to CA1 pyra-

midal cells that is shorter, pulse-like, and received at different times. For this we distribute the

input peak times across the pyramidal neurons according to a Gaussian distribution,

t0 � N ð50 ms;stÞ. The individual excitation pulses have each a width of σg. For simplicity, we

assume that all pulses have the same amplitude, g0
ext ¼ �g , such that all PCs receive the same

amount of excitation, but at different points in time.

A sample output of this model for σg = 3 ms is shown in Fig 5. Robust oscillations in the rip-

ple range are reached in the region around ð�g ; nEÞ ¼ ð83 nS; 1580Þ. In contrast to model 1

(see Fig 4), active E cells typically contribute 1 or 2 spikes to an event.

There is a broad region in the parameter space spanned by ð�g ; nEÞ where HFOs in the ripple

range co-occur with sparse firing of E cells (Fig 6). This region lies at intermediate values of �g .

An increase (decrease) in �g has to be accompanied by an increase (decrease) in nE to stay in

this region (Fig 6). Thus, higher levels of excitation have to be distributed over more E cells to

stay in the ripple range.

To maintain sparse firing of E cells, individual external input pulses need to be narrow. In

S7 Fig, we increase their width to σg = 5 ms, which results in more E cell spikes per active E cell

(between 2 and 3 spikes on average in the region where ripple frequency oscillations are

generated).

As shown before for model 1, higher oscillation frequencies can be reached by increasing

pII. Additionally increasing pIE renders the oscillations more robust and the region in parame-

ter space where HFOs in the ripple range are generated increases (S8 Fig). We show in S9 Fig

that the network dynamics and statistics stay realistic for longer sharp waves. For this we

increase σt, which controls how broadly the pulse peaks are distributed over time (Eq 6), in

addition to increasing pII and pIE. In S10 Fig we show the network dynamics and statistics

when we decrease pII back to 0.2 (keeping pIE = 0.2) compared to S9 Fig. Again, there is a

regime where high network frequencies and sparse firing of pyramidal neurons coexist.

In conclusion, for model 2 the generation of HFOs in the ripple range with sparse firing of

pyramidal cells does not depend much on the details of how the recurrent I-to-E and E-to-I

loop are set up. Instead, the main determinant for the sparseness of pyramidal cell activity are

the properties of the afferent, pulse-like CA3 drive. In the next section, we show that dendritic

spikes generated by apical and basal dendrites of CA1 pyramidal cells might give rise to appro-

priate temporally localized input.

Dendritic spikes provide short windows of excitation for pyramidal cells

(model 3)

The apical and basal dendrites of CA1 pyramidal cells can, when excited with sufficiently syn-

chronous and spatially clustered inputs, generate dendritic spikes that evoke pulse-like depo-

larizations in the soma [67–70, 73]. The Schaffer collaterals, which transmit the sharp wave

from CA3 to CA1, target these apical and basal dendrites [1, 90]. It has been shown for apical

dendrites of CA1 neurons that dendritic spikes occur during sharp-wave activity in vivo [84],

as well as pulse-like depolarizations and action potentials in the somata. These observations

indicate that during SPW/Rs, the CA3 spikes forming the sharp wave input to CA1 generate
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dendritic spikes in CA1 neurons, which leads to pulse-like somatic depolarizations. Ref. [69]

suggested that dendritic spikes observed in the apical dendrites of CA1 pyramidal cells endow

the cell with unique information processing capabilities during SPW/Rs. Specifically it was

shown that these dendritic spikes result in precise somatic spikes with low temporal jitter. This

led to the conjecture that dendritic compartments receiving input clustered both in space and

time perform supralinear dendritic integration during SPW/R events. The dendrites might

then act as feature detectors on the CA3 input and determine the neuronal action potential

output. This would be largely independent of the mean input strength in contrast to the output

during theta oscillations [69].

Fig 5. Network activity for temporally narrow excitation of E cells (model 2). Each E cell receives an input pulse whose duration is comparable to the interval

between two ripple waves. The peak times of the pulses are distributed. E and I populations spike at ripple frequency, active E cells typically contribute one to two

spikes to an event. A: Input pulses, spike rastergrams and network activities, displayed as in Fig 3. B: Histograms of spike counts during the displayed event. Parameter

values as in Fig 6, ð�g ; nEÞ ¼ ð83 nS; 1580Þ.

https://doi.org/10.1371/journal.pcbi.1009891.g005
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Fig 6. HFOs in networks with temporally narrow excitation of E cells (model 2). Ripple oscillation generation with sparse spiking

of E neurons is robust in networks where the E cells are driven by short input pulses. Figure layout as in Fig 4. A: Frequency of

population activity oscillations and standard deviations. B: Number of spikes per active neuron and fraction of active neurons. The

ranges for CI and CE are [0, 20] and [0, 3], respectively. The white circle is located at ð�g ; nEÞ ¼ ð83 nS; 1580Þ. Parameters: σt = 10 ms,

σg = 3 ms.

https://doi.org/10.1371/journal.pcbi.1009891.g006
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Consistent with these findings and suggestions, we propose that dendritic spikes may pro-

vide the short-term excitation that we found to be necessary for HFOs with sparse E cell firing

in model 2 (see Fig 6 and S7 Fig). For this, we incorporate in our CA1 E neurons dendritic

spike generation in response to input from CA3. Since dendritic spikes are generated by coin-

cident spike arrivals, we introduce a simple model of CA3 with NE,CA3 pyramidal cells, each of

which fires according to an inhomogeneous Poisson process. This has a peaked rate profile

with the same amplitude and width across all CA3 neurons (see Eq 7, the peak is at t0 = 50 ms,

width is σt = 10 ms). When there are at least five input spikes arriving within a time window of

2 ms, a dendritic spike is elicited. Dendritic spikes impact a neuron’s somatic voltage in a ste-

reotypical fashion. Between neurons, their impact varies: the peak current elicited by a den-

dritic spike in the soma is distributed according to a lognormal distribution (Eq 2) across the

CA1 E cells. Each CA1 PC receives inputs from a small fraction of all CA3 pyramidal cells. We

set the connection probability to p ¼ 130

NE;CA3
, so that the average number of CA3 input connec-

tions to a CA1 E cell is 130. The size of the modeled CA3 population is NE,CA3 = 15000 and

their peak rate is r0 = 8 Hz [65, 91, 92] (see Materials and methods for further details). Besides

their contribution to dendritic spikes, the inputs from CA3 elicit EPSPs with a peak of 0.4 mV

when the neuron is otherwise held at −55 mV.

Fig 7 shows a representative simulation of a model 3 network generating HFOs in the ripple

range accompanied by sparse firing of pyramidal cells. The mean number of spikes in the

active E cell population is between 1 and 2 (approximately 1.6 in Fig 7) and most active E cells

spike once or twice. A small fraction of neurons spikes 5 times or more during the SPW/R

event (left histogram in Fig 7B). Such ‘bursting’ behavior is caused by large values for the peak

of the dendritic current and/or exceptionally high synchrony in the presynaptic spike trains

impinging on a CA1 PC. We will see below that it is not crucial for generating SPW/Rs in our

models (S15–S18 Figs). Bursting of pyramidal cells in CA1 was observed in vivo during slow

wave sleep [58, 93], in particular during SPW/Rs [36, 94].

Why does model 3 generate sparse E cell firing in contrast to model 1, if in both models the

CA1 E cells receive a broad sharp wave input? In model 3, CA1 receives noisy Poisson spiking

and each E neuron has a short integration window for dendritic spike generation. Such a short

window generates little averaging over the input spikes. Therefore the fluctuations in the num-

ber of spikes arriving within the window are large compared to the average. When the tempo-

ral density of input spikes to a CA 1 E neuron is by chance exceptionally high, a dendritic

spike is generated. This happens rarely, but not with negligible frequency, see also S3 Appendix

for a numerical analysis and analytical computations making this more precise. The resulting

sparse dendritic spiking provides narrow, pulsatile, and often strong inputs to these E cells,

which leads like in model 2 to their sparse spiking.

We note that compared to model 2, we have decreased the synaptic latency from I to E cells

from 1.0 ms to 0.5 ms. This stabilizes the oscillations, but is not essential, see S14 Fig. That it is

helpful can be intuitively explained as follows: The spike rate of the CA3 population (given by

Eq 7) is towards its peak sufficiently high to generate widespread spiking in the CA1 pyramidal

cells. Fast recurrent inhibition within CA1 is required to terminate a single pyramidal ripple

wave; in the absence of inhibition it would go on as long as CA3 spiking is strong enough.

Inhibition has to impinge early enough on the excitatory population on every ripple wave to

prevent an excess of excitation and thus a slowing of the oscillation due to resulting excessive

inhibitory spiking. Therefore, a parameter change that lets recurrent inhibition arrive earlier

decreases the number of E spikes and renders the oscillations more pronounced and robust.

Any mechanism that decreases the width of the excitatory ripple wave will have a similar effect.
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In addition to the PV+BCs considered here, such silencing of pyramidal cells could be pro-

vided by bistratified cells [95, 96] or feedforward inhibition [97].

We now systematically vary the parameters σ and μ of the lognormal distribution for the

dendritic spike impact strength (Eq 2) in Fig 8 and find that biologically plausible ripple activ-

ity occurs robustly: For intermediate values of both σ and μ (rainbow colored band left and

right of white circle in Fig 8A upper panels), the system generates fast oscillations in the ripple

range with realistic single-neuron firing statistics. To stay in the ripple range, an increase in μ
can be compensated by a decrease in σ. For a fixed value of μ, an increase of σ beyond a certain

Fig 7. Activity in a network with nonlinear dendritic excitation of E cells (model 3). E and I populations spike at ripple frequency, active E cells typically contribute

one or two spikes to an event. A, upper subpanel: Spikes generated by CA3. Middle: spike rastergrams of the CA1 E and I cells (red and blue). Lower: population rates

(red: population of E cells, blue: population of I cells, black: population of CA3 cells). B: Histograms of spike counts. Parameter values as in Fig 8, (σ, μ) = (0.75, 0.0).

Fraction of active E/I cells (qE, qI): 0.084, 1. Number of spikes per spiking E/I cell (CE, CI): 1.6, 6.1.

https://doi.org/10.1371/journal.pcbi.1009891.g007
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Fig 8. HFOs in networks incorporating dendritic excitation (model 3). In the parameter space of the distribution for the peak

dendritic current, a region with reliable ripple oscillation generation and sparse spiking of E neurons exists in model 3. The layout of

the figure is similar to Fig 4; the changed variables are now the parameters μ and σ of the lognormal distribution of dendritic spike

impacts on the soma (Eq 2). A: Network frequencies and standard deviations as a function of μ and σ (Eq 2). The range displayed in

detail by different colors is the ripple range, [140, 200] Hz. Frequencies above and below are shown in gray and black. B: Number of

spikes per active neuron and fraction of active neurons. The displayed ranges for CI and CE are [0, 10] and [0, 3], respectively, values

above are colored in gray. The white circle is located at (σ, μ) = (0.75, 0.0), the parameter values of Fig 7.

https://doi.org/10.1371/journal.pcbi.1009891.g008
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value renders the oscillations non-robust: the oscillation frequency varies considerably across

different network realization (Fig 8A lower panels).

E cell spiking is sparse all over the range where ripple frequency oscillations are generated:

CE is approximately constant, between 1 and 2 (Fig 8B). The amount of I cell firing depends on

the precise values for the parameters of the peak dendritic current. For negative values of μ
and σ� 1, I cells fire on average three times per ripple. Moving along the diagonal where ripple

oscillations are generated to values of σ� 0.5 and μ� 0.9, increases CI to more than 10 spikes

per ripple. The range in between appears consistent with the experimental observation that

CA1 PV+BCs typically spike on every ripple wave.

We now discuss the impact of certain selected parameter changes on model 3 to obtain an

understanding of the robustness of our findings. Simulations for higher I-to-E connection

probability (pIE = 0.3 instead of pIE = 0.1) are shown in S11 Fig. The band where HFOs in the

ripple range occur has moved to slightly larger values of σ compared to Fig 8. E cell firing is

sparse within the band. Thus, model 3 is robust to a higher I-to-E connection probability. We

argue in the Materials and methods that pIE should be between 0.08 and 0.17 for the network

sizes we consider in this paper. Given that HFOs in the ripple range are still observed with a

higher value pIE = 0.3, we are confident that the results of model 3 do not hinge critically on

the precise value of the I-to-E connection probability.

We next increase the I-to-E synaptic latency τl from 0.5 ms to 0.9 ms (S12 Fig). The maxi-

mal oscillation frequency reached by the E population is reduced to approximately 150 Hz and

the region where this occurs is shifted to smaller values of σ. E cell firing remains sparse. How-

ever, we also observe that larger τl can be compensated by a decrease in the AMPA rise time

on I cells (tIexc;r ¼ 0:1 ms instead of 0.5 ms, such that the resulting model generates HFOs in

the ripple range with sparse firing of E cells, see S14 Fig). We note that additionally the peak E-

to-I synaptic conductance was decreased (as in S13 Fig). The results indicate that in model 3

fast synaptic transmission from the I to the E population is important, but a slower transmis-

sion can be compensated by changes in other parameters.

We also decreased the peak E-to-I conductance gIexc;peak from 3 to 1 nS still in the experimen-

tally observed range [81, 82]. This results in more robust oscillations in the ripple range (S13

Fig). Further, the region in the (σ, μ) parameter space where HFOs exist is enlarged compared

to Fig 8, it now has the shape of a diagonal stripe extending from negative values for μ and

large values for σ to positive values for μ and small values for σ. This appears broadly consistent

with in in vivo experiments in transgenic mice, which found increased ripple power when

reducing AMPA receptor-mediated excitation on PV+BCs [98].

Finally, we study whether the large values at the tail of the lognormal distribution of den-

dritic spike impacts are important. We thus truncate the distribution given by Eq 2 such that

values of Ipeakdendritic larger than 4 nA are mapped to 0. With this truncation, a single dendritic

spike can generate at most (and then barely) two somatic ones (see Fig 2C for an example

showing two somatic spikes as a response to one dendritic spike with a peak amplitude of 5

nA). Thus, with this truncation, there can be no somatic bursting due to a single dendritic

spike. We find that this reduces the maximal frequency that can be reached (S15 Fig). How-

ever, frequencies around 170 Hz still occur. The standard deviation across network realizations

is low in the corresponding regions, albeit higher than in Fig 8. Additionally, we checked that

the low ripple range (* 150 – 160 Hz) can still be reached when the truncation is introduced

at 3 nA, but not when it is introduced at 2 nA.

We additionally study a modified way to truncate the distribution for the peak dendritic

current (S16 Fig). Instead of setting values above the cutoff to zero, we re-sample values from

the lognormal distribution until each value for the peak dendritic current is smaller than 4 nA.
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This leads to results similar to those in S15 Fig, but with higher frequencies in the ripple range

around 190 Hz (see red region next to white circle in S16A Fig, upper panels). The fact that

‘outliers’, which are eliminated by the truncation, are not crucial for the generation of HFOs in

model 3 also suggests that our choice for the distribution of the peak dendritic currents (Eq 2)

is not unique. Indeed, we find that results similar to Fig 8 can be obtained with a Gaussian dis-

tribution for the peak dendritic current that has the same mean and standard deviation as the

corresponding lognormal distribution (S17 Fig). We also find that increasing the absolute

refractory period of each CA1 PC to the unrealistically high value of 200 ms still results in net-

works generating robust HFOs in the ripple range (S18 Fig). With this absolute refractory

period, the firing of the E cells is certainly sparse as they can at most spike once during a simu-

lation of duration 100 ms. This shows that while there can be bursts of CA1 PC activity in our

model, they are not necessary for the generation of HFOs in the ripple range.

In conclusion, high values for the peak dendritic current leading to somatic bursts (multiple

PC spikes during one ripple wave) aid the model in generating fast and robust HFOs. They

are, however, not necessary: after truncating the lognormal dendritic spike strength distribu-

tion, replacing it with a Gaussian one, or preventing E neurons altogether from generating

multiple spikes by a long somatic refractory period, robust HFOs in the ripple range are still

generated.

Intrinsic CA1 replay and ripple oscillations by pulse and gap coding

A prominent feature of SPWRs in CA1 is that they occur in conjunction with replay of activity

sequences from previous periods of exploration and learning [2, 94, 99–101]. Recent experi-

mental results show that CA1 can generate sequence replay intrinsically without structured

input from CA3 [36]. Further experimental evidence indicates that place cells in CA1 and CA3

have different properties [93, 102]. One possible explanation for the intrinsic replay in CA1 is

that it is based on recurrent excitatory connections that are amplified due to dendritic spikes

in the basal dendrites of CA1 [41, 42]. In this model, pulses of excitatory spikes travel along

pathways in the sparse recurrent connectivity, which is enabled by amplification by dendritic

spikes in the basal dendrites. Replay of spike sequences might also arise from continuous

attractor dynamics. Here a localized bump of activity in the neural tissue moves around

because of asymmetric synaptic connections, short-term plasticity, or adaptation mechanisms

[103–107]. Sequential network structures might guide these bumps to replay certain

sequences. Due to the very sparse excitatory recurrent connectivity, also propagation of inhibi-

tory spikes pulses in an essentially inhibitory network as suggested for the striatum [108],

might be considered biologically plausible for CA1. However, given the high firing rate of I

neurons during ripples (as mentioned before, PV+BCs fire on nearly every ripple wave [1,

17]), it seems unlikely that their population activity forms sequential patterns similar to that of

PCs. In support of this, it is also known that I cells have broader, more unspecific place fields

than E cells [83, 97] (see however [109] and [110]).

Motivated by the high sparseness of excitatory-excitatory connectivity in CA1 and the sup-

posed absence of replay in inhibitory activity, we propose an alternative model for how specific

sequences may be stored and replayed (schematically depicted in Fig 9A). Like the proposed

ripple generation mechanism for random networks, sequence generation and the thereby

evoked oscillations are based on the prominent excitatory-inhibitory and inhibitory-excitatory

connectivity in the hippocampal region CA1. The basic idea is as follows: CA3 excites an ini-

tial, zeroth group of CA1 E cells to spike within a short time interval [111]. This group excites

all CA1 I cells involved in the dynamical pattern, except for the first group of I cells. This

group would inhibit the first group of E cells. The gap in its activity (I cell ‘gap coding’)
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Fig 9. Replay events and ripple oscillations induced by pulse and gap coding of E cells and I cells. The sequence replay is based on disinhibition of a

group of E cells and the resulting excitation of all but one group of I cells, which in turn disinhibits another group of E cells. A: Connectivity scheme.

Both the E cells and the I cells are grouped into K + 1 groups (here: K = 4 was chosen for simplicity, in the simulations below, K = 9). Group E1 excites

all groups of I cells except I2 (green dashed line). Similarly, group Ek excites all groups Il except Ikþ1 ðl ¼ 0; . . .kþ 1; . . .KÞ. Group Ik projects on a

single group Ek; that is, group I0 inhibits group E0, group I1 inhibits group E1, and so on. All connections relevant for the sequence generation are

shown for group E1 and I1. A replay event is triggered by the initial stimulation of group E0. The subsequent activation by CA3 lets E neurons spike
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disinhibits the first group of E cells, such that it becomes active in pulse-like manner (E cell

‘pulse coding’). It excites all I cells except for the second group that would inhibit the second

group of E cells. Therefore the second group of E cells becomes active and so on (Fig 9A). A

generalization to continuous, non-grouped activity sequences [28, 42] seems straightforward.

Further alternative concepts for replay, which we do not consider as they seem less biologically

plausible for CA1, are presented in S19 Fig. The first such concept (S19A Fig) is a two-popula-

tion model assuming that both the E and I populations use pulse coding, such that both E and

I cells spike in a sequential fashion: the active group of E cells excites the next group of I cells,

which inhibits all E cells except those that fire in the next step. The second concept is an inhibi-

tion-first model, which generates sequences by pure gap coding in the I population (S19B Fig):

groups of I cells become sequentially inactive, since they receive at some point more inhibition

than their peers because of structured inhibitory connectivity. The resulting disinhibition of E

cells leads to their sequential activity, but their spiking does not contribute to the maintenance

of the sequence.

We first show that the E pulse and I gap coding scheme generates sequences and biologi-

cally plausible ripples in model 1, i.e. with temporally broad excitation of E cells: Fig 9B dis-

plays a replay event in a model 1 network structured according to Fig 9A. Active E cells

typically spike once and only rarely twice. Thus, the high spike frequency of active E cells in

model 1 is avoided. All I cells are active and spike on nearly every ripple wave. The used

parameters are similar to those in Fig 4 (see S2 Appendix for details). The introduced parame-

ter changes decrease the sharp wave input strength and the strength of E-to-I synapses. The

former ensures that I cell spiking can suppress E cell spiking effectively, the latter prohibits

overly high I cell activity.

Fig 10 shows sequence and ripple generation by E pulse and I gap coding in a model 3 net-

work structured according to Fig 9A. There are dendritic spikes amplifying the input from

CA3 to CA1, but their impact is weakened compared to Fig 8. This, together with further

parameter changes (see S2 Appendix for details) ensures that CA1 E cells only spike if they

‘see’ the inhibitory gap, because otherwise inhibition is strong enough to suppress them. Every

active E cell in Fig 10 spikes exactly once. All I cells are active and spike on nearly every ripple

wave.

Discussion

In the current article, we have studied two-population models for the generation of ripples and

sequences in the hippocampal region CA1. In these models E and I neurons interact to gener-

ate the ripple rhythm possibly together with sequential activity. This is motivated by recent in
vivo experiments, which have shown that both the local PC and the local PV+BC populations

in CA1 contribute to generating ripple oscillations [19]. Further motivation comes from the

observation that the connectivity from local PCs to PV+BCs and back is high (Materials and

methods). Our models are constrained by biologically plausible connectivity and by the fact

that during ripple oscillations, basically all PV+BCs spike at high frequency, i.e. on nearly

when they are not inhibited. The activity progresses in the direction of the black arrow: E0 activates all I neurons except those forming group I1. Since I1
does then not inhibit E1, these become active due to the random, unstructured CA3 input. This excites all I cells except those forming group I2. The

resulting gap in inhibitory activity generates a pulse in E cell group E2 on the next ripple wave etc. B: Example realization with model 1, i.e. with

temporally broad excitation of E cells similar to Fig 3. The network generates replay activity together with an oscillation of frequency f� 190 Hz.

Neurons of group E0 are activated by an initial part of the sharp wave. We have implemented this by a short input pulse (upper panel, magenta)

preceding the main sharp wave. The E neurons in the other groups receive temporally broad inputs from the main sharp wave (black). About seven E

and I groups are sequentially (de)activated, before the sequence terminates due to the termination of CA3 input. C: Histograms of spike counts during

the displayed event. Parameters are as in Fig 4, except for those listed in S2 Appendix.

https://doi.org/10.1371/journal.pcbi.1009891.g009
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every ripple wave [17, 36, 60–62], while the PCs spike sparsely, contributing typically only one

or two spikes [17, 19]. The latter implies that the spiking activity during CA1 SPW/Rs is a mix-

ture of two often considered oscillation types: strongly synchronized [33] and weakly synchro-

nized oscillations [21, 23, 34]. The E cell population is weakly synchronized; the average

single-cell firing frequency during a ripple is much lower than the population frequency. The I

Fig 10. Replay events and ripple oscillations in model 3. Appropriately structured model 3 networks with relatively weak dendritic spikes generate replay and

oscillations in the ripple frequency range through alternating E pulse and I gap coding. Active E cells contribute only one spike, while all I cells participate and spike in

nearly every ripple. The populations are split into K + 1 = 10 groups forming a chain as in Fig 9A. The figure layout is similar to Fig 7. A, upper subpanel: Spikes

generated by CA3. Middle: spike rastergrams of the CA1 E and I cells (red and blue). Example realization in a network withNE = 12000 excitatory cells andNI = 200

inhibitory cells generating replay together with an oscillation of frequency f� 190 Hz. Group E0 receives input from an initializing CA3 population here consisting of

15000 neurons (magenta spikes, population size chosen like that of the main sharp wave to keep the connection probability constant across neurons). The remaining

groups of excitatory cells receive unstructured input from NE,CA3 = 15000 different excitatory CA3 spike trains shown in black (for simplicity the same rastergram as

for the magenta spikes was used). About seven E and I groups are sequentially (de)activated, before the sequence terminates due to the termination of CA3 input. B:

Histograms of spike counts. Parameters are as in Fig 8, except for those listed in S2 Appendix.

https://doi.org/10.1371/journal.pcbi.1009891.g010
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cell population (consisting of PV+BCs) is strongly synchronized, with every I cell spiking at

nearly each individual ripple wave.

We observe that temporally broad CA3 sharp wave input generates in random CA1 two-

population model networks ripple frequency oscillations or sparse spiking of E neurons, but

not both, unless there is strong feedforward inhibition. Sparse spiking of E neurons can be

reached if there is a strong CA3 projection to the I neurons, such that the oscillations are effec-

tively generated by the I population alone. We were, however, unable to achieve with the

model the experimentally found phase relation of E and I neuron spiking [17, 57], which is

equivalent to a 1.2 – 2.0 ms lag of the I neuron spike peak behind the E neuron peak. Further,

experiments indicate that ripples are generated by the interaction of local E and I neurons

without requiring feedforward input to the I neurons [19] (see, however, [26] for a different

explanation of the results). In non-random, sequence generating networks, we observe biologi-

cally plausible ripples generated by the propagating activity. We suggest that appropriate

sequential activity may be realized by pulse-coding of E and gap coding of I cells in CA1. This

is motivated by the experimental observation that recurrent E-to-E connectivity in CA1 is very

sparse [54, 55]. The sequential structure enables sparse E spiking. It has also previously been

proposed that sequential activity may underlie ripple generation [28, 42]; the sequences there

were generated due to enhanced E-to-E connections.

For random networks, we have explored the idea that the sparse spiking of E cells in CA1

originates from temporally sparse, short and strong inputs from CA3 (model 2) that lead to

somatic spiking if inhibition is temporally weak. Different CA1 PCs receive these inputs at dif-

ferent times, their density is highest near the peak of the sharp wave. We propose in model 3

that such sparse inputs might originate from dendritic spikes in the apical dendrites, which are

elicited when sufficiently many spikes arrive from CA3 within a short time window [67, 69].

A variety of models has been proposed to explain the mechanisms underlying SPW/Rs (see

our classification in the Introduction and Fig 11). Given the current experimental knowledge,

Fig 11. Our work in the context of previous CA1 ripple models. Visual depiction of our classification scheme of CA1 ripple models (see Introduction) with our

models sorted in. The classification scheme has three levels, indicating (i) which neuron population or populations are mainly involved in the ripple generation, (ii)

what the main mechanism for rhythmogenesis is (in particular if it is a network or single neuron mechanism) and (iii) specific features that are important for the

overall rhythm. In the current article we have proposed new models (bottom right) of the class of pyramidal interneuron network ripples incorporating the specific

features of sparse excitation (left) and structured networks (right, missing connections leading to sequential replay are gray dashed). These explain sparse pyramidal

neuron and dense interneuron spiking during SPW/Rs. For clarity, specific model features of previous models are omitted, such as required structured networks for

SPW/R generation in some basal dendritic spike models [42] and ripple generation by multiple disparate, inhibitorily coupled oscillators [36]. For our models one

could have added further specific features such as recurrent inhibition. PY: pyramidal neurons, BC: PV+BCs.

https://doi.org/10.1371/journal.pcbi.1009891.g011
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many of them are biologically plausible. Neurobiological ripples could also be generated by a

combination of them: as an example, strong feedforward inhibition as in the variant of model

1 used in S6 Fig might support ripple generation in model 1 with structured networks (Fig 9)

and in model 3. Furthermore, experimentally uncovered differences in some SPW/R proper-

ties might indicate that partially different mechanisms underlie in vitro and in vivo ripples

(inhibition dependence [19, 112], action potential shape [44, 48]) as well as CA1 and CA3 rip-

ples (optogenetic stimulation of PV+BCs [19, 25]), requiring different models. Our model

aims at explaining in vivo experiments indicating that the local PC and the local PV+BC popu-

lations in CA1 contribute to generating ripple oscillations [19]. The designed models are there-

fore of the pyramidal interneuron ripple class. Related are previous interneuron network

ripple models [21, 26, 28], other pyramidal interneuron network HFO models [21, 34, 38] and

pyramidal neuron network ripple models [41, 42]. Compared to pure interneuron network

ripple models, the inclusion of pyramidal cells and the condition of their sparse firing renders

the generation of high frequency oscillations in interneuron network ripple models as well as

in pyramidal interneuron network ripple models challenging. This is because the additional E-

to-I and I-to-E loop usually slows down the network oscillation frequency [34]. We find that

simply increasing the level of external excitation to increase the oscillation frequency often

results in too much E cell spiking, which renders the models unsuitable to describe ripple oscil-

lations. Previous models for HFOs incorporating two populations have assumed connection

probabilities [23, 26, 34, 38] and/or spiking dynamics [21, 34, 38] that do not fit CA1 and/or

its ripples [1, 17, 55]. Our current model 1 using structured connectivity and our model 3 with

random and structured connectivity provide a pyramidal interneuron network ripple model

incorporating biologically plausible connectivity and generating biologically plausible sparse E

and dense I spiking [17, 36, 60–62] with realistic phase relations [17, 57]. Our model 1 with

strong feedforward inhibition is an interneuron network ripple model, like [21, 26, 34]. In con-

trast to [26], which uses all-to-all connectivity, it has realistic, sparse connectivity. In contrast

to the models in [21, 34], which generate sparse E and I spiking, it generates sparse E and

dense I spiking. It has, however, an implausible phase relation of the peaks of E and I spiking

(S5 and S6 Figs). It will be interesting to explore whether adding more biological detail to our

model will allow to correct this. Like the models in [41, 42], our model 3 is based on dendritic

sodium spikes. In contrast to the previous models these are not generated by the very sparse

recurrent CA1 interactions but by inputs from CA3. This is motivated by the fact that each

CA1 PC receives about 200 afferents from other PCs, but 15000 − 30000 afferents from CA3

[55]. Still, dendritic spikes may also be generated by recurrent excitatory synapses in CA1,

because they are strong, their connectivity may be appropriately patterned and they arrive

at the highly excitable basal dendrites [41, 42]; CA1 and CA3 input may also cooperatively

generate dendritic spikes in the basal dendrites. In model 3 with random networks, the

sparse dendritic spikes enable sparse spiking of E cells in windows with little inhibitory input,

while the dendritic spikes in refs. [41, 42] mediate propagation of synchrony. As already men-

tioned, ref. [19] found that stimulation of the local E CA1 population can excite ripple oscilla-

tions. Such stimulation will not generate dendritic spikes in the apical dendrites, but it may

generate dendritic spikes in the basal dendrites of postsynaptic CA1 E cells [41, 42], which

could lead to ripples in a similar manner as in our model 3 (or in the manner described in ref.

[41, 42]).

We note that also the recurrent inhibitory connectivity is important for the generation of

HFOs in our models: we tested in our random network models that lower values for pII result

in slower oscillations. Also gap junctions are frequent between inhibitory PV+BCs in CA1 [45,

113]. Experiments, however, indicate that they are not important for ripple oscillations [1, 114,

115]. Therefore we did not incorporate them in our models. In the context of interneuron
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ripple models, recent theoretical results show that adding gap junctions between inhibitory

cells has beneficial effects for ripple oscillations, as they enhance synchrony and decrease the

minimal number of cells required for ripple oscillations [116].

Biological plausibility of our model

How realistic are our assumptions concerning the generation of dendritic spikes? Apical den-

dritic spikes have been directly observed during SPW/Rs [84]. It is difficult to precisely esti-

mate the number of synaptic inputs required to generate dendritic spikes, estimates range

“anywhere from a handful to dozens of inputs” [117]. The number of synaptic inputs required

to evoke a dendritic spike differs between the different parts of the apical dendritic tree, in par-

ticular, it differs between apical oblique and trunk dendrites. Detailed multicompartmental

models of morphologically reconstructed neurons suggested that at least* 50 synaptic inputs

arriving within at most 3 ms on a small part of the distal apical trunk of CA1 neuron dendrites

are required to elicit dendritic sodium spikes [67, 69]. For apical oblique dendrites, it was

shown that * 20 inputs arriving within * 6 ms suffice to generate a dendritic spike [70]. For

the basal dendrites, the dendritic integration time is between 2 ms and 3 ms [68]. Dendritic

spikes are generated when the input to a basal dendritic compartment is so strong that it

would generate in the soma a peak depolarization of 4 mV [68]. A typical input from CA3 to

CA1 evokes in the soma a peak depolarization of 0.13 mV [118], suggesting that about 30

inputs from CA3 are required to arrive within less than 3 ms at a basal dendrite to generate a

dendritic spike. For an input strength of 0.4 mV as assumed in our paper, 10 inputs are

required. The strength of somatic depolarization generated by dendritic spikes depends on the

type of dendrite and even the branch where it has been evoked. It ranges from a few millivolts

of additional somatic depolarization to 10 mV and more [68, 70, 73]. We have neglected differ-

ences in dendritic spike generation and assumed that every dendrite has the same threshold

and integration time window, whereas the impact that a dendritic spike has on the soma dif-

fers. In our model 3, we assume that already 5 spikes arriving within 2 ms are sufficient for

dendritic spike generation. This is similar to the number of inputs required for spike genera-

tion in basal dendrites of CA1 pyramidal cells when they receive CA1 inputs [41, 42, 54, 68]. It

is also similar to the number of inputs required for spike generation in apical oblique dendrites

[70] in the sense that when assuming a constant temporal distance, * 20 inputs arriving

within * 6 ms correspond to * 7 spikes in 2 ms.

Increasing the threshold for dendritic spike generation while keeping the number of affer-

ent inputs and the dendritic integration window wD constant necessitates an increase of the

afferent rate. In our model 3, increasing the dendritic spike threshold from 5 to 50 would

require an increase of r0 in Eq 7 from 8 Hz to more than 100 Hz to approximately maintain

the same number of dendritic spikes. This value is clearly too high as a discharge rate for a typ-

ical CA3 cell during sharp waves [65] (but values larger than 10 Hz are possible [58]). The

inputs from CA3 to CA1 may, however, be clustered such that sufficient coincident inputs

impinge on an apical dendrite.

Our result might also indicate that a smaller number of coincident inputs than previously

estimated is needed to elicit dendritic spikes. Further, dendritic spikes relevant during SPW/

Rs may be less sensitive to synchrony than assumed in our model, i.e. their effective dendritic

integration window may be longer. Such dendritic spikes might then be NMDA or calcium

spikes [73, 84, 86, 119, 120]. Further, spikes generated on different apical oblique dendrites

might sum to generate larger somatic depolarizations [70], possibly together with the slower

NMDA or calcium spikes. Testing these possibilities would require a model with multiple den-

drites or dendritic compartments. In S3 Appendix, we present analytical computations and
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numerical simulations suggesting that model 3 would still generate a similar amount of den-

dritic spikes (and hence lead to similar dynamics) if multiple dendritic compartments and all

connections to active CA3 neurons were included. CA3 cell bursting [58] might in principle

also contribute to dendritic spike generation, for example because asynchronous but overlap-

ping bursts generate synchronous spike inputs. Experimentally found ISIs within individual

CA3 bursts [58] are, however, typically larger than the sodium dendritic spike integration win-

dow [67, 68]. Finally, basal dendrites could generate dendritic spikes as incorporated in our

model, since they receive inputs from CA3 PCs besides those from CA1 PCs [12]. Particularly

promising candidates are the recently discovered axon carrying dendrites, from which the

axon emanates in many CA1 PCs [71]. These dendrites are particularly excitable, generate

strong dendritic spikes and have a high impact on action potential generation.

We implement a single dendritic compartment for simplicity and reduce the number of

active inputs that it receives to cover the fact that not all CA3 input spikes interact nonlinearly.

This yields a minimal model of ripple generation. We argue in S3 Appendix that in terms of

numbers of dendritic spikes our minimal model with 5-fold reduction of active inputs corre-

sponds roughly to a model where neurons have 9 dendritic compartments. If the input from

CA3 during SPWRs is randomly distributed over multiple dendritic compartments, the proba-

bility of generating dendritic spikes rapidly decreases with the number of compartments,

because in each compartment too few inputs arrive within the short dendritic integration time

window. Clustering of synapses that are near-simultaneously activated may counteract this

[121, 122]. Furthermore, dendritic compartments for dendritic spike generation may be large:

Single neuron modeling studies show dendritic spike generation with only moderately clus-

tered inputs [67]. There may also be hot spots of dendritic sodium spike generation in den-

dritic branching points, as observed in some neuron types [123]. In their presence, inputs to

large parts of the dendrites together generate dendritic spikes.

PC spiking during SPW/Rs in our model 3 is generally very sparse, the majority of PCs

contributes one to two spikes, as observed experimentally. In the model without sequence

replay a few CA1 PCs spike more than 3 times during a SPW/R event (Fig 7). Such bursting is

consistent with experiments [36, 58, 93, 94]. The bursts are generated in our model because

the lognormal distribution of the peak dendritic currents across neurons (Eq 2) contains larger

values with non-negligible probability. Additional simulations with truncated lognormal or

Gaussian distributions with less bursting and simulations with a long somatic refractory

period, which completely prevents multiple spiking, can generate ripple range HFOs. This

shows that bursts are not necessary for the generation of HFOs in the ripple frequency range

in our model.

HFOs in the ripple range occur in model 3 (Fig 8) at or before the border of stability where

standard deviations across realizations increase. This is the case because a certain critical

amount of externally supplied excitation (quantified by the parameters of the peak dendritic

current in model 3) is needed to generate HFOs in the ripple range. Below this level, gamma

and high gamma oscillatory states are reached. Beyond this level, E cell spiking cannot be orga-

nized into distinct ripple waves by PV+BC spiking anymore; the E cells are permanently active

and show little oscillatory modulation in their spiking.

Sequence generation by a two-population mechanism

A prominent property of the hippocampus is that it generates sequences of activity. These may

replay previously imprinted sequential experience [94, 99, 100], serve as a backbone to store

episodic memories [124, 125] or generally provide a sequential reference frame for sensory

experience and brain activity [126]. Sequence generation is often assigned to CA3 because of
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its prominent, albeit sparse, recurrent excitatory connectivity [124, 125]. However, CA1 also

generates sequences on its own [36]. Earlier work proposed that the highly sparse recurrent

excitatory connectivity in CA1 could underlie sequence generation, since it may be highly

structured and amplified by basal dendritic spikes [41, 42]. Here we propose a different class of

models for sequence generation in CA1: two-population models. In such models the sequences

are generated cooperatively by the E and I population. We conceptually propose two such

models, one where the sequence generation depends on the prominent E-to-I neuron and I-

to-E neuron connectivity (Fig 9A) and another one where also the similarly prominent I-to-I

neuron connectivity is important (S19 Fig). We explicitly implemented the first one of these

concepts, since it is more plausible for CA1. It is based on alternating pulse and gap coding of

the E and I neuron populations, such that both the E and the I neuron firing patterns together

generate the sequence. This is different from the classical view that sequence generation in

neural networks depends mainly on the excitatory connectivity between E neuron groups like

in synfire chains [50, 127–129], while inhibition prevents pathological activity, allows gating

and introduces competition between sequences [130–136]. Specifically, inhibition of the

embedding network and of previously active groups by propagating synfire chain activity was

shown to prevent pathological, strong increases of overall network spiking activity [130, 134];

the stability of propagation along the synfire chain could then be improved by additional

inhibitory neuron groups: their sparse feedforward activation induced disinhibitory removal

of excessive inhibition from specific excitatory groups [136].

We have shown that two-population based sequential replay generates in model 1 high fre-

quency oscillations with sparse E cell firing and that it is compatible with filtering of CA3

input by dendritic spikes, as proposed in model 3. Two-population based sequence generation

may occur in further areas beyond the hippocampal region CA1. Promising candidates for

these are areas in which there is sequence generation, rather sparse E-to-E and prominent E-

to-I and I-to-E coupling. One such candidate is the hippocampal region CA3. It has been

found to generate sequences [137] and studied in this function in various modeling studies

[28, 124, 125, 138]. Excitatory connectivity in CA3 is very sparse (a few percent connection

probability [42, 139–142]), albeit more prominent and more global than in CA1 [143, 144].

The E-to-I and I-to-E coupling is denser [139]. Observations of spontaneous (not requiring

sensory stimulation and hence internally generated) sequential activity have also been made in

the primary visual [145] and auditory [146] cortices as well as in the somatosensory cortex

[146, 147]. Further experiments indicate that the E-to-E coupling in these areas is sparse, in

the typical range for the cortex, and the E-to-I and I-to-E coupling is prominent [148–150]. To

further investigate the plausibility of two- versus one-population based sequence generation

schemes, future research could comparatively explore the implications of different connection

probabilities, average synaptic strengths and neuron numbers (the number of I neurons is

smaller than that of E neurons in all discussed areas) for the schemes.

The sequences generated by the proposed two-population mechanisms may consist of dis-

crete groups or they might be continuous. Further, they may be preexisting or learned during

experience. It is an interesting direction of future research to determine how their spontaneous

formation or learning may take place through the interplay of excitatory and inhibitory synap-

tic plasticity [42, 151–153]. It will also be interesting to see whether there are functional, ana-

tomical or physiological advantages when realizing sequence generation by the proposed two-

population mechanisms. As an example, the generic involvement of both excitatory and inhib-

itory activity in sequence generation may allow to more easily avoid pathological activity like

synfire chain explosions in an embedding network and extinguishing of propagation [50, 130,

134, 136].

PLOS COMPUTATIONAL BIOLOGY Ripples and replay in two-population models of CA1

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009891 February 17, 2022 30 / 41

https://doi.org/10.1371/journal.pcbi.1009891


Experimental predictions

Ripple generation in our model 3 relies on strong sodium spikes generated in the apical dendrites

of CA1 pyramidal cells. Consequently, enhancing dendritic activity by 4-aminopyridine (4-AP)

or Ba2+ [67] should increase ripple frequency or lead to epileptoform HFOs when too much

somatic spiking is induced. Conversely, selective blocking of a part of the dendritic sodium

channels in the PC population’s apical dendrites should decrease the frequency of the ripple

oscillations (equivalent to a decrease of μ and/or σ in our model 3, see Eq 2 and Fig 8). This

may require a localized application of sodium channel blockers since the same channel subtype

seems to mediate spike generation in the apical dendrites and in the axon initial segment [154].

Experiments indicate that dendritic spikes are crucial for the generation and emergence of the

location specific activity of place cells [155, 156]. In particular, during exploration of a novel envi-

ronment, dendritic spikes may lead for certain dendritic branches to the strengthening of clus-

tered synapses [156] or to the strengthening of the somatic impact of their dendritic spikes [73,

157]. Based on our model 3, we predict that during later sharp wave ripple activity, such branches

generate dendritic sodium spikes, possibly in conjunction with NMDA spikes [68, 73, 157]; the

fast dendritic sodium spikes lead to sparse spiking of the soma (and recall of the location).

The main experimental prediction arising from our model for sequence generation is that

CA1 can generate replay events intrinsically without temporally or spatially structured input

from CA3 cell assemblies. For sequences of place cells, this stands in contrast to the common

assumption that CA1 place fields are a reflection of spatiotemporally tuned CA3 input [1] and

in contrast to the way of location recall suggested by our model 3. We predict that precisely

timed interactions between E and I cells are at the heart of hippocampal replay, while cou-

plings between local E cells are not important for this, in contrast to previous models such as

[42, 158]. This implies in particular that changing PV+BC activity during SPW/Rs, e.g. by

optogenetic stimulation that removes firing gaps, will impair sequence generation.

We predict sequence replay due to a certain dynamical motif in CA1: E pulse and I gap cod-

ing. For the specific case of the sequential reactivation of place cells along paths this implies

that there should be E cells with place fields at locations where a group of I cells is silent. Fur-

ther, the mechanism implies specific coupling motifs for the E-I and I-E connections: The I

cells with silent place fields at a certain location are not innervated by E cells with place fields

located shortly before in the path. Instead, they receive input from E cells with more distant

place fields. In other brain regions sequences may be generated by a two-population mecha-

nism where both E and I cells generate pulse coding, where inhibitory neurons disinhibit a

group of E cells by inhibiting all others (S19A Fig). Both of these two-population mechanisms

could also combine to give rise to replay.

Conclusion

Based on neurobiological knowledge on the hippocampal regions CA1 and CA3, their single

neurons and their dynamics, we have shown how CA3 drive and two-population interactions

in the region CA1 may lead to the SPW/R population pattern, with its characteristic high fre-

quency oscillations and sparse E and dense I cell firing. For the associated sequential replay we

have developed a model that is consistently based on two-population interactions, specifically

on E pulse and I gap coding.
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3. Girardeau G, Benchenane K, Wiener SI, Buzsáki G, Zugaro MB. Selective suppression of hippocam-

pal ripples impairs spatial memory. Nature Neuroscience. 2009; 12:1222–1223. https://doi.org/10.

1038/nn.2384 PMID: 19749750

4. Roux L, Hu B, Eichler R, Stark E, Buzsáki G. Sharp wave ripples during learning stabilize the hippo-

campal spatial map. Nature Neuroscience. 2017; 20:845–853. https://doi.org/10.1038/nn.4543 PMID:

28394323

5. Ego-Stengel V, Wilson MA. Disruption of ripple-associated hippocampal activity during rest impairs

spatial learning in the rat. Hippocampus. 2010; 20(1):1–10. https://doi.org/10.1002/hipo.20707 PMID:

19816984

6. Zhang H, Fell J, Axmacher N. Electrophysiological mechanisms of human memory consolidation.

Nature Communications. 2018; 9:4103. https://doi.org/10.1038/s41467-018-06553-y PMID:

30291240

7. Gupta AS, van der Meer MAA, Touretzky DS, Redish AD. Hippocampal Replay Is Not a Simple Func-

tion of Experience. Neuron. 2010; 65(5):695–705. https://doi.org/10.1016/j.neuron.2010.01.034

PMID: 20223204

8. Foster DJ. Replay Comes of Age. Annual Review of Neuroscience. 2017; 40(1):581–602. https://doi.

org/10.1146/annurev-neuro-072116-031538 PMID: 28772098

9. O’Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in

the freely-moving rat. Brain Research. 1971; 34(1):171–175. https://doi.org/10.1016/0006-8993(71)

90358-1 PMID: 5124915

10. Buzsaki G, Horvath Z, Urioste R, Hetke J, Wise K. High-frequency network oscillation in the hippocam-

pus. Science. 1992; 256(5059):1025–1027. https://doi.org/10.1126/science.1589772 PMID: 1589772
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