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ABSTRACT
Despite being one of the continents with the least greenhouse gas emissions, no continent is being 
struck as severely by climate change (CC) as Africa. Mosquito-borne diseases (MBD) cause major 
human diseases in this continent. Current knowledge suggests that MBD range could expand 
dramatically in response to CC. This study aimed at assessing the relationship between CC and 
MBD in Africa. Methods For this purpose, a systematic peer review was carried out, considering all 
articles indexed in PubMed, Scopus, Embase and CENTRAL. Search terms referring to MBD, CC and 
environmental factors were screened in title, abstract and keywords.Results A total of twenty-nine 
studies were included, most of them on malaria (61%), being Anopheles spp. (61%) the most 
commonly analyzed vector, mainly in Eastern Africa (48%). Seventy-nine percent of these studies 
were based on predictive models. Seventy-two percent of the reviewed studies considered that CC 
impacts on MBD epidemiology. MBD prevalence will increase according to 69% of the studies while 
17% predicted a decrease. MBD expansion throughout the continent was also predicted. Most 
studies showed a positive relationship between observed or predicted results and CC. However, 
there was a great heterogeneity in methodologies and a tendency to reductionism, not integrating 
other variables that interact with both the environment and MBD. In addition, most results have not 
yet been tested. A global health approach is desirable in this kind of research. Nevertheless, we 
cannot wait for science to approve something that needs to be addressed now to avoid greater 
effects in the future.
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Introduction

The United Nations (UN) defined CC as a change in the 
statistical properties of the climate system when consid-
ered over long periods of time, regardless of cause [1,2].

The Earth temperatures are fit to allow life thanks to 
the so-called ‘greenhouse effect’, which is a natural pro-
cess by which radiation from the Earth’s atmosphere 
warms its surface to a temperature above what it would 
be without this atmosphere [3]. The ‘greenhouse gases’ 
have an influence on the Earth’s energy balance; an 
increase in their emissions led to anthropogenic global 
warming. Emissions of several greenhouse gases have 
increased substantially since large-scale industrialization 
began in the mid-1800 s, especially due to population and 
economic development and growth, which motivated an 
increased consumption of burning fossil fuels, agriculture, 
land clearing and the impact of cattling and use of ferti-
lizers containing nitrogen. In fact, emissions registered 
between 2000 and 2010 were among the highest in 
history [4].

CC affects all regions and their populations´ health [5], 
mostly negatively, impacting on social and environmental 

health determinants (clean air, potable drinking water, 
food safety and safe housing, among others) [6].

Albeit producing only 2% to 3% of the global green-
house gas emissions [7,8], Africa is suffering major CC 
repercussions [4,9,10]. The Intergovernmental Panel on 
Climate Change (IPCC), which is the United Nations 
body for assessing the science related to CC, already 
stated in 2001 that Africa is highly vulnerable to the 
various manifestations of CC, mainly due to six situa-
tions: (a) the limited water resources; (b) food security at 
risk from declines in agricultural production; (c) natural 
resources productivity at risk and biodiversity; (d) vec-
tor- and water-borne diseases, especially in areas with 
inadequate health infrastructure; (e) coastal zones vul-
nerable to sea-level rise; and (f) exacerbation of deserti-
fication [4].

According to different meteorological models, Africa 
will face an increased tendency of warming and variable 
rainfall patterns, although the impact of CC in the health 
of African populations still poses many unanswered 
questions [11]. Current projections foresee a rise of 
more than 2ºC in the mean annual temperature for 
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this continent. Moreover, African ecosystems are already 
being affected by climate change [4].

Over 80% of the global population is at risk of a vector- 
borne disease. Mosquito-borne diseases (MBD), such as 
malaria, dengue, chikungunya and zika, are the largest 
contributor to human vector-borne disease burden, par-
ticularly in the African continent [12,13]. For instance, 93% 
of all malaria cases worldwide occur in Africa. In compar-
ison, South East Asia accounts for 3.4% and the Eastern 
Mediterranean region for 2.1% of all cases [14]. Regarding 
dengue infections, Africa’s burden seems to be nearly 
equivalent to that of the Americas, even in the absence 
of strong surveillance systems for MBD in most African 
countries. In fact, although half of the countries with 
chikungunya and zika infections are located in Africa, 
there are not much data on the epidemiology of these 
MBD in Africa [15,16].

According to several international scientific reports, 
MBD will expand in parallel with CC [86; 1,9]. Climate 
patterns influence the lifespan of mosquitos, their rate 
and frequency of reproduction, mosquito blood-feeding 
patterns, as well as extrinsic incubation periods [17,18]. 
Despite these certainties, the impact of CC on MBD still 
raises controversy and debate [19–21], as many other 
cross-cutting global processes are not usually taken into 
account when assessing the impact of CC in MBD 
dynamics.

The present systematic review is aimed at assessing 
the effects of CC in the epidemiology of the most 
prevalent MBD and their vectors in Africa.

Methods

A systematic review was performed on MBD and CC in 
Africa following PRISMA (Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses) guidelines for 
systematic reviews and meta-analyses [22]. The ana-
lyzed MBD included some of the most prevalent MBD 
in Africa, i.e. malaria, dengue, zika, chikungunya, Rift 
Valley fever (RVF), West Nile virus (WNV), yellow fever 
and lymphatic filariasis (LF), as well as their vectors 
Anopheles spp, Aedes spp, Coquillettidia spp, 
Ochlerotatus spp, Haemagogus spp and Culex spp.

Search strategy

Two main reviewers searched for indexed articles pub-
lished in the PubMed, Scopus, Embase and CENTRAL 
databases. The following search terms were screened in 
title, abstract and keywords using the AND Boolean logic 
operator:

(1) Vector borne diseases OR Mosquito borne dis-
eases OR Malaria OR Lymphatic Filariasis OR 
Yellow fever OR Dengue OR West Nile OR Zika 
OR Chikungunya OR Rift Valley fever

(2) Vector mosquitoes OR Mosquitoes OR Aedes OR 
Anopheles OR Culex OR Coquillettidia OR 
Ochlerotatus OR Haemagogus

(3) Climate variability OR Climate change OR Weather 
OR Climate OR Temperature change OR 
Environment OR Temperature OR Warming OR 
Meteorology OR Rainfall OR Humidity OR Altitude

(4) Africa OR Algeria OR Angola OR Benin OR 
Botswana OR Burkina Faso OR Burundi OR Cabo 
Verde OR Cameroon OR Central African Republic 
OR Chad OR Comoros OR Congo OR Côte d’Ivoire 
OR Democratic Republic of the Congo OR Djibouti 
OR Egypt OR Equatorial Guinea OR Eritrea OR 
Eswatini OR Swaziland OR Ethiopia OR Gabon OR 
Gambia OR Ghana OR Guinea OR Guinea-Bissau 
OR Kenya OR Liberia OR Lesotho OR Libya OR 
Madagascar OR Malawi OR Mali OR Mauritania 
OR Mauritius OR Mayotte OR Morocco OR Niger 
OR Nigeria OR Réunion OR Rwanda OR Saint 
Helena OR Sao Tome and Principe OR Senegal OR 
Sierra Leone OR Somalia OR South Africa OR South 
Sudan OR Sudan OR Togo OR Tunisia OR Uganda 
OR United Republic of Tanzania OR Tanzania OR 
Western Sahara OR Zambia OR Zimbabwe

Full-text articles were read to evaluate them according 
to the inclusion criteria. Two reviewers examined all 
citations in the study selection process. If it was uncer-
tain whether to include a study, a third reviewer 
assessed whether the article should be included or 
not. The reference lists of all included articles were 
also cross-checked for relevant studies. Besides, possi-
ble relevant information was also checked in gray 
literature sources (such as Google Advanced search 
and key institutional websites) and was included 
when it met the inclusion criteria.

Eligibility criteria

The search was performed in English, French, 
Portuguese, German, Italian and Spanish languages. 
Only original research studies with quantitative analy-
sis were considered, thereby excluding reviews, short 
communications, posters and conference abstracts. 
Studies were included if the impact of CC on MBD 
was analyzed. CC was considered as a generic term 
covering environmental, climatic and meteorological 
variables. Inclusion and exclusion criteria for selected 
studies are listed in Table 1.

The selected papers were systematically and thema-
tically analyzed. To summarize the state of the art on 
MBD and CC in Africa, data were extracted into evi-
dence tables under the following headings: year of 
publication, type of MBD, vector, place of the study, 
time frame of observed data, type of environmental 
and/or climatic factor and data sources, analytical 
approach, summary of the results, CC impact on MBD 
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incidence (Yes/No), projected prevalence and main 
limitations.

A 13-items quality assessment tool was developed, 
based on literature and a similar study carried out in 
Europe (yet to be published), to evaluate internal and 
external validity of the selected publications. The exter-
nal validity of a study is related to the study’s general-
izability and the applicability of the study’s findings and 
therefore takes into account the study’s purpose. The 
internal validity refers to the bias that could occur in 
a study and compromise its findings [23]. The quality of 
each manuscript was assessed by reviewing study 
objective/s, study design, data presentation and discus-
sion, granting 1 if the criterion was met, and zero if it was 
not. The maximum achievable total score was 13 points 
(supplementary table 1).

A standardized Excel (Version 2010, Microsoft 
Corporation, Richmond, WA, USA) spreadsheet was 
used to extract information from included studies. 
References retrieved were saved in Zotero software 
5.0.67 (www.zotero.org). We chose this open-source 
software in order to share complete libraries among 
all reviewers and contributors, for purposes of trans-
parency and standardization. The analyzed countries 
from the published literature were projected onto 
a map of Africa using QGIS software version 2.18.13.

Results

The systematic search strategy yielded a total of 907 
citations (707 Pubmed, 65 Scopus, 42 CENTRAL, 62 
Embase, 31 other sources) published between 
1 January 2004 and 31 December 2018. That number 
was reduced to 856 after excluding 51 duplicate records. 
After screening the titles and the abstracts, i.e. reading 
them to see if they fit the inclusion criteria, we retained 
124 articles for full-text screening. A final set of 29 
articles met all inclusion criteria and were included in 
our review. Seven hundred and thirty-two articles were 
excluded, mostly because of not dealing with either 
MBD (n = 68), CC (n = 438) or Africa (n = 226). Figure 1 
presents the PRISMA chart of the study selection process 
and the main reasons for exclusion.

Descriptive characteristics of the studies

The descriptive characteristics are summarized in 
Tables 2–4. Nineteen studies dealt with CC and malaria 
and four with CC and dengue. Other analyzed diseases 
included RVF (n = 3), WNV (n = 2), LF (n = 1), zika (n = 1) 
and chikungunya (n = 1). Two studies targeted more 
than one MDB that share the same vector: dengue and 
chikungunya, and WNV and LF. Impact of CC in 
Anopheles spp distribution was dealt with in 19 studies, 
while 7 studies examined Aedes spp and 5 studies 
examined Culex spp (Tables 2–4).

The geographic zones under study were Eastern 
Africa (n = 14), Western Africa (n = 4) and Southern 
Africa (n = 3). Six studies analyzed the impact of CC on 
MBD from a worldwide perspective and four on 
a continental African basis (Table 2, Figure 2).

About two-thirds (n = 18) of the papers were pub-
lished in the second half of the study’s timeframe 
(2012–2018).

All were observational studies, mostly based on 
predictive models (n = 23) [17–21,24-41]. Time series 
analysis was performed in three studies [41–43] and 
two studies were designed experimentally [44,45]. All 
studies except for one focused on future estimations 
about climate change. In this paper, a model based on 
retrospective data was developed, predicting changes 
for the last decades, and later authors compared these 
projections with the real occurrences [19].

The main analyzed environmental factors included 
average temperature increases and/or variations 
(n = 18), changes in rainfall patterns (n = 12) and the 
net effect of CC (n = 8), while two studies focused on 
altitude variations and another two on variations in the 
diurnal temperature range (Tables 2–4). Whereas the 
data source to assess the CC was not described in detail 
in one study [28], WorldClim datasets were the most 
commonly used dataset to compute the net effect 
based on average temperatures and rainfall 
[25,26,31,32,35,36]. Those studies that used WorldClim 
datasets used data recorded between 1950 and 2000. 
One study used a different meteorological dataset – 
CliMond – also based on temperature and precipitation 
data from 1950 to 2000 [29], while other studies focused 
on datasets from previously published studies 
[11,17,20,27,28,33,34,37,38,46]. Yet another study used 
temperature and rainfall data from 1960 to 1999 from 
different national and international institutions [47]. 
Two studies used CLIMEX datasets [39,40], while other 
studies used meteorological data from local weather 
stations [18,19,24,41–43,45]. Two studies did not 
describe their climate data sources [30,44].

A summary of the studies’ main findings is provided 
in Tables 2–4. Overall, 72% (n = 21) of the included 
studies found a significant relationship between CC 

Table 1. Eligibility criteria.
Inclusion criteria Exclusion criteria

Research studies Other type of study
Studies must refer to climate 

change (and not just single 
environmental and/or climatic 
variables)

Not assessing the impact of 
climate change on MBD or 
their vectors

Published between 1 January 2004 
and 31 December 2018

Published before 1 January 2004 
or after 31 December 2018

Languages: English, French, 
Portuguese, German, Italian and 
Spanish

Not carried out in Africa.
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and MBD prevalence, while 6 studies found no such 
association. Only two studies found uncertainties in 
this link. Sixty-nine percent of the studies pointed out 
that MBD prevalence will increase as a consequence of 
CC (13 for malaria, 2 for dengue, 1 for dengue and 
chikungunya, 2 for RVF, 1 for WNV and 1 for zika), 
while 14 papers concluded that some of the analyzed 
MBD will expand (8 for malaria, 2 for dengue, 1 for 
dengue and chikungunya, 1 for zika, 1 for RVF and 1 for 
WNV and LF). According to three studies, the analyzed 
disease’s occurrence area will contract for malaria 
(n = 2) and dengue (n = 1).

Overall, variations in meteorological variables were 
linked to altered MBD dynamics in 21 studies. Changes 
in temperature were related to increased MBD preva-
lence in 12 studies, 10 of whom dealt with malaria, 1 
with dengue and 1 with RVF. The net effect of CC was 
linked to increases in MBD prevalence in four studies, of 
which two analyzed dengue, one malaria, one zika and 

one chikungunya. In these studies, net effect of climate 
change was defined as combinations of different and 
interlinked environmental factors (i.e. temperature and 
rainfall) over a long period of time. Variations in precipi-
tation patterns were linked to increase MBD prevalence 
in eight studies, six dealing with malaria, one with RVF 
and one with WNV. Changes in the terrain’s altitude and 
variations in the diurnal temperature range were linked 
to increased malaria and dengue prevalence, respec-
tively. Two studies showed decreases in malaria preva-
lence as a result of the net effect of CC, altered 
precipitation patterns and changes in the terrain’s alti-
tude (Tables 2–4).

Effect of climate change on malaria in Africa

According to 74% of the studies targeting malaria 
(n = 14), this disease prevalence will be affected by 
CC in several African countries, specifically the East 

Figure 1. Study selection process.
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African highlands. Environmental factors that may 
influence malaria occurrence in Africa include changes 
in temperature (n = 14) and rainfall patterns (n = 8), as 
well as the vectors’ capacity to adapt and survive at 
higher altitudes (n = 2) and diurnal temperature ranges 
(n = 1) or the net effect of CC. Eleven of these studies 
predicted an increase in disease prevalence and/or 
geographical distribution due to CC, whereas 
a decrease was predicted by two researches, specifi-
cally in Kenia and on a worldwide range. One research 
showed uncertain results. Some of these findings were 
contradictory, as they referred to the same countries, 
for example, Kenia [19,42] (Figure 2). Regarding disease 
spread, according to nine studies, CC will expand the 
disease across the continent, principally through 
Eastern Africa (Table 2, Figure 3).

Effect of climate change on dengue in Africa

The impact of CC on dengue epidemiology was 
assessed on a worldwide range and in Southern 
and Central Africa. According to 75% of the studies 
(n = 3), dengue prevalence will increase due to the 
effects of CC in several African countries in 
Southern and Central Africa (Figure 2). 
Temperature changes as well as variations in rainfall 
patterns and relative humidity were pointed out as 
possible influencing factors in the increase of dis-
ease’s prevalence and disease spread. On the other 
hand, Khormi et al. predicted marginal areas suitable 

for dengue vectors’ expansion in Northern Africa 
under future CC scenarios, specifically Mauritania 
(Table 3, Figure 3).

Effect of climate change on other MBDs in Africa

Two studies predicted a positive impact of CC in RVF 
prevalence (essentially due to variations in rainfall pat-
terns and average temperatures), while one study 
showed uncertain results about the relationship 
between CC and RVF epidemiology in Tanzania 
(Table 4).

According to the time series analysis developed 
by Uejio et al., the WNV prevalence will increase as 
a result of changing rainfall patterns, getting 
expanded into the highlands and deserts of South 
Africa. In contrast, one study showed uncertainty 
about these changes in disease prevalence, in par-
ticular in Northern Africa and parts of Central Africa 
(Table 4, Figure 2).

According to Campbell et al. chikungunya will 
expand into Southern Africa due to an increased pre-
sence of its vector Aedes aegypti owing to an increased 
temperature (Table 4, Figure 3).

In the study on zika and CC by Carlson et al., it was 
predicted that zika distribution will be altered as 
a result of changing rainfall patterns and variable diur-
nal temperature ranges, which will have an impact on 
the distribution of Aedes africanus, A. aegypti and 
A. albopictus. Moreover, according to this paper zika 

Figure 2. African countries with expected increase/decrease of mosquito-borne diseases prevalence under the effects of climate 
change. Footnote: Changes in Rift Valley Fever prevalence in Tanzania were uncertain.
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cases will be registered in previously naïve areas, such 
as Southern Sudan (Table 4).

Quality assessment

Overall, the studies were of medium or good quality. 
The main reasons for scoring lower were lack of 

pointing out the study’s objectives or the study period 
(Figure 4).

The most frequent limitation identified by the 
studies’ authors was not including other possible 
factors that may affect MBD occurrence (n = 14) 
[17–19,21,24,27,28,31,39–41,45-47] or focusing on 

Figure 3. African countries with expected spread/contract of mosquito-borne diseases incidence under the effects of climate 
change.

Figure 4. Scored points in quality assessment.
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one single vector when more than one species can 
transmit the disease (n = 4) [31,34,36,38].

Discussion

The impact of CC on MBD raises great controversy and 
several studies have been performed to address this 
incognita with contradictory results [17–21,24,25,27– 
35,37,39–47]. In our review, 69% of the included stu-
dies found a positive impact of CC on MBD [20,24– 
27,30-32,34–40,46], while others foresaw a decrease 
[20,28,29,44,45] or reached uncertain results 
[17,31,35,36]. Probably, these contradictory results 
may be related to the difficulties arising when trying 
to define CC properly.

It is difficult to measure the impact of climate 
change, since several indicators could be used, e.g. 
greenhouse gas emissions, atmospheric concentra-
tions or changes in different environmental factors. 
Meteorological data like median temperatures, rainfall 
patterns, sea level and volcanic eruptions are usually 
used, while long-term indicators such as decadal varia-
tions in temperature and precipitation are not taken 
into account [4]. Moreover, the lack of other relevant 
environmental factors is common. According to the 
National Aeronautics and Space Administration 
(NASA), some of the potential future effects of global 
CC include more frequent wildfires, longer periods of 
drought in some regions and an increase in the num-
ber, duration and intensity of tropical storms [48]. 
However, measuring all these variables is difficult, 
especially if there are insufficient meteorological sta-
tions and the existing ones are located near major 
cities and, therefore, exposed to a phenomenon called 
urban heat island, which consists of a metropolitan 
area that is warmer than its surrounding rural areas 
as a result of human activities [49]. Furthermore, the 
meteorological data used in the different studies came 
from different sources and the collection period also 
differed from one study to another; therefore, our 
results depend strongly on the input data and how 
this data was used in the study design.

Africa is the continent that is most threatened by 
climate change [50]. Current predictions foresee 
a major rise in mean temperatures compared to the 
global average for the end of the twenty-first century, 
ranging from 3ºC to 6ºC when compared to the refer-
ence period 1986 to 2005 according to the scenario 
RCP8.5. By the middle of the twenty-first century, the 
mean temperature may exceed 2ºC in most parts of 
Africa and 4ºC by the end of the century. These 
changes may vary by geographical zone; Coastal 
Africa, as well as Central Africa, may experience smaller 
increases, whereas North Africa is expected to suffer 
warmer summers [4]. According to the World Bank, the 
East African coast and Madagascar might be also less 

affected than other regions. Precipitation might 
decrease by up to 30% across Africa [51], although it 
might increase by up to 10% in East Africa, the Gulf of 
Guinea and by smaller percentages in West Africa and 
the Sahel zone [52].

Malaria was the most frequent assessed MBD in this 
systematic review, particularly in Eastern Africa [17– 
20,32-34,37,41,42,44,45]. Malaria is the most prevalent 
and frequently analyzed disease in this continent [53]. 
Furthermore, unlike other of the analyzed MBD in this 
paper, malaria is not a neglected tropical disease 
(NTD), thus receiving major investment on control 
and research [54]. Regarding the regional distribution 
of the selected paper, it should be taken into account 
that huge disparities exist across Africa in terms of 
research investment [55,56]. These research gaps may 
also be influenced by the distribution and preferences 
of the international collaborations, which may affect 
the representation of countries in African health 
research [57].

Regarding the analyzed environmental factors, tem-
perature was the most frequently analyzed climatic 
variable in the selected studies. In the context of CC, 
heatwaves and extreme maximum and minimum tem-
peratures are expected to become more frequent [58]. 
A rise of 1ºC during the last decades has already been 
registered in Eastern African regions [19]. Temperature 
may affect both vectors and parasites [9,86]. Culex spp 
mosquitoes have been shown to be sensitive to 
increased temperatures, therefore increasing the risk 
of WNV infections [59]. However, Anopheles spp mos-
quito populations decrease at 40ºC, while Plasmodium 
spp parasites seem to have an optimal temperature 
window of 30–32ºC [60]. Nevertheless, it should be 
taken into account that an adaptation to changing 
environmental conditions of the pathogen, the vector 
or both may take place in the future [61].

Rainfall was the second most frequently analyzed 
climatic variable. The majority of the analyzed papers 
showed an increase in MBD prevalence and/or inci-
dence due to increased rainfall [32,33,39–41] whereas 
one study showed increases in MBD prevalence/inci-
dence as a result of diminished rainfall [27]. Changes in 
rainfall due to abnormal El Niño-Southern Oscillation 
(ENSO) and other oscillations in temperature, rainfall 
and extreme weather events have been described in 
the context of CC [11]. For instance, low peaks of rain-
fall have been linked to increased malaria prevalence, 
whereas high peaks of rainfall combined with lower 
maximum temperatures have been linked to 
decreased malaria prevalence in Kenya. Moreover, 
delays of one to two months in rainfall increased 
malaria prevalence in Kenya [62].

Mosquito appearance at naïve higher altitudes due 
to increased temperatures was analyzed in two studies 
in Eastern Africa [37,42]. Although malaria risk is 
believed to be low at altitudes above 1500 m [63], 
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favorable meteorological conditions may lead to dis-
ease appearance at altitudes up to 3000 m [63–65]. CC 
plays an important role in malaria appearance at 
higher altitudes by changing the vectors’ ability to 
survive at higher altitudes [65].

Only few studies address other key ecological, vec-
toral or demographical factors, i.e., attack rates, R0 or 
per capita density of vectors [66,67]. Moreover, in some 
particular cases (such as RVF and LF) it should have 
been taken into account (and analyzed) that the dis-
ease can be transmitted by different mosquito species, 
on which the impact of CC may differ.

Effect of climate change on malaria, dengue, 
chikungunya, zika, Rift Valley Fever and West Nile 
Fever

In the last two decades, an important decrease in world-
wide malaria prevalence has been observed, but in 
recent years there has been a stagnation, not only due 
to lack of finance but also owing to other factors, such as 
political instability, mistreatment and self-medication or 
lacking coverage or drug resistance [53,68–71].

According to WHO estimations, CC has already been 
responsible for 3% of all malaria deaths worldwide 
(WHO), especially in children aged under 5 years 
[53,72]. Warm and humid meteorological conditions, 
such as those registered in tropical habitats, are ideal 
for mosquito breeding [27]. Changing climatic condi-
tions in Rwanda led to an epidemic in the 1980 s [73]. 
Recent vector appearance in Kenyan highlands sug-
gests that weather and environmental conditions 
have become favorable for malaria proliferation in 
this country [74].

There is also some evidence against an impact of CC 
on malaria distribution [28]; even pointing to 
a prevalence decrease [44,45] as a consequence of 
the CC in Kenya and Tanzania [17,44].

If there is something in common among such con-
tradictory studies, it is that important factors were 
missing in the analysis of all of them, i.e. deforestation 
[12,75,76], group immunity [77], lack of precise histor-
ical and current data concerning wildlife species [78] 
and the use of climatic data based exclusively on tem-
perature [12,17,19,35]. In addition, migration plays an 
important role in all vector-borne diseases (VBD) [79]. 
Furthermore, under- and misdiagnosis, as well as 
delayed diagnosis and treatment as a result of super-
stitious beliefs, poor healthcare assistance and political 
instability pose challenges to malaria control and elim-
ination [80,81]. The problem here is how to integrate 
this variety and diversity of factors in complex mathe-
matical models. We believe that a multisectoral global 
health approach might be a possibility.

According to the WHO, 3.8% of dengue deaths are 
due to CC [72]. The positive impact of CC on its epide-
miology observed in most analyzed researches is 

consistent with recent dengue outbreaks in Cape 
Verde, Madeira and Angola [82]. The disease has also 
spread all over the world, which has been particularly 
related to increased globalization and migration 
[52,79,83]. Moreover, dengue is frequently under or 
misdiagnosed as a consequence of insufficient labora-
tories or lack of knowledge among healthcare workers 
[84]. On the other hand, the absence of serotype dis-
tinction [30] contributes to conflicting results. This also 
happens with most febrile mosquito-borne diseases in 
Africa, mainly clinically diagnosed (and treated) as 
malaria [12,85,86]. Because of this, it could be expected 
that dengue figures will increase in the future thanks to 
an increased investment in dengue and other NTD 
research and diagnosis, thus increasing their preva-
lence, while malaria prevalence rates may decrease. 
These changes are not only because of the impact of 
CC but also due to other variables, such as optimized 
healthcare facilities and, thus, optimized diagnosis [12].

Worldwide, chikungunya and zika have also seen 
a recent expansion. While previously confined to 
Africa, chikungunya outbreaks are now being reported 
in India and Indic Ocean islands, as well as Europe and 
the Americas [79]. It seems that as a consequence of 
drought, chikungunya has risen on the East African 
coasts [87,88]. The Atlantic and Indian Ocean coasts, 
as well as an area spreading from West Africa to South 
Sudan, have been identified as suitable regions for 
chikungunya spread under future climate change sce-
narios [89]. The problem is that most of these studies 
regret the lack of entomological information [25,90]. 
For example, Aedes albopictus has only been reported 
in some parts of West Africa, Madagascar and South 
Africa [90]. Zika, which is also widely underdiagnosed, 
has been reported in Asia, the Americas and the Pacific 
region recently [91]. According to our review, South 
Sudan is at risk, although differing virulence among 
lineages has to be taken into account. Furthermore, 
lacking historical data on the virus’ distribution contri-
butes to unspecific projections [26,90].

While changes in RVF distribution in Senegal seem 
not to be influenced by CC [21,31,38], the epidemiology 
of this virus is largely altered as a result of a warming 
climate in Tanzania [31]. Projected hotspots for RVF 
include regions in Eastern Africa, especially in Kenya, 
Tanzania, Uganda, Rwanda and Burundi [92]. Although 
the relationship between CC and the ENSO phenom-
enon raises controversy [11], major RVF outbreaks in 
Kenia, Somalia and Tanzania in the late 1990 s after 
flooding due to ENSO have been reported [4]. 
Moreover, changes in rainfall due to abnormal El 
Niño-Southern Oscillation (ENSO) and other oscillations 
in rainfall and temperature or extreme weather events 
have been described in the context of CC and thus 
increasing RVF prevalence in Senegal. In addition, rain-
fall also plays an important role in MBD dynamics, both 
in parasite and vectoral densities [11]. Just as a matter of 
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interest, Ehrenkranz et al. considered that the 10 Biblical 
plagues were RVF outbreaks which were triggered by 
aberrant ENSO which led to climate warming on the 
Mediterranean coast [93]. As with RVF, WNV also needs 
to be studied taking into account all the possible vector 
species. Besides, bird migration has been described as 
a focal point for WNV epidemics, i.e. birds act as a host 
for the virus, which might then spread to previously 
naïve regions when the birds fly to warmer breeding 
sites during the European winter [94].

Limitations and conclusions

First, we performed a search that was bound to certain 
inclusion criteria. Second, publication bias was another 
possible limitation, since we do not know whether 
some studies with contrary results regarding the 
topic of CC and MBD have not been published. In 
addition, selection bias might also affect our study. 
To decrease the risk of not selecting important studies, 
the selection process was done independently by two 
reviewers. All these bias are major limitations of sys-
tematic reviews [95]. Finally, the African continent and 
all African countries were included as terms search. As 
a consequence, some papers assessing the impact of 
CC on MBD from a worldwide perspective might have 
gone missing. To handle this limitation, we broaden 
the search to enrich the discussion section.

Regarding the principal selected papers limitations, 
we observed that main findings (of modeling 
approaches) were depending on the climate data set 
and time period used. All models using WorldClim as 
a data source predicted a positive impact of CC on the 
analyzed MBD [25,26,31,32,35,36]. Therefore, it would 
be recommendable to homogenize study methods 
and data sources or, at least, compare the results of 
studies that use the same methods and data by meta- 
analysis. Moreover, key MBD determinants were miss-
ing in most analyses probably due to the complexity of 
the applied mathematical approaches. Moreover, CC is 
just one part of an overall mechanism that is changing 
the epidemiology of MBD. Further studies are neces-
sary to clarify cross-cutting issues on the impact of CC 
on MBD, as well as the impact of other factors like land 
cover change or socio-economic factors. A nation’s 
gross domestic product (GDP) is one of the many 
factors that determine a higher or lower risk of acquir-
ing these diseases. If GDP is high, the adverse effects of 
CC can be counteracted more easily [96]. Since low- 
income countries are among the most affected by CC 
[10,12,97], we believe that the effects on MBD could be 
larger than in other contexts. Besides, pathogens and 
their natural habitat, as well as vectors, need to be 
identified and characterized and longitudinal monitor-
ing programs need to be established to better describe 
diseases´ epidemiology on humans, hosts and vectors. 

Under this paradigm, a global health approach that 
encompasses qualitative and quantitative studies is 
strongly recommendable to disentangle the link 
between CC and MBD epidemiology in Africa. These 
research gaps may also be influenced by the distribu-
tion and preferences of the international collabora-
tions, which may affect the representation of 
countries in African health research [57]. In particular, 
further investigation is necessary to fill in the gaps in 
those regions where the relationship between climate 
change and MBD dynamics has not been elucidated so 
far, e.g. Central, South and Northern Africa.

In conclusion, the problems resulting as 
a consequence of CC and MBD transcend national 
borders and thus have a global impact. Therefore, 
health must be improved worldwide, disparities on all 
levels need to be reduced, and health threats have to 
be addressed by all countries, especially since mosqui-
toes know no borders. The implementation of these 
measurements also needs to be evaluated by applied 
research. Finally, even in the absence of strong evi-
dence, the authors believe that it cannot be waited 
for science to approve something that needs to be 
addressed now to avoid greater effects in the future.
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