
Nanomedicine of Plant Origin for the
Treatment of Metabolic Disorders
Fang Hu1†, Dong-Sheng Sun2†, Kai-Li Wang3 and Dan-Ying Shang4*

1Medical Department, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, China,
2Department of Geriatric Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical
College, Hangzhou, China, 3Department of Cardiology, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital
Chun’an Branch), Hangzhou, China, 4Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s
Hospital of Hangzhou Medical College, Hangzhou, China

Metabolic disorders are major clinical challenges of health that are progressing globally. A
concurrence of metabolic disorders such as obesity, insulin resistance, atherogenic
dyslipidemia, and systematic hypertension leads to metabolic syndrome. Over the past
years, the metabolic syndrome leads to a five- and two-fold rise in diabetes mellitus type II
and cardiovascular diseases. Natural products specifically plant extracts have insulin-
sensitizing, anti-inflammatory, and antioxidant properties and are also considered as an
alternative option due to few adverse effects. Nanotechnology is one of the promising
strategies, which improves the effectiveness of treatment and limits side effects. This
review mainly focuses on plant extract-based nanosystems in the management of the
metabolic syndrome. Numerous nano-drug delivery systems, i.e., liposomes, hydrogel
nanocomposites, nanoemulsions, micelles, solid lipid, and core–shell nanoparticles, have
been designed using plant extracts. It has been found that most of the nano-formulations
successfully reduced oxidative stress, insulin resistance, chronic inflammation, and lipid
profile in in vitro and in vivo studies as plant extracts interfere with the pathways of
metabolic syndrome. Thus, these novel plant-based nanosystems could act as a
promising candidate for clinical applications.
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INTRODUCTION

Metabolic disorders happen when the catabolic or anabolic processes are dysfunctional and incline
the body to make either excessive or depleted amounts of the essential products, which are needed for
the proper functioning of the body. Metabolic disorders have become a worldwide threat as they
account for 20%–30% of the world’s population (Zimmet et al., 2001). Metabolic disorders are
categorized into two groups: one affects the breakdown of amino acids, carbohydrates, or lipids while
the other group affects the portions of the cells that produce energy. These metabolic conditions
clustered together ultimately result in metabolic syndrome. Metabolic syndrome elevates the risk of
several disorders comprising atherogenic dyslipidemia, cardiovascular diseases, central obesity,
insulin resistance (diabetes types I and II), hypertension, and cerebrovascular accident (Tabatabaei-
Malazy et al., 2015; Heindel et al., 2017). Metabolic syndrome is associated with enhanced
atherosclerosis, insulin resistance, and obesity which occur due to chronic inflammation and
endothelial dysfunction and also increase the risks of cardiovascular diseases and formation of
abnormal adipocytokines including pro-inflammatory mediators interleukin-1 and 6 (IL-1, IL-6),
tumor necrosis factor α (TNF-α), adiponectin, and leptin (McCracken et al., 2018). The World
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Health Organization, International Diabetes Federation, and
National Cholesterol Education Program’s Adult Treatment
Panel III focused on prognosis guidelines of metabolic
syndrome, i.e., blood pressure values of systolic 130 mmHg or
higher and diastolic 85 mmHg or higher, triglycerides 150 mg/dl
or greater, high-density lipoprotein <50 mg/dl in females and
<40 mg/dl in males, and elevated fasting glucose of 100 mg/dl or
greater (Eckel et al., 2005).

Several presumed mechanisms are underlying the
pathophysiology of metabolic syndrome, and the most
justifiable mechanism is insulin resistance with fatty acid flux.
Other potential mechanisms include chronic inflammation and
oxidative stress (Reaven, 1988; Roberts et al., 2013; Pan and Kong,
2018). The non-clearance of free fatty acid from circulation
causes insulin resistance in obese individuals. To overcome
this resistance, the pancreas secretes a large amount of insulin
which results in hyperinsulinemia (Oh et al., 2018). The increased
free fatty acid lessens the glucose uptake in muscle; it also causes
the induction and suppression of protein kinase in the liver and
muscles, respectively, ultimately leading to the elevation of
gluconeogenesis (Rochlani et al., 2017). Chronic inflammation
involves obesity and elevates insulin resistance, which gives rise to
an abnormal production adipocytokines such as leptin, tumor
necrosis factor α, prothrombotic mediator plasminogen activator
inhibitor-1 (Pal-1), interleukin-1, and interleukin-6 (Vaziri et al.,
2005; Di Lorenzo et al., 2013). The oxidative stress initiates
insulin resistance and abolishes adiponectin production by
adipocytes (Furukawa et al., 2004). Adiponectin is an essential
anti-inflammatory and anti-atherogenic adipokine and acts as a
protective factor against the spreading of severe diseases
associated with metabolic disorders and oxidative stress,
i.e., diabetes, cardiovascular diseases, and hypertension
(Guerre-Millo, 2008; Becic et al., 2018). Adipose tissue

stimulates the mineralocorticoid release from adrenal cells and
boosts the activity of the renin–angiotensin–aldosterone system.
Advancement in sodium retention and vascular tone and at the
same time obstruction of norepinephrine reuptake occur which
eventually lead to hypertension. Hence, it shows a parallel
relationship between obesity and the pathogenesis of
hypertension (Cabandugama et al., 2017). An overview of
metabolic syndrome is summarized in Figure 1.

NANO DRUG DELIVERY SYSTEMS

Nanotechnology is a promising phenomenon to treat some
diseases as it increases the bioavailability, bio-distribution,
stability, and solubility of natural compounds. Numerous
nano-formulations have been developed by using natural
products such as liposomes, core–shell nanoparticles,
hydrogels, nano-capsules, nanostructured lipid carriers, nano-
emulsions, solid lipid nanoparticles, and micelles. Nano-
emulsions are a suitable colloidal system for the controlled
delivery of lipophilic molecules (Aswathanarayan and Vittal,
2019). Solid lipid nanoparticles can be modified through
different biocompatible and biodegradable solid lipids
(Ghasemiyeh and Mohammadi-Samani, 2018). Nanostructured
lipid carriers are nano-carriers composed of both solid and liquid
lipids (Madane and Mahajan, 2016). Nano-liposomes proved to
be the best strategy to deliver and target both hydrophilic and
lipophilic constituents (Khorasani et al., 2018). Core–shell
nanoparticles also attain attention due to the increase in
dispersibility and stability and better conjugation with
bioactive compounds (Sounderya and Zhang, 2008).

The conventionally prescribed treatment for metabolic
syndrome is the usual administration of drugs to lower blood

FIGURE 1 | Overview of metabolic syndrome.
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glucose, triglycerides, and blood pressure. However, the long-
term use of traditional drugs has a drastic side effect such as
flatulence and also exerts weak tolerance for the affected person
(Kaur, 2014). Consequently, nano-formulations composed of
natural products have been designed to improve the efficacy
and delivery of these medications (Grundy, 2016). Many studies
suggested that there are several extracts isolated from medicinal
plants which have anti-inflammatory, antioxidant, and insulin-
sensitizing properties (Naseri et al., 2018).

Medical Plant Extract: Polyphenols
Polyphenols or polyhydroxyphenols are the secondary
metabolites of plants that contain several aromatic rings in
their structure. They are famously known for their potential
health benefits. They exhibit antioxidant, antibacterial,
anticancer, and hypoglycemic properties. In addition, they
protect against hypertension and cardiovascular diseases
(Faridi Esfanjani and Jafari, 2016). Polyphenols are generally
classified into two major classes, i.e., flavonoids and non-
flavonoids, based on their structures. Flavonoids generally
have a 15-carbon skeleton (C6C3C6 skeleton of carbon)
composed of two phenol rings and are connected via an
oxygen-containing central pyran ring while the non-flavonoids
are composed of one phenol ring (Rambaran, 2020) (Figure 2).

Nanoencapsulation of Polyphenols
Owing to their tremendous benefits, polyphenols have been
extensively studied and various strategies have been devised to
limit their side effects and optimize their efficacy.
Nanoencapsulation is a potential technology to evade the barriers
of poor solubility, less bioavailability and stability, and toxicity of
polyphenols (Rambaran, 2020). A flavanol-myricitrin (myricetin-3-
O-α-rhamnoside) is known for its antioxidant properties.
Ahangarpour encapsulated the myricitrin into solid lipid
nanoparticles via a cold homogenization method. Both in vivo
and in vitro studies (streptozotocin–nicotinamide-induced
diabetes mellitus type II mouse and hyperglycemic myotube)
demonstrated that myricitrin solid lipid nanoparticles were
effective for diabetes and hyperglycemia (Ahangarpour et al., 2018).

Ferulic acid is a polyphenol (phenolic compound) that enhances
the diabetic wound healing process due to its antidiabetic,
hypoglycemic, angiogenic, and free radical scavenging
properties. However, lower bioavailability and less solubility in
an aqueous solution hinder its use as an efficient therapeutic drug.

Bairaqi synthesized ferulic acid-encapsulated nanoparticles of poly
lactic co-glycolic acid through the nanoprecipitation method.
Carbopol 980 hydrogel loaded with ferulic acid and poly lactic-
co-glycolic acid was formulated for topical application on diabetic
wounds. Both were found to be effective than the control groups
and exhibited a faster epithelialization process, thus improving the
diabetic wound healing process (Bairagi et al., 2018). Another
bioflavonoid (flavanone), naringenin has antioxidant and
antihyperglycemic properties. However, it is poorly soluble in
water and has a low retention time in the intestine. Maity
prepared stable therapeutic formulations of naringenin by
encapsulating it in core–shell nanoparticles of chitosan and
alginate. Naringenin exhibited sustained release and effective
antihyperglycemic effects in rat models (Maity et al., 2017).
Baicalin is a flavonoid extracted from Scutellaria radix. It
demonstrates anti-hyperglycemic effects by inhibiting lipid
peroxidation. Due to its less hydrophilicity and poor adsorption,
it is favorable to encapsulate baicalin in nanoparticles. To
encapsulate baicalin, Shah utilized nanostructured lipid carriers.
The results revealed efficient retention of the drug and good
stability of baicalin (Xu X et al., 2016).

Recent studies also explain how medicinal plants increase
insulin sensitivity and cardiovascular function and moreover
decrease gluconeogenesis, inflammation, and oxidative stress
(Payab et al., 2020). The formulation of these bioactive
compounds in a nanostructured form which ensured the
improved bioavailability, stability, and bio-distribution of
natural products (Gera et al., 2017). Plant-based nano-
structured formulations have an exceptional future to treat
metabolic syndrome, but there is no comprehensive review to
discuss these formulations. Herein, we provide a detailed review
of herbal extracted nano-formulations for metabolic disorders.

PLANT EXTRACTED NANOSYSTEMS FOR
METABOLIC DISORDERS

Nanosystems are administered in the body to increase the
targeting efficiency, stability, and efficacy of drugs (Kesharwani
et al., 2018). However, some conventional nano-carriers have
challenges such as low bioavailability, decreased efficacy, lack of
targeted delivery, and high dosage (Subramani et al., 2012).
Recently, an in vitro and in vivo investigation revealed that
nano-systems increase the site-specific target delivery of drugs
(Ponnappan and Chugh, 2015). In the case of diabetes and
diabetes-related complications, biotin-fabricated nano-
liposomes were found to be effective for the oral
administration of insulin without leakage and also facilitated
the uptake of insulin via receptor-mediated endocytosis
(Zhang et al., 2014). Nano-formulations of conventional drugs
increase the efficacy of drugs. Similarly, plant-derived nano-
systems which have increased the delivery of phytochemicals
and extracts for metabolic disorders are discussed as follows.

Diabetes
Diabetes mellitus results from defects in either insulin secretion
or action or both. Chronic diabetes mellitus is related to age and

FIGURE 2 | Structure of non-flavinoid (A) and flavinoid (B).
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malfunction of various organs: kidneys, blood vessels, heart,
and especially eyes. Symptoms of abnormal insulin secretion
include weight loss, polydipsia, and blurred vision. Diabetes
mellitus is classified into two categories based on glucose
regulation: diabetes mellitus type I (β-cell dysfunction
eventually leading to insulin deficiency) and diabetes
mellitus type II (non-insulin-dependent diabetes or insulin
resistance diabetes) (Salim, 2005). Based on published data,
this review focuses on the promising role of herbal medicine
incorporated in nanoparticles using nano-biotechnology as an
alternative way of treating numerous metabolic disorders
(Kopelman, 2000). Thymoquinone is a major bioactive
component found in the seed of Nigella sativa (Lamiaceae
family) which exhibits protection against diabetes, coronary
artery disease, hypertension, oxidative diseases, and respiratory
diseases (Farkhondeh et al., 2017). In a recent study, polymeric
nanocapsules of thymoquinone and metformin were developed
by using a biocompatible polymer gum rosin through the
nanoprecipitation method and compared it with pure
bioactive metformin and thymoquinone. Different dosages of
polymeric nanocapsules and pure metformin were
administered to diabetic rats for 21 successive days. The
polymeric nanocapsules were stable, spherical, and <100 nm
in diameter, and thymoquinone also gave a sustained release as
compared to pure forms of metformin and thymoquinone. The
oral administration of nanocapsules revealed low blood glucose
levels and glycolated hemoglobin and further improved the
lipid profile. Moreover, the thymoquinone-loaded
nanocapsules induced a comparable anti-hyperglycemic
effect against metformin nanocapsules, pure thymoquinone,
and metformin (Rani et al., 2018). The feature of insulin
resistance in diabetes mellitus type II accounts for 90%–95%
of the diabetic population which fails insulin function.
Recently, Zhang synthesized self-assembled micelles via the
conjugation of plant-derived polymer polygalacturonic acid
(PGA) and natural insulin sensitizer oleanolic acid (OA)
which exhibited as an oral nano-carrier for the treatment of
diabetes mellitus type II. The in vitro and in vivo studies
revealed that OA-loaded PGA-OA micelles improved the
permeability of the gastrointestinal barrier, enhanced the
drug intestinal absorption, and maintained the plasma drug
concentration for a longer period. Furthermore, the
administration of nano-formulation in diabetes mellitus type
II model rats demonstrated a tremendous effect on insulin
resistance and controlled the blood glucose level and gave a
long-termed effect even after its withdrawal (Zhang et al.,
2020).

Pouteria sapota is commonly found in Mexico and South
America which has a significantly higher antioxidant activity due
to the presence of polyphenols (Ma et al., 2004). The green
synthesis method was used to prepare silver nanoparticles
using the extract of P. sapota, and their antidiabetic activity
was evaluated in cellular and animal models. The in vitro
antidiabetic activity of silver nanoparticles was confirmed due
to the decrease in non-enzymatic glycosylation, hindrance of α-
amylase, and increase in glucose uptake by yeast cells. On the
other hand, the biosynthesized silver nanoparticles significantly

improved the superoxide dismutase and catalase activity,
enhanced the plasma insulin level, and decreased the blood
glucose level in streptozotocin-induced rats (Prabhu et al.,
2018). Betalain is a natural constitute of cactus pear (Opuntia
spp.), red beetroot (Beta vulgaris), pitahayas (Stenocereus spp.),
and amaranth (Amaranthaceae) (Sawicki et al., 2018), which
displays antidiabetes (Dhananjayan et al., 2017), anti-
carcinogenic (Amjadi et al., 2019a), and anti-inflammatory
properties (Tan et al., 2015). However, poor oral absorption
and stability limit its application. To overcome these
challenges, Amjadi synthesized betalain-loaded nano-
liposomes. A sustained in vitro release profile was observed
in both simulated gastric and intestinal fluid. In vivo
administration of nano-carriers in streptozotocin-induced
rats demonstrated improved regulation of hyperglycemia,
oxidative stress, and hyperlipidemia as compared to free
betalain. Additionally, the histopathological analysis of
diabetic rats revealed reduced tissue in the pancreas, liver,
and kidney (Amjadi et al., 2019b).

Selenium is an important trace element in a body that protects
the immune system and maintains homeostasis. When selenium
is incorporated into nanoparticles, it gives a novel nutritional
supplementation with lowered toxicity due to the sustained
delivery after its ingestion (Skalickova et al., 2017). Previously,
selenium-layered nanoparticles (SeNPs) were synthesized for the
delivery of mulberry leaf and Pueraria lobata extracts (MPE)
which have hypoglycemia properties and give an antidiabetic
effect. The MPE-loaded selenium nanoparticles (MPE-SeNPs)
were prepared via solvent diffusion/in-situ reduction method.
The MPE-SeNPs were 120 nm in diameter with 89.38% and
90.59% encapsulation efficiency for rutin and puerarin,
respectively. The MPE-SeNPs gave a controlled release and
improved stability in simulated digestive fluid. The oral
administration of MPE-loaded selenium nanoparticles
produced a remarkable hypoglycemic effect in control and
diabetic rat. An outstanding intestinal permeability was
observed in ex vivo intestinal examination (Deng et al., 2019).
One of the major causes of diabetes mellitus is oxidative stress;
myricitrin is an antioxidant derived from plants, and its solid lipid
nanoparticles are much in demand to enhance the antidiabetic
and antiapoptotic effects. Myricitrin solid lipid nanoparticles
were prepared through the cold homogenization method, and
its effects on streptozotocin–nicotinamide-induced diabetes
mellitus type II mouse and hyperglycemic myotube were
observed. Myricitrin solid lipid nanoparticles demonstrated
improved hyperglycemic and diabetes complications
(Ahangarpour et al., 2018). Naringenin is a member of the
flavonoid family which is found in vegetables and citrus fruits
(grapefruits and oranges) (Cavia-Saiz et al., 2010). It has shown
anti-hyperglycemic, anticancer (Pateliya et al., 2021), antioxidant
(Yin et al., 2020), and anti-inflammatory (Gratieri et al., 2020)
properties. The major limitations of naringenin are its poor
solubility in water and lower bioavailability due to its
metabolism by gut and liver enzymes (Manach et al., 2004).
Core–shell nanoparticles of alginate/chitosan loaded with
naringenin were prepared through Na2SO4 and CaCl2 cross-
linking to overcome the limitations of naringenin. The
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developed nanoparticles were characterized using different
techniques. The encapsulation and amorphous nature of
naringenin-loaded core–shell nanoparticles were confirmed by
Fourier-transform infrared spectroscopy and x-ray
diffractogram, respectively. The average hydrodynamic size of
nanoparticles ranges between 150 and 300 nm with spherical and
smooth morphology. The release kinetics of naringenin showed
15% release in simulated gastric fluid (pH = 1.2) while >90% of
the drug was released in a sustained manner via simulated
intestinal fluid (pH = 7.4). The in vivo study revealed
streptozotocin-induced mice reduced the blood glucose levels
and enhanced the hypoglycemic effect after oral administration of
nanoparticles due to stimulatory activity of naringenin.
Furthermore, the histopathological and blood analysis
indicated a non-toxicity of nano-system (Maity et al., 2017).
Some other nanosystems which are providing effective treatment
of diabetes in mice are mentioned in Table 1.

Diabetic Wound Healing
Wound healing is a normal process of a human body after any
injury which is achieved through a programmed set of phases,
i.e., homeostasis, inflammation, proliferation, and remodeling.
These phases should occur in this proper sequence and time
frame to properly heal a wound (Guo and DiPietro, 2010).
Diabetic wound healing and diabetic foot ulcers are the major
causes of amputations which affect 15% of the patients suffering
from diabetes. The major cause of diabetic wound healing is
decreased cell growth factor response which abolishes the blood
flow and low local angiogenesis (Brem and Tomic-Canic, 2007).
During the past few years, nanotechnology has gained attention,
which allows a sustained and site-specific delivery of bioactive
compounds. Various nanoformulations that are treating diabetic
wounds are presented in Table 2. Quercetin (QCT) is found in
various medicinal plants, i.e., Hypericum perforatum, Ginkgo
biloba, and Sambucus canadensis, which act as a wound

TABLE 1 | Plant extract-based nanosystems for treatment of diabetes.

Medicinal plants Nano-systems Experimental model Explanation References

Salvia sclarea Solid lipid nanoparticles HFD-induced diabetic mice Adipocytes Cerri et al. (2019)

Brown adipose tissue weight; HDL level;

Improved glycemic level

Solanum nigrum Silver nanoparticles Diabetic rat Improved dyslipidemia Sengottaiyan et al.
(2016)Blood glucose level

Curcumin Nanoparticles Diabetic albino rat Glucose-lowering effects; antioxidant effects;
insulin level

Abu-Taweel et al. (2020)

Catathelasma
ventricosum

Selenium nanoparticles STZ-induced diabetic rats Antidiabetic effect Liu L et al. (2018)

Body weight; antioxidant activity; lipid level

Silymarin Nanostructured lipid carriers STZ-induced diabetic rats Blood glucose level; triglycerides; anti-
hyperalgesic effects

Piazzini et al. (2019)

Curcumin Liposomes STZ-induced diabetic rats

Hypoglycemic, hypoprotective, and

antioxidant effects

Bulboacă et al. (2019)

Oxidative stress

Quercetin Core–shell nanoparticle (chitosan/
alginate)

Diabetic rat

Blood glucose level

Mukhopadhyay et al.
(2018)

Hyperlipidemic activity
Annona muricata Silver nanoparticles HaCat cell lines

Blood glucose level

Badmus et al. (2020)

α-Amylase and α-glucosidase activity
Talinum portulacifolium Solid lipid nanoparticles STZ- and HFD-induced

diabetic rats Blood glucose level; serum insulin; TGs

Bindu et al. (2014)

Lipid profile
Myricitrin Solid lipid nanoparticles STZ NA-induced diabetic rat Oxidative stress Ahangarpour et al.

(2019)

Antioxidant enzyme level

HFD, high-feed diet; HDL, high-density lipoprotein; STZ, streptozotocin; TGs, triglycerides; NA, nicotinamide; HaCat, immortalized human keratinocytes.
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healing, antioxidant, anti-carcinogenic, anti-inflammatory, and
anti-fibrotic agent.

Badhwar et al. (2021) prepared a hydrogel with quercetin-
loaded silver nanoparticles (QCT-AgNPs) which are considered
as a gold standard for the treatment of diabetic and burnt wounds.
The optimized hydrogel demonstrated 92.09% entrapment
efficiency and smooth surface morphology with a 44.1-nm
hydrodynamic diameter. A relatively higher antimicrobial
activity against S. aureus and E. coli was observed by QCT-
AgNP hydrogel in comparison with marketed hydrogel.
Furthermore, the in vivo results revealed that QCT-AgNP
hydrogel decreased the wound gap and enhanced the % re-

epithelialization in the diabetic wound model. Diabetic wounds
have serious challenges, whichmay lead to amputation of the lower
extremities. Recently, for the co-delivery of curcumin (CUR) and
resveratrol (RES), novel hyaluronic acid (HA)–functionalized
chitosan nanoparticles (HA-CUR-RES-CS-NPs) were prepared
through the ionic cross-linking method. The fabricated
nanoparticles had a particle size <200 nm, zeta potential > ±
30mV, and entrapment efficiency of 90%. The in vitro release
pattern revealed a non-Fickian diffusion and sustained a release
mechanism (Hussain et al., 2020).

A novel nano-hybrid scaffold was prepared by encapsulation
of curcumin into chitosan nanoparticles (CUR-CS NPs) followed

TABLE 2 | Nanoformulations for diabetic wound healing.

Medicinal plants Nano-systems Model animals Explanation References

Saraca asoca Silver nanoparticles Swiss albino mice Re-epithelialization;

wound contraction

Bairagi and Nath (2021)

Bambusa bambos Nanobiocomposite STZ-induced diabetic rats Re-epithelialization; Singla et al. (2017a)

Collagen deposition

Dendrocalamus hamiltoni Nanobiocomposite STZ-induced diabetic rats Re-epithelialization; Singla et al. (2017a)

Collagen deposition

Curcumin Chitosan nanoparticles STZ-induced diabetic rats Macrophage-induced Li et al. (2019)
Inflammation

Angiogenesis

Curcumin Curcumin nanoparticle-loaded hydrogel STZ-induced diabetic albino rats Wound closure rate;
Granulation tissue
formation; collagen
Deposition.

Kamar et al. (2019)

Syzygium cumini Nanocomposites STZ-induced diabetic rats Fast re-epithelialization; neo-
vascularization
Collagen deposition
Anti-inflammatory
Action

Singla et al. (2017b)

Acalypha indica Gold nanoparticles BALB/c mice Re-epithelialization Boomi et al. (2020)

Collagen deposition

Pterocarpus marsupium Chitosan nanoparticle-loaded hydrogel STZ-induced diabetic rat Re-epithelialization; growth of
granular

Manne et al. (2021)

Tissues; collagen
Deposition

STZ, streptozotocin; BALB/c mice, albino immunodeficient inbred strain (Bragg albino).
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by its impregnation into a collagen scaffold for improved tissue
regeneration. The nanoparticles improved the stability and
solubility of curcumin. A sustained in vitro release,
outstanding biocompatibility, and drug availability were found
in the case of a nano-hybrid scaffold. The in vivo wound closure
analysis also demonstrated that scaffold-treated wounds healed
more efficiently as compared to control and placebo scaffolds. A
formation of thick granulation tissue and complete
epithelialization were observed in nano-hybrid scaffolds (Karri
et al., 2016). Ponnanikajamideen and coworkers
(Ponnanikajamideen et al., 2019) used the green method for
the plant-mediated synthesis of gold nanoparticles by using the
extract of Chamaecostus cuspidatus (insulin plant) to study the
hypoglycemic effect in healthy rats and streptozotocin-induced
diabetic rats. The green synthesized gold nanoparticles were
evaluated through transmission electron microscopy, scanning
electron microscopy, and free-radical scavenging activity. The
characterized nanoparticles showed spherical morphology with
20 nm of size. The antidiabetes studies revealed that the extract
had a significant hypoglycemic effect as compared to control
groups. The free radicals were exhibited in a dose-dependent
manner, and 50% inhibition of free radicals was observed by
treating with gold nanoparticles. Moreover, the cutaneous wound
healing activity of nanoparticles gave comparable wound
recovery in comparison with controls. The toxicity analysis in
mice showed controlled blood glucose, glycogen, and serum
levels.

Another nano-system is designed to heal diabetic wounds
efficiently and increase the availability of curcumin. Curcumin is
a polyphenolic compound that has therapeutic effects, but low
bioavailability and in-vivo stability have limited its use (Manju
and Sreenivasan, 2011). However, the delivery of curcumin
through a carrier enhanced the release and also increases its
bioavailability. A thermo-sensitive hydrogel in a structure of
gelatin microspheres loaded with curcumin was prepared. At
first, the self-assembly of curcumin nanoparticles was done
followed by its encapsulation in the gelatin macrospheres to
respond to matrix metalloproteinase (which are overexpressed
in diabetic wounds). The hydrogel containing curcumin loaded in
gelatin microspheres was delivered to wound sites to investigate
the release and healing efficiency in streptozotocin-induced
diabetic mice. The results revealed that this developed delivery
system significantly promoted the healing process in mice which
have the potential to become a skin drug delivery system (Liu Y
et al., 2018).

Obesity
Obesity is the world’s most common disease and is considered a
root for many metabolic disorders. Obesity is usually associated
with diabetes, cardiovascular diseases, and some forms of cancers.
The parameter to define obesity is body mass index. Insulin
resistance is a major consequence of obesity. There is a string
associated with elevated fat cells and diabetes that makes the
release of interleukin-6 from fat cells that triggers the pro-
inflammatory state indicating obesity (Hill et al., 2003). To
treat obesity through nano-systems, Salacia chinensis-loaded
gold nanoparticles (SC-AuNPs) were designed to evaluate the

antiobesity parameters in obese rats. After the formation of SC-
AuNPs, the nanoparticles were optimized using different
techniques, i.e., ultraviolet-visible spectroscopy, x-ray
diffraction, Fourier-transform infrared spectroscopy, scanning
electron spectroscopy, energy-dispersive x-ray analysis, and
transmission electron microscopy. The treated rats were
analyzed to check the change in body weight index,
adiponectin, lipid profile, leptin, liver marker enzymes,
resistin, inflammatory markers, AMP-activated protein kinase,
and liver histo-pathophysiology. The results revealed a spherical
morphology, various functional groups, and crystalline nature of
SC-AuNPs. The optimized nano-formulation decreased the body
weight, resistin, liver marker enzymes, leptin, adipose index, and
inflammatory markers. Additionally, the SC-AuNP treatment
increased the high-density lipoprotein, AMP-activated protein
kinase, and adiponectin. The histopathological profile showed
lower hepatocyte degradation due to the SC-AuNPs (Gao et al.,
2020). In another study, Ansari and coworkers developed Smilax
glabra rhizome-based gold nanoparticles to treat obesity in the
streptozotocin-induced rat model. The prepared nanoparticles
were characterized using different techniques: ultraviolet-visible
spectroscopy, scanning electron spectroscopy, X-ray diffraction,
Fourier-transform infrared spectroscopy, and transmission
electron microscopy. The ultraviolent-visible spectrum of gold
nanoparticles was recorded at the wavelength of 530 nm. The
shape and diameter of the gold nanoparticles were hollow and
50–90 nm, respectively. The chemical binding and crystal form of
nanoparticles were confirmed through Fourier-transform
infrared spectroscopy and X-ray diffraction. Various
biochemical parameters, i.e., blood glucose, insulin sufferance
and its release, liver markers, lipid profile, and hormones such as
adiponectin, leptin, and resistin, indicated the therapeutic effects
of nanoparticles on rats. Moreover, the histopathological analysis
showed that the distorted liver and cardiac tissues restored
membrane, cytoplasm, and nuclei upon treatment with Smilax
glabra-derived gold nanoparticles (Ansari et al., 2019).

Saratale prepared silver nanoparticles using the extract of
Argyreia nervosa to evaluate in vitro inhibitory effects on α-
amylase and α-glucosidase which are essential enzymes for
carbohydrate metabolism. The prepared silver nanoparticles
were spherical in shape, and the average diameter was about
15 nm. The IC50 values of α-glucosidase and α-amylase were 51.7
and 55.5 μg/ml, respectively, showing antidiabetic potential. The
increase in the surface area and entrapment of free radicals was
observed due to the attachment of functional groups of
phytochemicals on AgNPs. In addition, the silver
nanoparticles displayed strong antibacterial activity against
Escherichia coli and Staphylococcus aureus (Saratale et al.,
2017). In recent times, numerous nanosystems have been
designed for obesity; a few are summarized in Table 3.

The browning of white adipose tissues (WAT) via enhancing
thermogenic energy expenditure is one of the therapeutic
approaches to regulate the energy imbalance and problems
associated with excess body weight. The detrimental effects of
this method limited its use. To overcome the foremost issue,
ligand fabricated-resveratrol-loaded nanoparticles (L-Rnano)
were prepared that specifically bind to decorin receptors on
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adipose stromal cells. The transmission electron microscopic
images of L-Rnano showed a spherical shape with a size of
90–110 nm. The intravenous administration of L-Rnano to
obese C57BL/6J mice remarkably induced adipose stromal cell
differentiation into beige adipocytes which ultimately reduced the
40% fat mass, inflammation, and enhanced glucose hemostasis
(Zu et al., 2021).

In another study, a novel transdermal drug delivery carrier was
designed to reduce the volume of subcutaneous adipose tissues.
Curcumin-containing poly-vinyl alcohol gelatin nanofibers were
synthesized ranging from 200 to 250 nm in diameter. A uniform
method was used for the preparation of transdermal patches. The
efficacy of the delivery system in the transport of curcumin
through the skin is proved by adjacent arrangement
transdermal diffusion cells. The transdermal patches
demonstrated reduced the number of adipose tissues up to
4%–7% in model rats (Ariamoghaddam et al., 2018). Similarly,
a soy extract-based topical drug delivery system was designed to
determine the antiobesity action of soy topically on high-fed diet-
induced mice. Nano-sized phytosomes were formulated via the
thermogel method. The optimized formulation had
encapsulation efficiency % of 99.89, and gel transformation
temperature was recorded to be 31.5°C. Fourier-transform
infrared spectroscopy also confirmed the soy entrapment in
the nanosystem due to the formation of a hydrogen bond
between OH groups of soy extract and phosphatidylcholine
which eventually increased the permeation rate. The nano-
phytosome formulation of soybean revealed an improved
release pattern (92.50% within 2 h). Moreover, the in vivo
study on the mouse model demonstrated that soy extract had
reduced the size of adipose cells with slight lowering effects on
triglycerides and low and very-low-density lipoprotein levels (El-
Menshawe et al., 2018).

Dyslipidemia
Dyslipidemia is one of the major metabolic disorders which occur
due to the abnormalities in lipid profile such as higher levels of
Apo B, triglycerides, very-low-density lipoprotein, and low-
density lipoprotein with a decreased level of high-density

lipoprotein (Sun et al., 2018). The anomalies in the structure,
function, and metabolism of atherogenic and anti-atherogenic
lipoproteins result in unhealthy lipid levels (Halpern et al., 2010).
Malnutrition and a sedentary lifestyle are the other reasons for
dyslipidemia, but a prolonged increase in insulin levels ultimately
leads to atherogenic dyslipidemia in different ways. Firstly, the
disruption in insulin signaling increases lipolysis which causes the
production of free fatty acids and very low-density lipoproteins in
hepatocytes. Secondly, the insulin involves in Apo B degradation
and lipoprotein lipase activity which causes the
hypertriglyceridemia to elevate very-low-density-lipoprotein
formation and its storage. Triglycerides are collected from
very-low-density lipoprotein/low-density lipoprotein and get
exchanged for cholesteryl esters which result in triglyceride-
rich high-density lipoproteins. These high-density lipoproteins
are immediately cleared by hepatic lipases and removed from
circulation (Srikanth and Deedwania, 2016).

Dyslipidemia is one of the risks for the progression of
cardiovascular diseases such as atherosclerosis, ischemic heart
disease, stroke, and coronary heart disease because it leads to the
synthesis of free radicals and oxidative stress (Georges et al., 2019;
Singh et al., 2016). Conventional medications for dyslipidemia
include lovastatin, atorvastatin, simvastatin, and pravastatin
which have adverse effects, i.e., myopathy, rhabdomyolysis,
and myalgia (Shin et al., 2014; Chu et al., 2015; Wat et al.,
2016). To overcome these challenges, natural products such as
garlic oil and kenaf oilseed are encapsulated in nanosystems to
give antioxidant and anti-hyperlipidemic effects. Few other
medicinal plant-extracted nanosystems are explained in
Table 4. Garlic (Allium sativum L.) oil consists of sulfur-
containing compounds that have anti-hyperlipidemic (Keshetty
et al., 2009), antimicrobial (Zheng et al., 2013), antioxidant,
(Ebrahimzadeh-Bideskan et al., 2016), and antidiabetic (Sambu
et al., 2015) properties. Ragavan formulated garlic oil nano-
emulsion through ultrasonic emulsification, and the optimized
nano-emulsion showed spherical morphology with a droplet size
of 24.9 ± 1.11 nm. The zeta potential of formulated nano-
emulsion was -42.63 ± 1.58 mV, and the PDI value was low.
Small size, negative zeta potential, and low PDI values collectively

TABLE 3 | Plant extract-derived nanosystems for obesity.

Medicinal plants Nano-systems Experimental models Explanation References

Oleoresin capsicum Single-layer and alginate double-layer
nano-emulsion

HFD-induced obesity in rat and 3T3-
L1 cell lines

Lipid level; TGs; mRNA level of
PPAR- γ; fatty

Lee et al. (2017)

Acid-binding protein
Adipocyte

Citrus sinensis Nano-vesicles HFHSD mice Chylomicron synthesis Berger et al.
(2020)TGs; plasma lipids

Villi size

Dendropanax
morbifera

Gold nanoparticles 3T3-L1 &amp; HepG2 cell lines TGs; PPAR- γ; Jak2 Yi et al. (2020)

STAT3; CEBPα; ap2 expression

HFD, high-feed diet; TGs, triglycerides; PPAR-γ, peroxisome proliferator-activator receptor-gamma; HFHSD, high-fat, high-sucrose diet; Jak-2, Janus kinase 2 (non-receptor tyrosine
kinase); STAT3, signal transducer and activation of transcription 3; CEBPα, transcription regulator and enhancer; ap2, a transcription factor expressed in adipose tissues.
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gave stability to the nano-system. The acute toxicity study
revealed that nano-emulsion of garlic oil with Tween as a
surfactant did not exhibit any toxicity. Garlic oil nano-
emulsion when administered to dyslipidemic Wistar rats
demonstrated a significant effect in lowering the lipid profile
in comparison with pure drug (atorvastatin) and garlic oil. In
addition, the lipid deposits in hepatic tissues were also reduced
when analyzed under Oil Red O staining which suggested that the
developed nano-emulsion is a promising candidate for treating
dyslipidemia (Ragavan et al., 2017). Ziziphus jujube (jujube) is a
medicinal fruit that has antioxidant, anti-inflammatory,
hepatoprotective, antibacterial, and anti-inflammation
properties. The green synthesis of gold nanoparticles using
jujube was done followed by its characterization based on
transmission electron microscopy and X-ray diffraction. The
smooth spherical morphology and 7–27-nm-sized gold
nanoparticles were obtained. For in vivo studies, different
doses of gold nanoparticles were administered to
streptozotocin-induced diabetic rats, and lipid profile, body
weight, insulin, and liver oxidative markers were evaluated.
The results showed a significant decrease in the levels of liver,
insulin, triglycerides, cholesterol, and total antioxidant capacity
(Javanshir et al., 2020).

Kenaf (Hibiscus cannabinus L.) seed oil has phytosterol and
saponin (Shi et al., 2004) which reduce the cholesterol level, but
the hydrophobic nature and poor bioavailability have limited its

applications. Nano-emulsion and macro-emulsion of kenaf seed
oil were prepared to investigate liver oxidative status, lipid serum
profile, and histopathological changes in high cholesterol diet-
induced rats. The kenaf seed oil in water nanoemulsion displayed
narrow particle size distribution and higher zeta potential
indicating the high electrostatic interaction between the
particles. The stability and encapsulation and bioavailability of
kenaf seed oil in water nano-emulsion were higher than
macroemulsion. In vivo studies revealed that the nano-
emulsion declined the accumulation of fat droplets in the liver,
lowered cholesterol, decreased the number of endogenous
antioxidants in the liver, and controlled the weight in high
cholesterol diet-induced rats. Furthermore, the
histopathological analysis on rats suggested an accelerated
renewal of liver cells after injury was observed due to nano-
emulsion (Cheong et al., 2018).

Hypertension
Hypertension is becoming a serious threat worldwide, which
refers to the rise in arterial blood pressure. An adequate
amount of blood is required throughout the circulation;
otherwise, it damages the eyes, kidneys, and brains and also
leads to heart-related problems, i.e., cardiac failure, myocardial
infarction, stroke, and peripheral vascular disease (Alam et al.,
2017; Kikuchi et al., 2018). Amodified approach is needed to limit
cardiovascular diseases. In a study, curcumin-loaded poly (lactic-

TABLE 4 | Nanosystems for dyslipidemia.

Medicinal
plants

Nano-systems Model animals Explanation References

Black currant Selenium
nanoparticles

Galactose-treated
rats Hypolipidemia Antioxidation activity

Al-Kurdy and Khadim Khudair
(2020)

Nigella sativa Silver nanoparticles Male adult rats

TGS; cholestrol absorption; LDL-c; oxidative stress

HLD-c

Ali et al. (2019)

TG, triglycerides; LDL, low-density lipoprotein; HDL, high-density lipoprotein.

TABLE 5 | Plant extract-based nanosystems for treatment of hypertension.

Medicinal plants Nano-systems Model animals Explanation References

Curcumin PLGA nanoparticles HFD-induced mice Systolic blood pressure
Ventricular stiffness;
Fat deposition

du Preez et al. (2019)

Curcumin Nanoparticles Male Sprague Dawley rats Right ventricular wall thickness;
right Ventricle weight/body
ratio; oxidative stress

Rice et al. (2015)

Copaifera sp. Nano-capsules Wistar rats Right ventricle hypertrophy;
oxidative Stress;
pulmonary
Vascular resistance

Campos et al. (2017)

PLGA, poly (lactic-co-glycolic acid); HFD, high-feed diet.
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co-glycolic acid) nanoparticles were prepared by a single
emulsion method to evaluate the cardiovascular parameters in
high-fed diet Wistar rats. The hydrodynamic diameter and zeta
potential of nanoparticles were obtained to be 315–320 nm and
−29 mV, respectively. The greater size marked due to the higher
molecular weight of poly (lactic-co-glycolic acid) and negative
zeta potential confirmed the stability of the nano-system in
circulation. The results revealed that a 20-fold lower dosage of
curcumin in poly (lactic-co-glycolic acid) nanoparticles
normalized the blood pressure, reduced liver fat deposition,
and improved ventricular inflammation and fibrosis (du Preez
et al., 2019).

High blood pressure in the arteries of the lung causes a
progressive disorder known as pulmonary arterial
hypertension. Inflammation, oxidative stress, and nitric oxide
are involved in the development of pulmonary arterial
hypertension (Xu et al., 2017). It disturbs the vascular function
by increasing the vascular resistance and obstructing the
pulmonary artery, which eventually leads to right ventricular
hypertrophy and right-sided heart failure. The medicinal plants
which have antioxidant and anti-inflammatory activities can treat
pulmonary arterial hypertension (Xiang et al., 2018; Meghwani
et al., 2018; Xu D et al., 2016). Copaiba oil is an oil-resin that
comes from an Amazonian tree and is used as an herbal treatment
in Brazil. The major composition of copaiba oil is β-
caryophyllene which is a calcium channel blocker. The blocker
has an antioxidant and anti-inflammatory action and also has
inhibitory effects on cell growth (Rasheed et al., 2015; Ames-Sibin

et al., 2018). Copaiba oil-loaded nanocapsules were prepared to
investigate the monocrotaline-induced pulmonary arterial
hypertension. The free copaiba oil and nanocapsules enhanced
the sulfhydryl groups, superoxide dismutase, and Nrf2
(antioxidant transcription factor) and removed the oxidized
glutathione concentration, but the nano encapsulated oil was
more effective than free copaiba oil. Both the oil and nano-
formulation significantly reduced the right ventricular
hypertrophy index. However, the nanosystem did not show
any effect on pulmonary vascular resistance. Furthermore, the
nano-capsules composed of pectin and copaiba oil have enhanced
the pharmacological effect (Campos et al., 2017). In short, the
nano-encapsulation of copaiba oil provides the favorable delivery
and also increased its efficiency. Some nano-formulated
medicinal plants that have given different therapeutic effects
are listed in Table 5.

CONCLUSION

Metabolic syndrome is a complex disorder comprising insulin
resistance, hyperinsulinemia, and impaired glucose tolerance.
There is a need for an effective strategy to treat the
complications in the pathophysiology of metabolic syndrome.
Despite extensive research on the therapeutic effects of plant-
derived bioactive compounds, their delivery and bioavailability
are always troublesome. Over the past few years, the
nanoencapsulation of bioactive compounds has revolutionized

FIGURE 3 | Importance of plant-extract-encapsulated nanosystems for metabolic disorders.
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the pharmaceutical and clinical industries. These nanosystems
have improved not only the bioavailability but also the efficacy,
stability, and solubility of plant extracts. When these plant
extract-encapsulated nanoformulations are administered to the
body, some metabolic changes are expected to occur which are
summarized in Figure 3.

Diabetes mellitus is a challenging and problematic disease;
however, nano-formulations of plant extracts have shown
remarkable antidiabetic effects in comparison with
conventional treatments. Thymoquinone incorporated in
nanocapsules, betalain within selenium nanoparticles,
naringenin-encapsulated core–shell nanoparticles, and various
nanosystems exhibited hypoglycemia and low lipids levels, hence
providing effective alternative therapeutics for diabetes. Similarly,
the anti-inflammatory and antibacterial properties of plant
extract-based nanosystems have provided tremendous
advantages in rapid wound healing. Among all the studies in
this review, thermosensitive hydrogel loaded with curcumin
nanoparticles showed a fast recovery in streptozotocin-induced
mice. The delivery of plant extract via chitosan/alginate
core–shell nanoparticles induced a significant hypoglycemic
effect and decreased oxidative stress in antiobesity therapy.
The nanoemulsions of sulfur-containing medicinal plants such

as Allium sativum L. and kenaf seed oil showed the highest anti-
hyperlipidemic effect. Furthermore, the nanoparticles,
nanoemulsions, and nanocapsules displayed a curative effect
on hypertension and pulmonary arterial hypertension.

The delivery of phytochemicals by utilizing nanotechnology
facilitated conventional medicines to link with modern
techniques and improve their therapeutic efficacy. This
review aims to gather all the in vitro and in vivo researches
regarding plant-based nano-formulations on metabolic
disorders.
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