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Although the term virtual screening as the in silico

analog of high throughput screening has been coined

only a decade ago, virtual screening is now a wide-

spread lead identification method in the pharmaceu-

tical industry. A myriad of different methods have been

developed exploiting the growing library of target

structures and assay data as a basis for finding new

lead structures. Exploiting synergies between different

methods best utilizes the information available and is

at the center of recent developments.
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Introduction

Virtual screening has become an integral part of the drug

discovery process in recent years [1]. Related to the more

general and long pursued concept of database searching [2,3]

the term ‘virtual screening’ (VS) is relatively young [4]. Wal-

ters et al. define virtual screening as ‘automatically evaluating

very large libraries of compounds’ using computer programs

[5]. As this definition suggests, VS has largely been a numbers

game focusing on questions like how can we filter down the

enormous chemical space of >1060 conceivable compounds

[6] to a manageable number that can be synthesized, pur-

chased and tested. Although filtering the entire chemical

universe might be a fascinating question, more practical VS

scenarios focus on designing/optimizing targeted combina-

torial libraries and enriching libraries of available compounds

from in-house compound repositories or vendor offerings.

The main goal of a virtual screen is to come up with hits of

novel chemical structure that yield a unique pharmacological

profile. Thus, success of a virtual screen is defined in terms of

finding interesting new scaffolds rather than many hits.
Interpretations of VS accuracy should therefore be considered

with caution. Low hit rates of interesting scaffolds are clearly

preferable over high hit rates of already known scaffolds. Box

1 lists some practical considerations for a VS set-up.

VS has experienced increased attention in recent years

(Fig. 1) due to the rise in available datasets, VS techniques

and excitement created by successful screening studies.

When integrated with high throughput screening (HTS),

VS can aid in the rapid identification of novel ligands

[7,8]. VS includes target specific search criteria but also target

independent considerations such as drug-likeness [9,10]. The

use of VS technologies has also aided the identification of

bioactive molecules from natural products [11]. VS methods

are often divided into structure-based VS (SBVS) [12,13] and

ligand-based VS (LBVS) [14,15]. SBVS and LBVS have been

reviewed frequently in the literature. Therefore, we focus here

on possible synergies between SBVS and LDVS, some new

interests in MACHINE LEARNING techniques for VS, and highlight

recent success stories.

Synergies between structure-based and ligand-based

virtual screening

SBVS and LBVS have been considered almost mutually exclu-

sive suggesting LBVS to be used primarily in the absence of

protein target structure(s) and SBVS to be used if target

structure(s) are available. Especially when a target protein

structure at high atomic resolution is available, SBVS is often

considered as the first choice strategy ignoring possible LBVS
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Glossary

Building blocks: chemical reagents to be attached as substituents in

combinatorial library design and synthesis.

Decision trees: a common classification technique that systematically

identifies the descriptors that best separate one compound class from

another.

Descriptors: numerical values that describe specific compound

features so that compounds can be represented in a mathematical

function.

Enrichment rate: ratio of percentage of true actives and percentage of

total compounds retrieved as hits from a database of compounds

screened in a VS.

Machine learning: computer algorithms used to build models of

training data and predict future outcomes based on past experiences.

Pharmacophore: a group of chemical features that are responsible for

a compound’s biological activity.

QSAR: (quantitative structure activity relationships) computer-based

models that correlate descriptor variations to quantitative changes in

biological activity.

Recall: percentage of known actives retrieved in a VS experiment.

Scaffold hopping: identification of compounds with different core

structure based on other compounds with similar activity.

Scoring function: mathematical function to rank protein-ligand

complexes according to their predicted binding affinity.

Variable selection: the selection of descriptors most pertinent to the

biological property of interest from a larger pool of descriptors.

Box 1.

� VS methods need to be able to process 10 million individual

compounds in a few weeks time.

� Given that typically hundreds of VS hits are biologically tested and

given that hit rates known from HTS are typically in the order of

�0.1 percent, VS methods should enrich active ligands in the VS hit

set�10 fold over random to obtain a reasonable chance of finding a

true hit. In cases of low hit rate targets, enrichment rates might have

to be significantly higher.

� VS hit sets should balance compounds ranked highly and being

structurally diverse to increase the chance of finding novel

chemotypes. Hits should then be followed up in a second iteration

by analog testing.
alternatives. Until recently, only sporadic studies have pointed

to the fact that LBVS offers a strong alternative to SBVS even in

the presence of protein structural information. For instance, a

comparison of LBVS and SBVS methods using the RECALL of

known HIV-1 protease inhibitors as test examples has shown

how ligand similarity methods can outperform molecular

docking as a VS tool [16]. Recently a more systematic com-

parative study between SBVS and LBVS involving seven differ-

ent drug targets for which structural information is available

has been published [17]. Figure 2 illustrates that in most cases

LBVS techniques measuring compound similarity to known

potent molecules outperforms molecular docking, a more

computationally intensive SBVS technique that generates

and scores putative protein–ligand complexes according to
Figure 1. Analysis of VS publications obtained from a PubMed search perform
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their calculated binding affinities [18]. Similar results have

recently been reported in the field of GPCRs using homology

models for SBVS and 2D-QSAR, DECISION TREES, and PLS as LBVS

methods [19]. Although studies about SCAFFOLDHOPPING through

SBVS are scarce [20] it is recognized that SBVS techniques have

a better potential to identify compounds with a novel core

scaffold. Therefore, SBVS and LBVS should not be applied

independently but rather in concert to increase the chances

of finding novel hits [21,22]. Some softwareapproaches such as

SDOCKER have begun integrating both strategies by including

ligand similarity as a part of the SCORING FUNCTIONS used in the

docking algorithm [23]. Bologa et al. has also reported the

integration of both strategies to aid in the identification of

the first selective GPR30 agonist [24].

Machine learning algorithms in virtual screening

An LBVS approach that is quickly gaining popularity in VS,

called machine learning, builds predictive compound activity

models that are based on available assay data. Machine

learning approaches have been reviewed less before in the

context of VS. Therefore, we include here a short synopsis of

the most prominent techniques in addition to highlighting

their applications in VS. Several recent success stories have

been reported in the literature and a few examples of the more
ed on July 9, 2006 using ‘virtual screening’ as a keyword.
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Figure 2. Comparison of percent of actives retrieved for seven protein targets (CDK2, COX2, estrogen receptor, HIV-1 protease, neuramindase, p38

MAP kinase and thrombin). The suffix _G refers to Glide2.5 docking experiments. _P50 and _AP refer to ligand-similarity VS methods using 3D

pharmacophore fingerprints with 50 conformations per molecule and to atom pair descriptors, respectively [17].
popular machine learning techniques are listed in Table 1.

Each method has its own advantages and disadvantages that

should be understood to select the best approach for a parti-

cular LBVS. The first approach listed in the table, a self-

organizing map (SOM), is quite simple and easy to visualize.

A dataset of compounds are mapped on to a 2D grid such that

most similar compounds are grouped together. Compounds

found in the same vicinity of those with a desired biological

property are considered potential hits in a virtual screen;

however the SOM approach in general has a very high false

positive rate. It is a simple and easy way to visualize if

compounds that have the same biological properties group

together. SOMs have been used recently to identify several

purinergic receptor agonists [25]. Another approach called

Binary QSAR uses all compounds in the training set to predict

the biological property of test compound(s) in a virtual screen

rather than just the most similar training compounds.

Although not providing an image of the training data, this

approach is fast and like SOMs it works well if the training

data is highly similar to the test compounds being screened.

Compounds that are significantly different from the training

set are not expected to be predicted accurately and are com-

monly missed in a virtual screen [26].

Other approaches require a pre-built model to perform a

virtual screen. These techniques form correlations between

training data and DESCRIPTORS that describe training com-

pounds to predict a biological property for a virtual set of

compounds. The Bayesian Classifier requires a pre-built

model and is somewhat similar to Binary QSAR except it

identifies specific descriptors that best distinguish com-

pounds with a desired biological property from others. This

search for pertinent descriptors is called VARIABLE SELECTION and

helps the model eliminate descriptors that are not relevant to

the current problem and cloud the separation of one biolo-

gical property class from another. The Bayesian Classifier
algorithm has been shown to not perform as well as even

more sophisticated approaches [27]; however, it does handle

large training sets much easier.

Decision trees (or Forests) incorporate the simplest form of

variable selection and can be considered as a set of Boolean

functions. Descriptors that capture molecular features of the

training compounds are systematically added to a Decision

tree model one at a time until compounds with different

biological properties are adequately separated. This approach

allows the researcher to easily determine the chemical fea-

tures most relevant to the target biological property. This

information can be used in the design of future molecules.

Virtual screening with Decision trees is quite easy as well.

Comparison studies have shown it slightly outperforms

methods such as the Bayesian Classifier however other more

advanced approaches show higher ENRICHMENT RATES in a virtual

screen [27].

In yet another class of machine learning approaches, math-

ematical function(s) are used to correlate descriptor values

with a biological property. The simplest of these builds a

linear correlation and is called multiple linear regression. A

very popular extension called partial least squares (PLS) helps

simplify the model optimization so larger training sets can be

easily used. Variable selection techniques are also commonly

added above the PLS algorithm to optimize the descriptors

used in the linear model. This approach has shown success

enriching a virtual database for various GPCR ligands [19];

however, it has an obvious drawback. There is not always a

linear correlation between the property modeled and the

descriptors describing your dataset. The artificial neural net-

work (ANN) and support vector machine (SVM) approaches

allow one to build non-linear correlations. ANN and SVM

have become popular tools for model building and virtual

screening. In a side-by-side comparison both ANN and SVM

show similar enrichment rates for several virtual screens [27].
www.drugdiscoverytoday.com 407
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Table 1. Overview of popular regression and learning algorithms used for virtual screening

Classification Regression Variable selection Explanatory Virtual screening

SOM Yes, useful for

visualizing global

data trends

No Various techniques show

success extracting pertinent

dependent variables by

grouping compounds in

the same target class together

Yes, when the pertinent

dependent variables

are optimized

Identified purinergic receptor

antagonists from a virtual

combinatorial library [25]

Binary QSAR Yes No No No Showed superior enrichment

rates when compared to

Bayesian Classifiers and PLS [26]

Bayesian Classifier Yes Yes Descriptors are weighted

based on how well each

divides the training data

Yes if the significance

of each descriptor

can be extracted

Performed poorly compared

to SVM, kNN, ANN and

Decision trees [27]

Decision trees Yes No Descriptors that best

divide one class from

another are used to

separate the data

Variables used in the

tree(s) suggest activity

dependency

Slightly outperformed a Bayes

Classifier in a comparison study [27]

PLS variants Yes Yes Variable selection

techniques are commonly

added above PLS

model building

Yes, when a variable

selection technique

is incorporated

Ligands for various GPCR

targets were successfully

enriched from a test database [19]

ANN Yes Yes Performed internally No Comparable enrichment

rates in a direct comparison

to SVM and kNN [27]

SVM Yes Yes Performed internally Yes, if the weights

of each descriptor

are explicitly solved.

Identified previously

characterized Dopamine

D1 Inhibitors and

suggested new hits [29]

kNN Yes Yes Commonly a genetic

algorithm or simulated

annealing is used

Descriptors selected by

multiple models imply

relevance to the target

property

Identified several anticonvulsant

compounds that were experimentally

confirmed [28]
The k-nearest neighbors approach (kNN) does not require

the use of a mathematical function to split one property class

from another, which can be very useful when the problem is

complex. Compounds in a virtual screen are predicted based

on known activities of the most similar training compounds.

Similarity between compounds is calculated using only a

small set of most pertinent descriptors that are optimized

during model building (this optimization can be quite slow
Table 2. Recent success stories

Method used Protein target Identified

Multiple linear regression CCR5 Several ne

Pharmacophore modeling Fetal hemoglobin Novel inh

Consensus scoring using multiple

docking approaches

CK2 Identified

rDock Chk1 10 Novel

Catalyst PPARg 2 Partial a

Pharmacophore

modeling and FlexX docking

GSK-3 9 New inh
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for large datasets). When used in a virtual screen kNN shows

database enrichment rates similar to both ANN and SVM [27].

A domain of applicability can be used in virtual screening to

improve the enrichment rates in a virtual screen by only

allowing the model to predict compounds that have the

highest chance of being predicted correctly. Applicability

domain techniques have been applied very successfully for

both kNN [28] and SVM [29]. However, limitations lie in the
hits

w derivatives of active molecules were proposed [43]

ibitors were identified from a large chemical database [44]

a highly potent inhibitor from a chemical database[45]

inhibitors were identified with 9 different scaffolds [46]

gonists were found among a large chemical database and validated in vivo [47]

ibitors were predicted from three large chemical databases [48]
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fact that a very narrow applicability domain only identifies

potential compound hits that are highly similar to the train-

ing set compounds. Such hits could have possibly been found

using a simpler, less time consuming approach also.

A new forum has been created, the comparative evaluation

of prediction algorithms (CoEPrA), which compares how

predictive different machine learning approaches are for

blind test cases. This forum illustrates which techniques

consistently work best and should be an interesting media

for testing new machine learning approaches. A link to

CoEPrA can be found together with other links of interest

in the Links section.

Recent successes of virtual screening

A few examples of recent VS applications are highlighted

below. In addition, Table 2 shows a collection of reports of

recent successful virtual screens.

Structure-based virtual screening

Gold [30] docking and subsequent scoring with the PMF

scoring function [31] has identified novel inhibitors of the

potential cancer target erythropoietin-producing hepatocel-

lular B2 receptor tyrosine kinase domain with measured Kd of

3.3 mM. Docking and scoring results have been combined

with PHARMACOPHORE modeling aspects and ‘high content’ wet

screening techniques using affinity chromatography [32].

Structure-based virtual screening against the target

dipeptidyl peptidase IV (DPPIV) has identified chemical

starting points for medicinal chemistry follow-up. Docking

of compound collections pre-filtered by physical property

and medicinal chemistry considerations as well as match-

ing pharmacophores to known DPPIV inhibitors has

resulted in 51 compounds with activities between 30%

and 82% at 30 mM concentration in an enzyme inhibition

assay [33].

Through the combination of homology modeling and

docking methods, several successful VS applications have

been published recently. They include the discovery of novel

lipoxygenase inhibitors [34] as well as a novel cannabinoid

CB2 receptor agonist [35].
Table 3. Comparison of VS approaches working in concert

Method Structure-based & pharmacophore query Structure-b

Specific

examples

51 DPP IV inhibitors were

identified in a VS using a

pharmacophore and docking filter

New SHBG li

combined 2D

Pros Not dependent on scaffolds

within the training set

Works well f

to the trainin

Cons Reduced accuracy for training

set-like compounds compared

to ligand-based methods

VS hits are bi

set-like comp

References [33] [49]
Combining SBVS and LBVS techniques has resulted in the

discovery of a novel family of severe acute respiratory

syndrome-associated coronavirus (SARS-CoV) protease

inhibitors [36]. Gold docking and mapping CoMFA/CoM-

SIA models onto the protein active site have been

employed to screen through the Maybridge database of

59,363 compounds in search for novel hits. Twenty-one

compounds tested have exhibited inhibition below 30 mM

IC50. By following up with analog searching through other

databases, an additional 25 inhibitors could be identified.

This example illustrates the iterative nature of virtual

screening. Although a first VS iteration identifies novel

classes of actives but does not necessarily contain the most

potent compound within a given class, the second iteration

focusing on analogs of the newly found class often leads to

more potent hits.

Ligand-based virtual screening

Recall experiments using SVMs trained on known cycloox-

ygenase 2 and thrombin inhibitors have been reported

recently. Topological pharmacophore-point triangles have

been used as molecular descriptors. In a validation study,

50–90% of the known active compounds could be recalled

within the first 0.1% of the ranked databases containing the

known actives and a list of arbitrary screening compounds.

Following on this positive validation, a subsequent VS study

has identified several potential COX-2 inhibitors that have

been tested in a cellular activity assay. A newly found benzi-

midazole derivative has exhibited significant inhibitory

activity better than that of Celecoxib [37].

QSAR models have been developed to discover new anti-

malaria agents. Specifically, virtual screens for finding Ras

farnesyltransferase inhibitors with antimalarial activity have

been reported. Following successful recall experiments of

known inhibitors QSAR models have been used to identify

previously unknown antimalarials. A new arylaminomethy-

lenemalonate has been found through VS with antimalarial

activity [38].

Ligand-derived pharmacophore models in concert with

cell-based activity assays have been used to discover selective
ased & machine learning Pharmacophores & machine learning

gands were found using a

-QSAR and docking filter

New COX-2 inhibitors were found

using SVM’s with pharmacophoric descriptors

or compounds similar

g set

Very fast for screening large databases

ased towards training

ounds

Limited scaffold hopping ability

[37]
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Outstanding issues

� The reliability of virtual screening needs to be improved: For SBVS,

more reliable scoring functions are needed. LDVS descriptors that

reliably facilitate scaffold hopping are essential. For regression and

classification approaches applicability domains need to be extended.

� Synergies between all VS methods need to be realized.

� Rather than finding ‘ligand-like’ compounds VS needs to focus on

improving methods to find ‘lead-like’ compounds. A compound with

good molecular potency alone rarely results in a good lead or drug

candidate.

Related articles

Shoichet, B.K. (2004) Virtual screening of chemical libraries. Nature

423, 862–865

Lengauer, T. et al. (2004) Novel technologies for virtual screening. Drug

Discov. Today 9, 27–34

Alvarez, J. and Shoichet, B.K. (2005) Virtual Screening in Drug Discovery,

CRC

Links

� http://www.coepra.org

� http://blaster.docking.org/zinc/

� http://www.bindingdb.org/bind/index.jsp
11beta-hydroxysteroid dehydrogenase (11beta-HSD) inhibi-

tors shown to block subsequent cortisol-dependent activa-

tion of glucocorticoid receptors [39].

An extension to the feature tree approach [40] called MTree

has been reported [41]. Here topological molecular graphs of

several ligands are combined to a common feature tree that

allows for matching corresponding functional groups. These

functional groups are derived akin to pharmacophore queries

from a set of diverse but active ligands against a given target

protein. Applying this new multiple feature tree approach to

recall experiments of known angiotensin converting enzyme

inhibitors and a1a receptor antagonists has led to significant

enrichments of known active compounds validating the

concept of MTrees.

Conclusions

The prevailing opinion has been for a long time that in the

presence of a high-resolution target protein structure one

should use SBVS whereas in cases where only ligand informa-

tion is known LBVS should be used. Recent publications have

somewhat challenged thisview focusing onusing LBVS even in

the presence of target structure information. Advancements in

VS have therefore been made in understanding the strengths

and weaknesses of existing methods and how to use them

rather than coming up with new approaches. The majority of

reported VS successes make the best use of several informa-

tional sources. For instance, pharmacophore models using

known ligands are combined with homology models; QSAR

models are combined with docking approaches. Using all

available information in concert is essential for obtaining

optimal VS results making each VS experiment unique. Con-

sequently, an increasing number of successful VS applications

use more than one VS technique.

Machine learning techniques have been increasingly

applied to virtual screening. This is not surprising as

ligand-based virtual screening approaches have experienced

growth in general through expansions in available chemical

libraries, published compound assay data, and the surge of

new molecular descriptors and techniques used in similarity

comparisons. As it becomes available, experimental data is

incorporated into models that are used to aid the design of

new compounds. This helps to reduce redundant compounds

from being synthesized and to identify molecular features

that are important for the biological property of interest.

Although VS has been in a race with experimental high

throughput screening techniques in the past decade to

increase the speed of processing more and more compounds

in less time, this race has slowed in recent years. Some

companies such as Aventis have decided to limit the number

of compounds to be tested in high throughput screens to

increase the quality of hits [42]. Likewise, the focus of VS is

now on increasing reliability, hit rates, and the number and

quality of novel scaffolds to be discovered rather than speed.
410 www.drugdiscoverytoday.com
Several future challenges are highlighted in the Outstanding

issues box.

Several of the most recent virtual screens have resulted

from a combination of different approaches utilizing multi-

ple sources of information rather than just structural or

ligand assay data (examples in Table 3). Such a combined

approach uses ligand-based methods to identify compounds

with features important for the target property. Structure-

based techniques are used to ensure that the shape, size and

energetic interaction potential of the putative ligands com-

plement that of the target protein. Recent successes illustrate

the advantage of utilizing all available information in concert

making each VS experiment a unique endeavor.
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