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The ocular tissue microenvironment is immune privileged and uses several mechanisms
of immunosuppression to prevent the induction of inflammation. Besides being a blood-
barrier and source of photoreceptor nutrients, the retinal pigment epithelial cells (RPE)
regulate the activity of immune cells within the retina. These mechanisms involve the
expression of immunomodulating molecules that make macrophages and microglial cells
suppress inflammation and promote immune tolerance. The RPE have an important role in
ocular immune privilege to regulate the behavior of immune cells within the retina.
Reviewed is the current understanding of how RPE mediate this regulation and the
changes seen under pathological conditions.
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INTRODUCTION

Ocular Immune Privilege
The eye is called immune privileged from the original observations of prolonged allograft survival
within the anterior chamber even following immunization to alloantigens (1). This now includes
immune regulation and immune tolerance to antigens and pathogens within the eye (2–4). The
ocular microenvironment is delineated by blood barriers and the lack of direct lymphatic drainage.
Within this microenvironment immune cells differentiate into cells that suppress inflammation and
promote immune tolerance (5). The mediators of ocular immune regulation and tolerance are
soluble, and membrane bound molecules. An important membrane bound molecule is membrane
FasL (6, 7). Its expression by cells of the ocular blood-barriers, including the retinal pigment
epithelial cells (RPE), mediates a contact dependent induction of apoptosis in monocytes and
lymphocytes preventing their accumulation and infiltration. Also, the RPE release extracellular
membranes expressing membrane-FasL that also induce apoptosis in macrophages potentially away
from the RPE monolayer (8). Many of the soluble mediators of ocular immunosuppression can be
found in aqueous humor and in the supernatant of cultured RPE. These mediators include a wide
range immunoregulating cytokines, neuropeptides, and soluble ligands. These include
Transforming Growth Factor-beta2 (TGF-b2) and alpha-Melanocyte Stimulating Hormone
(a-MSH), which are highly conserved and potent regulators of immune cell activity and
suppressors of inflammation (9–12). The current picture of ocular immune privilege is a tissue
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microenvironment that actively manipulates immune cells to
promote the health of the visual axis, and to prevent the
activation of inflammation. These mechanisms of ocular
immune privilege are for most of us highly effective in
preventing inflammation, and the mediators of immune
privilege have potential to be therapeutically adapted to
suppress inflammation within the eye and in other tissues.

One of the experimental examples of ocular immune privilege
is the phenomena of anterior chamber associated immune
deviation (ACAID) (13, 14). ACAID is induced by placing
foreign antigen within the anterior chamber of the eye. The
antigen is picked up and processed for presentation by F4/80
positive macrophages that migrate to the spleen (15, 16). In the
spleen with the help of recruited B-cells and NK T cells, there is
an antigen-specific activation and expansion of both CD8 and
CD4 regulatory T cells (17–20). This brings about systemic
tolerance to the foreign antigen. Placing foreign antigen in the
subretinal space (the temporary pocket that forms when the
photoreceptors are detached from the RPE) also induces an
ACAID-like response (21). This has defined immune privilege to
include the retina.

RPE Regulation of Immune Activity
The placement of neonatal-retinal allografts into the retina are
not immunologically rejected and moreover they differentiate
(22). Also, there is induced tolerance to the alloantigen through
an ACAID-like response. The induction of the ACAID-like
response is mediated by TGF-b2 like in ACAID; however, it
requires the expression of Thrombospondin-1 (TSP-1) (23). The
TSP-1 is a known activator of latent TGF-b2 (24). In mice with
TSP-1 knocked out the ACAID-like response cannot be induced;
moreover, TSP-1 knock-out mice with experimental
autoimmune disease (EAU) cannot self-resolve EAU like wild-
type mice. The ACAID-like response cannot be induced when
the integrity of the RPE monolayer is compromised through
chemical or laser wounding (21, 25, 26). In addition, laser
wounding not only causes the loss of immune privilege in the
affected eye but also causes a loss of immune privilege in the
untouched contralateral eye. This may be mediated by the release
of Substance P by the retina (26). Together the results
demonstrate the need for an intact RPE monolayer to maintain
ocular immune privilege.

The ACAID-like response shows that the RPE directly affect
the functionality of immune cells by maintaining the anti-
inflammatory retinal microenvironment. One of the interesting
findings is that the RPE soluble molecules induce and enhance
regulatory activity in Treg cells (27–29). Also, the RPE release
soluble factors that suppress the activation of effector T cells (23,
30). Of interest in this review is the ability of the RPE to regulate
potential antigen presenting cells, the immune cells that sit at the
interface of innate and adaptive immune response. The RPE have
been found to suppress the activation of dendritic cells (31, 32),
which would prevent naive T cell activation to antigen carried
from the retina to a regional lymph node. In addition, the RPE
promote the development and activation of myeloid suppressor
cells from bone-marrow progenitor cells (33). These suppressor
cells are highly capable of preventing and inhibiting adaptive
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immune responses. Interestingly, the RPE induction of these
suppressor cells is mediated by IL-6, which is usually considered
a proinflammatory cytokine and an anti-ACAID cytokine (34).

Using a technique of in situ RPE eyecup cultures, treating
endotoxin-stimulated macrophages with the RPE eyecup
conditioned culture-media suppresses proinflammatory
cytokine production, while promoting anti-inflammatory
activity (35–37). Moreover, the treatment of macrophages with
the RPE soluble factors induces anti-inflammatory cytokine
production and characteristics of myeloid suppressor cells (37).
The mediators of this activity are the neuropeptides a-MSH, and
Neuropeptide Y (NPY) produced by the RPE. The collective
action of the soluble factors, constitutively produced by the RPE,
induce macrophages, and resident microglial cells to be themselves
mediators of anti-inflammatory activity and activators of Treg cells.
These findings demonstrate the importance of the RPE monolayer
in maintaining immune privilege.
RPE PHYSIOLOGY

RPE Function
The health and integrity of the RPE monolayer may very well be
required for maintaining immune regulation along with
maintaining a functional retina. The RPE is a cuboidal
monolayer of hexagonal cells that lies between the
photoreceptors and Bruch’s membrane (38). On the apical
side, the RPE has microvilli that envelop the distal-ends of the
photoreceptors with each RPE cell projecting towards 20-55
photoreceptors (39–41). On the basal side lies Bruch’s
membrane a pentalaminar structure, which separates the RPE
from the eye’s fenestrated choroidal capillaries (42). The RPE
maintains this polarity through a complex network of tight
junctions near the apical side that create a barrier to paracellular
diffusion (43). The tight junctions include occludins and claudins
both of which play essential regulatory roles in maintenance of the
function of the tight junctions. The composition of claudins
expressed in the RPE varies by species (44). In the human RPE,
claudin19 is themostpredominantandmutationsofCLDN10gene
that encodes it can lead to dysfunction of the tight junctions along
with severe ocular abnormalities (43, 45).

The RPE plays a variety of critical roles in maintaining the
function of the retina including acting as the outer blood-retina
barrier and regulating the transport of waste and nutrients (46,
47). In order to accomplish these functions, the RPE exhibits
polarity with an asymmetric distribution of organelles, proteins,
and functionality allowing it to create a unique microenvironment
for the retina (48). For example, melanosomes are preferentially
located near the apical cell membrane with Golgi and
mitochondria preferentially localize to basal cytoplasm (38). The
visual cycle is dependent on the conversion of 11-cis-retinol to 11-
trans-retinol and the RPE plays a key role in re-isomerizing 11-cis-
retinol from 11-trans-retinol (39, 49, 50). Many of the key
metabolic enzymes involved in this re-isomerization process are
expressed in the RPE (39). The photoreceptors have a delicate
equilibrium between nutrient renewal and damaged component
disposal which sheds up to 10% of their volume. The RPE
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phagocytizes the end-processes allowing new end-processes to
take their place (39).

RPE and the Retinal Blood Barrier
In the healthy retina, the RPE separates the choroidal blood
supply from photoreceptors and manages the microenvironment
of the retina by regulating the flow of water and ions between the
two spaces (51). The RPE contains tight junctions that play a role
in its ability to act as the outer part of the blood-retina barrier
(47). In studies on chicken RPE, it was shown that the tight
junctions of the RPE have increased complexities with P-face-
associated tight junctions vs the tight junctions in choroid vessels
(52). This increased complexity may be necessary for the
formation of an effective blood-retina barrier. However, in
vitro studies have indicated that the functional barrier for
macromolecules, specifically serum albumin, is similar between
the RPE and the iris pigment epithelium (53). This suggests that
at the very least the general barrier function of the RPE is like
other tight-junction epithelial layers. The regulation of what can
enter the retina is apparent as the outer blood-retinal barrier
formed by the RPE sometimes poses a problem in the use of
some systemic drugs for the treatment of retinal diseases (54).
However, even with the blood-retina barrier of the RPE and its
tight junctions, the retina is still susceptible to damage, as in the
case of some systemic medications lead to retinal dysfunction
and degeneration (21, 55).

In disease states like AMD and Alzheimer’s, the accumulation
of Ab in the RPE via RAGE/p38 MAPK-mediated endocytosis
can lead to attenuation and disorganization of the tight
junctions, and in some cases breakdown of the tight junctions
(56, 57). In AMD the leading cause of visual impairment in
western countries of people over 50 (58), damage to the RPE and
RPE dysfunction are thought to be the initial insult in the
atrophic variant which accounts for 85-90% of cases (40, 59).
In the wet variant, while the choriocapillaris complex is thought
to be the initial site of dysfunction, damage to the RPE soon
follows and plays a key role in visual loss (59).

The breakdown of the blood-retina barrier created by the RPE
has been shown to be one of the earliest pathologic changes that
can be detected in some diseases like diabetes (60). In diabetic
retinopathy, previous work has noted that the involvement of the
inner blood-retina barrier due to endothelial cell dysfunction can
lead to diabetic macular oedema and retinopathy (47). The
dysfunction of the outer blood-retina barrier at the RPE may
play a role in diabetic retinopathy in that the presence of
cytokines, such as IL-6, have been shown to disrupt the outer
blood-retina barrier through amplified recruitment of microglial
cells and increased production of TNF- a (61). Additionally,
high glucose states have been shown to lead to RPE cells
downregulating GLUT-1 and a reduction in the levels of
antioxidants potentially leading to retinal tissue damage (62).
In some rodent studies the breakdown of the tight junctions in
the RPE results in vascular leakage as visualized in diabetic and
ischemic rodents (63). When the blood-retina barrier is
compromised, it can lead to additional disease processes such
as uveitic macular edema (64). Abnormal regulation of the RPE
in mice lacking ATP-binding cassette transporters (ABCA1 and
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ABCG1) leads to discontinuities of the RPE and degeneration of
the overlying photoreceptors (65). In some disease states like
AMD and diabetic retinopathy the transplantation of RPE has
even been explored as treatment options with some trials
showing preliminary signs of success (66, 67). Interestingly in
mice with degenerating photoreceptors, retinal microglia cells
migrate from the inner retina to the subretinal space and
undergo a transcriptional change to express homeostatic
checkpoint and wound-responsive genes that protect the RPE
(68). While it is not clear as to the signals that induced the
migration, this does suggest that there is an initial attempt by the
ocular microenvironment to preserve the functionality of
the RPE and its blood-barrier under disease conditions.
Therapeutic interventions that can maintain or restore RPE
health could also maintain and restore immune privilege that
would reduce the potential contribution of inflammation to
many retinal degenerative diseases.
CHANGES IN THE RPE EXPERIMENTALLY
INDUCED DISEASE

Laser Injury
The growing use of lasers in the military, healthcare, laboratories,
and academia causes an increased in ocular injury by misdirected
lasers (69). In general, lasers are classified as I, II, IIIa, IIIb and
IV. The first two Classes of Class II and Class IIIa are relatively
safe while the last two are hazardous. Laser light is visible
between 400 and 700 nm, and other sources are infrared and
ultraviolet lasers. Usually, transient exposure to Class II or Class
IIIa laser may not result in eye injury. Handheld laser pointers
are usually Class IIIa and have comparatively low energy that is
insufficient to cause injury at the ocular surface, but the focusing
power of the eye causes a powerful amplification of irradiance
that makes the retina susceptible to laser injury. The prolonged
exposure to this laser may cause severe, permanent, and
irreversible damage accompanied with vision loss (70, 71).

The coagulative irradiation of laser causes an initial
destruction and secondary tissue responses (Figure 1). The
initial destruction occurs from the thermal degradation of the
incident energy absorbed by RPE pigment and changes are seen
almost immediately (72–75). Coagulation necrosis of the RPE
and the photoreceptor cells happens at this acute stage. The
inner-nuclear-layer (INL) is usually unharmed. The RPE barrier
breaks down and cell debris is found within and between
disrupted RPE and in the outer retina. Three days after laser
burn, Bruch membrane is disrupted and the subretinal space and
the inner retina are infiltrated with macrophages. The RPE and
photoreceptors become necrotic (Figure 1B). Five days after
laser burn, all photoreceptor cells around the burn area are gone,
but most of the INL cells are still intact (Figure 1C). There is
vacuoling of cells in the IP and the retinal ganglion cell (RGC)
layers are seen. By day 14, the RPE show placoid and are found to
cover the laser injury site partially. There were many clusters of
pigment-filled macrophages around the injury site including in
the INL (Figure 1D). By day 120, the RPE covers the injury
site (75).
August 2021 | Volume 12 | Article 724601
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The RPE is not only a physical barrier but is also an important
source of immune-suppressive molecules that contribute to the
immune privileged status of the eye. In naive retinas, microglia
are in the inner and outer plexiform layer and after laser injury
they accumulate with macrophages and granulocytes at the site
of the laser burn in the retina and choroid (76). Changes in
retinal microglial cells can be seen 1 day after the laser injury
with expression of MHC class II (75). In addition, co-stimulatory
factors of CD40 and CD86 are found on these activated
microglia. The condition media of cultured RPE eyecups from
laser-wounded eyes contain significantly lower amounts of
a-MSH (37). In the normal retina the microglia co-express
NOS2 and Arginase1, but in laser wounded retinas co-
expression of the two enzymes is not seen (37). Moreover,
infiltrating the laser wound site are Arginase1-positive
macrophages that are a source of VEGF to initiate choroidal
neovascularization (37, 77). This corresponds with the loss of
ACAID in both the eye with the laser injury and the unwounded
counter-lateral eye (25, 26). This appears be mediated by the
release of another neuropeptide Substance P. How this affects
RPE regulation of immunity in the non-lasered eye is not
understood; however, the laser wounded RPE monolayer does
not induce the co-expression of NOS2 and Arginase 1 in
Frontiers in Immunology | www.frontiersin.org 4
macrophages (37). This further indicates the importance of an
intact RPE monolayer for the RPE to regulate immune cells.

After the laser injury, the damage of the RPE and the
surrounding neural retina and the underlying choroid, the
retinal microglia and the choroidal inflammatory cells may
mediate release of proinflammatory cytokines (78–80). These
cytokines may exacerbate neuronal damage. Pro-angiogenic
VEGF is the primary factor made and pro-inflammatory
cytokines including IL-1b, IL-3, IL-6 and TNF-a would be
necessary as a wound repair process following laser
photocoagulation. In addition, production of chemokines
including MCP-1 and MIP-2 are increased (75, 81). These
show that physical damage of the RPE monolayer promotes
the infiltration of immune cells and the induction of an
inflammatory response. This has implications not only on laser
wounding, but also on retinal degenerative diseases like age
related macular degeneration as RPE cells die.

Experimental Autoimmune Uveitis
Autoimmune uveitis is one of the leading causes of blindness in
developed countries. The retina is usually the target, but the RPE
cells may also be killed as collateral damage due to inflammation
(82, 83). The common rodent models of experimental
FIGURE 1 | Micrographs show the pathological changes of retina and choroid from day 0 to day 14 after laser injury. (A) shows a healthy naive retina. The RPE is a single
cell layer. (B) shows the retina on day 3 after laser injury. Bruch’s membrane is disrupted and RPE cells and most ONL cells are lost at the laser injury site. Also, arrangement
of pigmented cells in the choroid is disrupted. (C) Similar histological structures are seen on day 5 after retinal laser-injury. Solid arrow points to the discontinued RPE cells.
(D) shows the retina 14 days after laser injury. A large capillary (broken arrows) forms in the choroid adjacent to the laser injury site. Macrophages filled with pigment are found
in the ONL and some RPE (solid arrow) are found covering the injured site with a disrupted Bruch’s membrane. The size bar is 50 microns in length.
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autoimmune uveitis (EAU) are induced with inter-photoreceptor
retinoid-binding protein (IRBP) emulsified in adjuvant, and other
models use retinal arrestin, rhodopsin and RPE-65 (84–86). The
IRBP-model has a prodromal phase till day 14 and usually reaches
a score of 1 on the clinical grading system and peaks on day 21
with a clinical score of 3. Then the disease progresses into a chronic
phase of sustained clinical scores of 3 until day 70 where the
disease begins to self-resolve (87, 88).

Histological evaluation of the eyes from rodents immunized to
induce EAU show that the loss of the RPE monolayer is
progressive along with the chronic nature of EAU (Figure 2)
(89–91). Very little damage to the RPE is seen in the early stages of
EAU (Figures 2A–C); however, As the disease progresses through
the chronic phase, there is severe damage of both INL cells and
photoreceptor cells, with the RPE shows damage with pigment-
laden macrophages near the damaged RPE (Figure 2D).

The pathogenesis of inflammatory disorders of EAU is
associated with autoreactive effector CD4+ T cells. In the early
stages of IRBP-induced EAU the effector T cells are polarized to
the Th1 phenotype and produce IFNg (92, 93). These effector
Th1 cells are highly active and mediate EAU in naive recipient
animals. However, neutralizing IFNg does not suppress EAU but
worsen the disease because of the activation of Th17 cells (94–
97). The Th17 cells target the RPE, and the disruption of the
Frontiers in Immunology | www.frontiersin.org 5
blood-retinal barrier causes the influx of serum antibodies, which
exacerbate EAU (98). Mice with TSP-1 knocked-out also suffer
with severe and prolonged EAU. To initiate a T cell response
there needs to be present an APC expressing MHC class II.
Normally the expression of MHC along with co-stimulatory
molecules within the eye is low to undetectable, and while initially
the microglia do not express MHC, they increase in MHC
expression as EAU progresses (93, 99). In addition, there is need
for the microglia in a non-MHC dependent manner to recruit
effectorTcells andMHC-expressingmonocytes into the retina (99).

Since the course of EAU is self-limiting, it has suggested that
while the RPE may be targeted and affected by the retinal
inflammation there is still some immunosuppressive activity. It
was found that EAU resolution is associated with the emergence
of a specific type of APC within the spleen that in an antigen-
specific manner counter-converts effector T cells into inducible
Treg cells (88, 100). This process is dependent on the expression
of the melanocortin 5-receptor (MC5r), one of the receptors of
a-MSH. Moreover, expression of MC5r is necessary to modulate
the severity of EAU and the functions of APC (91). The RPE is
important to maintain the health of the retina not only by
phagocytosis of photoreceptor outer segments, recycling retinol
and maintaining the blood-retinal barrier, it also provides
support to maintain immune privilege within the eye.
FIGURE 2 | Micrographs show the pathological changes of retina from mice with EAU clinical score ranging from 1 to 3. (A) shows a retina with EAU clinical score 1.
The RPE is intact and there are no noted changes in the retina except for some inflammatory cells in the vitreous. (B) shows the retina with EAU clinical score 2. There
are more infiltrating cells in the vitreous and the subretinal space. Both the retina and RPE are intact, with minor lesions found in the INL. (C) is the retina at early stage
of chronic EAU, clinical score 3. The RPE is intact, and infiltration of inflammatory cells are found in the vitreous and in the retina with disruption of the INL and IPL with
loss of the ONL cells. (D) shows the retina at a late stage of chronic EAU, sustained clinical score of 3. The RPE monolayer is disrupted and fused with the ONL and
adjacent outer/inner segments of the photoreceptors gone. There are pigment-filled macrophages around sites of RPE cell loss. The size bar is 50 microns in length.
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RPE AND REGULATION OF IMMUNITY

RPE Influenced Activity of Macrophages
ACAID demonstrates that macrophages with the potential of
becoming antigen presenting cells (APC) are influenced by the
ocular microenvironment to promote Treg cell activation. This
has suggested that within the retina a similar influence should be
seen with resident microglial cells. When assayed it is found that
microglial cells are very much suppressed in immune activity;
moreover, they co-express Nitric Oxide Synthase 2 (NOS2) with
Arginase 1 (37). This co-expression of a M1 marker of
inflammation-mediating cells and a M2 tissue repair/
suppressor-mediating cells is characteristic of tumor associated
myeloid cells that suppress immune attack of tumors (101, 102).
Co-expression of NOS2 and Arginase 1 is induced by treating
macrophages with the soluble factors of RPE. Specifically, it was
found that the neuropeptides a-MSH and NPY produced by the
RPE mediate this unique characterization of macrophages, which
can enhance apoptosis in activated effector T cells (37). The
soluble RPE factors also induce macrophages to produce anti-
inflammatory cytokines even when the macrophages are treated
with a pro-inflammatory signal such as endotoxin (35, 36, 103).
This alternative activation of macrophages is mediated by a-MSH
and provides for an anti-inflammatory response when there is an
immune challenge within the ocular microenvironment (35). This
potential for the retina to be a site of generating alternatively
activated macrophages and myeloid-like suppressor cells makes
the environment nor only anti-inflammatory but a site where
immune cells are made to regulate other immune cells.

Phagocytizing materials is central for an APC to process
antigen for presentation on MHC class II molecules (104).
Recently we have found that the process of phagocytosis is also
altered by the RPE through its release of a-MSH and NPY (105,
106). The neuropeptides mediate a differential regulation of
phagocytic uptake of gram-negative and gram-positive bacteria
(107). There is suppression in the number of gram-negative
bacteria taken up and a suppression of the number of
macrophages taking-up gram-positive bacteria. There is no
change in the expression of scavenger receptors on the
macrophages suggesting that this may be a change in how
Toll-like receptor stimulation in the macrophages is suppressed
(108, 109). If the bacteria are opsonized, there is no effect of the
neuropeptide treatment on the up-take of opsonized-gram-
negative and positive bacteria (107). However, activation of the
phagolysosome is suppressed. The suppression is in part due to
both downregulation of LAMP1, which is needed for
phagolysosome acidification, and a blockade of the phagosome
maturation pathway preventing the transition of phagosomes
from early to intermediate (110). The suppression of
phagocytosis and phagosome maturation by the RPE through
the neuropeptides a-MSH and NPY would either prevent the
processing of antigen within the retina or at least alter the
processing of the antigen to unrecognizable amino-acid
sequences that could be presented by APC in the retina (110).
The RPE from eyes with autoimmune uveitis do not suppress the
phagocytic pathway, and this may be associated with high levels
Frontiers in Immunology | www.frontiersin.org 6
of IL-6 expression (105). The regulation of phagolysosome
activation is dependent also on the RPE maintaining an intact
monolayer (106). Therefore, one potential contribution of the
RPE to immune privilege is its suppression of the processing and
presentation of self-antigens by retinal APC that would prevent
the activation of autoimmune disease-mediating effector T cells.
This importance of the RPE to mediate immune regulation and
prevent induction of autoimmune disease indicates that changes
to the RPE will have a corresponding change in the regulation of
immune cells within the retina.

Recovery of RPE Mediated
Immune Regulation
A key reason for understanding the molecular mechanisms of
ocular immune privilege is to see whether these molecules that
are normally regulating immune cell activity can be used to
suppress uveitis and restore immune privilege. Since the
neuropeptide a-MSH has its own immune regulating/anti-
inflammatory properties as well as contributing to the
mechanism of ocular immune privilege there is a strong
potential of using a-MSH as a therapeutic approach to uveitis
(111, 112). The neuropeptide is 13 amino acids long and is easily
injected. When mice with EAU are treated with a-MSH at the
beginning of the chronic phase the retinal inflammation begins
to resolve within a week of the treatment (84, 91, 100). After 2 to
3 weeks EAU is fully resolved in comparison to another 8 weeks
in the untreated EAU mice. In the spleen of the a-MSH-treated
EAU mice are Treg cells specific for retinal autoantigen. These
Treg cells provide the mice with protection from a memory
immune response to the autoantigen. The same induction of
Treg cell is found in the spleen of mice that have resolved EAU
on their own (88, 113, 114). These Treg cells are derived from the
population of effector T cells that are converted by APC into
antigen-specific inducible Treg cells (88, 100). Under conditions
of uveitis the RPE cannot suppress phagosome maturation and
phagolysosome activation, and after a-MSH therapy the RPE
recover their ability to suppress phagosome maturation and
phagolysosome activation (91, 105). Therapeutic use of a-MSH
in EAU suppresses uveitis, induces Treg cells to retinal
autoantigen, and may very well reestablish RPE regulation of
immune cell activity within the retina.

There is a dependency on MC5r for some of the EAU
recovery. While MC5r-knockout mice recover on their own
from EAU, like wild type mice, they lack the presence of the
suppressor APC and the antigen-specific Treg cells within their
spleens (100, 114, 115). While a-MSH treatment suppressed
EAU in the knockout mice it does not protect the retina from the
damage of inflammation, not did it promote recovery of RPE
mediated suppression of phagolysosome activation (91). These
results suggest that while the use of a-MSH in therapy to
suppress inflammation is possible through its other receptors,
it appears that the recovery of immune privilege is dependent on
a-MSH working through MC5r. Also, by tailoring the therapy to
specific melanocortin receptors different aspects of an immune
response can be targeted for regulation (116). The experimental
therapeutic use of a-MSH in EAU demonstrates that it is
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possible to use the mechanisms of ocular immune privilege, and
potentially other RPE generated molecules, to suppress
inflammation and reestablish ocular immune privilege and
tolerance (117, 118).
CONCLUSION

The RPE holds an important role in the maintenance of ocular
immune privilege in being a blood-barrier and a producer of
immune regulatory molecules. These molecules are not just anti-
inflammatory, they promote immune regulatory and suppressive
behaviors within immune cells they target. It makes these
different for other forms of therapy that either suppress all
immune activity or block specific key cytokines. The change in
immune cells behavior by the RPE allows for immune cell activity
to be supportive of the retina while immune cells regulate
themselves and other immune cells that may migrate into the
Frontiers in Immunology | www.frontiersin.org 7
retina. While it is not fully understood as to whether in retinal
diseases the change is first in the retina or in the RPE, but once the
RPE layer is injured it is difficult for the retina to function and to
prevent the activation of damaging immune activity.
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