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Network-assisted investigation 
of virulence and antibiotic-
resistance systems in Pseudomonas 
aeruginosa
Sohyun Hwang1,2,*, Chan Yeong Kim1,*, Sun-Gou Ji1,†, Junhyeok Go3, Hanhae Kim1, 
Sunmo Yang1, Hye Jin Kim3, Ara Cho1, Sang Sun Yoon3 & Insuk Lee1

Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. Although the genome of 
PAO1, a prototype strain of P. aeruginosa, has been extensively studied, approximately one-third of the 
functional genome remains unknown. With the emergence of antibiotic-resistant strains of P. aeruginosa, 
there is an urgent need to develop novel antibiotic and anti-virulence strategies, which may be 
facilitated by an approach that explores P. aeruginosa gene function in systems-level models. Here, we 
present a genome-wide functional network of P. aeruginosa genes, PseudomonasNet, which covers 
98% of the coding genome, and a companion web server to generate functional hypotheses using 
various network-search algorithms. We demonstrate that PseudomonasNet-assisted predictions can 
effectively identify novel genes involved in virulence and antibiotic resistance. Moreover, an antibiotic-
resistance network based on PseudomonasNet reveals that P. aeruginosa has common modular genetic 
organisations that confer increased or decreased resistance to diverse antibiotics, which accounts 
for the pervasiveness of cross-resistance across multiple drugs. The same network also suggests that 
P. aeruginosa has developed mechanism of trade-off in resistance across drugs by altering genetic 
interactions. Taken together, these results clearly demonstrate the usefulness of a genome-scale 
functional network to investigate pathogenic systems in P. aeruginosa.

Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. P. aeruginosa is an opportunis-
tic human pathogen that can propagate in the abnormal human airway1, burn-damaged skin2, and artificially 
implanted organs3,4, and can also cause hospital-acquired secondary infections in patients with compromised 
immune reactivity5. P. aeruginosa infection is often exacerbated by the formation of biofilm, a mode of bacterial 
growth associated with antibiotic tolerance6.

The treatment of P. aeruginosa infection faces major challenges due to the constant emergence of 
antibiotic-resistant variants. Antibiotic resistance to P. aeruginosa increases the rate of disease occurrence and 
mortality5,7. In contrast, the number of new FDA-approved antibacterial agents has decreased significantly over 
the past three decades8. Alternative strategies are urgently needed for effective P. aeruginosa infection control. 
Recently, an approach to identify chemical agents that can downregulate P. aeruginosa virulence without affecting 
its viability has been attempted9. This approach suggests the potential benefit of an anti-virulence strategy, which 
is in contrast to the predominant anti-viability strategy that has been applied since the discovery of antibiotics.

PAO1, which is one strain of P. aeruginosa, has a genome that contains 6.264 million base pairs and 5,572 open 
reading frames10. The PAO1 genome represents one of the largest bacterial genomes; only a few bacterial spe-
cies, including Myxococcus xanthus11, Gemmata obscuriglobus12, and Mycobacterium smegmatis13 possess larger 
genomes. The PAO1 genome contains a large number of genes involved in regulation. A gene annotation analysis 
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has shown that PAO1 can produce as many as 487 proteins that either act as transcription factors or are involved 
in two-component regulatory systems10. The versatile adaptability of PAO1 to a myriad of environmental con-
ditions has been attributed to this feature. PAO1 has 2,025 genes, whose cellular functions remain hypothetical 
or unknown, based on the function class search provided by the Pseudomonas genome website (www.pseu-
domonas.com). Thus, further investigation is warranted to define the precise cellular functions of poorly char-
acterised genes. In addition to the lack of functional understanding of individual genes, the genetic organisation 
of traits of clinical importance, such as virulence and drug resistance, remain largely unknown. Although several 
genome-wide experiments involving forward or reverse genetic screens have been performed to determine clin-
ically important traits, these experiments often miss genes whose knockouts exhibit subtle phenotypes or affect 
virulence in a specific host environment only14.

A prediction-driven genetics approach can complement high-throughput screens by conducting a more care-
ful examination on relatively small sets of highly probable candidates, which can identify the false negatives 
in high-throughput assays. Recently, predictive functional gene networks inferred from various genomics data 
have proven useful in the study of P. aeruginosa15 as well as other bacterial pathogens such as plant pathogens 
Fusarium graminearum16 and Phytophthora infestans17. The integration of functional associations derived from 
diverse experimental and computational analyses allows for the construction of highly accurate and comprehen-
sive co-functional networks. The guilt-by-association principle, by which two connected genes in the network 
are likely to have same function, is then used to facilitate the identification of novel genes for virulence and drug 
resistance. Although the previous functional networks for bacterial pathogens were computationally validated, 
demonstrating feasibility of identifying novel genes for pathogenicity and drug resistance with experimental val-
idation was not available. In this study, we present a genome-scale functional network of the P. aeruginosa strain 
PAO1, called PseudomonasNet, that maps 203,118 links among 5,456 genes (~98% of the coding genome), whose 
predictions were validated by experiments. We demonstrate the feasibility of the network-assisted identifica-
tion of novel genes for virulence and antibiotic resistance with experimental validation. We also show that an 
antibiotic-resistance network in PseudomonasNet can account for the prevalence of cross-resistance, in which a 
gene knockout responds in the same direction to multiple drugs (i.e., responds with either increased or decreased 
resistance). This network also provides mechanistic insights into the trade-off in resistance to different drugs. 
To provide a more practical contribution to the research community, we have also developed a web-based plat-
form for network-assisted hypothesis generation, which to the best of our knowledge is the first of its kind for P. 
aeruginosa. All the network-assisted predictions that are demonstrated here can be easily reproduced and applied 
to many other clinically important traits of P. aeruginosa using the companion web server (www.inetbio.org/
pseudomonasnet/).

Results
Construction of a genome-scale co-functional network of P. aeruginosa genes. The construction 
of a functional network for P. aeruginosa PAO1 is summarised in Fig. 1A and Table 1, and described in detail in 
the Supplementary Online Methods. Pairs of P. aeruginosa genes that operate within the same pathways were 
inferred from five distinct types of P. aeruginosa data: co-citation in Medline articles (PA-CC), co-expression 
across microarray experiments (PA-CX), correlation of protein domain profiles (PA-DP), correlation of phyloge-
netic profiles (PA-PG)18, and genomic neighbourhoods of bacterial orthologues (PA-GN)19. In addition, four sets 
of orthology-based functional associations (associalogs)20 were inferred from the co-citation of E. coli genes (EC-
CC), co-expression of E. coli genes (EC-CX)21, bacterial protein-protein interactions derived from high-through-
put assays (BA-HT), and literature curation of small-scale analyses (BA-LC). These nine networks were integrated 
using a Bayesian statistical framework22. To benchmark inferred co-functional gene pairs, we used gold-standard 
P. aeruginosa gene pairs that share annotations in the Gene Ontology (GO) biological process database23, which 
included only 906 P. aeruginosa genes (~16% of all 5,572 coding genes) with annotations based on reliable evi-
dence (i.e., experimental- or literature-based). The final integrated network, PseudomonasNet, includes 203,118 
co-functional links among 5,456 genes, which covers ~98% of the coding genome. Therefore, PseudomonasNet 
provides new opportunities for functional predictions of many uncharacterised genes.

The pairwise comparisons between the nine component networks showed only small overlaps (Supplementary 
Fig. S1), which suggests either high complementarity or inaccuracy of the networks. We therefore assessed the 
overall quality of PseudomonasNet as well as individual component networks using gene pairs that share anno-
tations in the KEGG pathway database24, which is independent from the Gene Ontology biological process 
database used for the network training. All component networks showed reasonably high accuracy for KEGG 
pathway links, which indicates that the small network overlaps are due to their complementarity rather than inac-
curacy. We also observed substantial improvement in both the accuracy and genomic coverage of the integrated 
PseudomonasNet over individual component networks (Fig. 1B), which indicates that the network has been 
improved by the integration of various experimental and computational data.

We also examined topological properties of PseudomonasNet. We found all genes except four are con-
nected in the largest component of PseudomonasNet. Distribution of the number of connections indicated that 
PseudomonasNet is a small-world network with broad-scale25 (Supplementary Fig. S2), whose connectivity 
distribution has a power law regime followed by exponential decay of the tail, which is characteristic global 
topology for task-driven social networks (e.g., Board of directors) or functional protein networks26. The broad 
scale of degree distribution can be attributed to the high network modularity by enrichment of within-group 
(e.g., within-pathway) connections, implicating that PseudomonasNet retrieves relationships between genes that 
belong to the same pathways.

Antimicrobial drug targets are more likely to be hub genes in PseudomonasNet. Bacterial genes 
that are critical for viability tend to be centralised in the gene or protein network27. Such hub microbial genes that 
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Figure 1. Construction and assessment of PseudomonasNet. (A) A summary of the construction of an 
integrated co-functional network for P. aeruginosa. The co-functional links between P. aeruginosa genes were 
derived from nine diverse data sets: five P. aeruginosa co-functional networks, including co-citation (CC), 
co-expression (CX), correlation of protein domain profiles (DP), neighbourhood of bacterial orthologues 
(GN), and correlation of phylogenetic profiles (PG), and four associalog networks from co-citation and co-
expression of E. coli orthologues and bacterial protein-protein interactions. PseudomonasNet was constructed 
based on a machine learning approach with reference gold-standard functional gene pairs that share Gene 
Ontology biological process annotations using a Bayesian data integration framework. (B) The integrated 
PseudomonasNet and individual component networks were assessed for precision via a comparison to 
KEGG pathway annotations. We measured the proportion of the gene pairs annotated by KEGG that share 
same pathway terms for every bin of 1,000 gene pairs from the highest score. The integrated network covers 
approximately 98% of the P. aeruginosa coding genes with superior precision to all individual component 
networks, which confirms the effectiveness of the data integration in the construction of the genome-scale 
functional network of the P. aeruginosa genes. (C) Network centralities of drug targets and essential genes 
are significantly higher than that of genomic average based on both degree- and betweenness-based scores in 
PseudomonasNet, which suggests that other genes with high centrality scores are good candidates for drug 
targets.



www.nature.com/scientificreports/

4Scientific RepoRts | 6:26223 | DOI: 10.1038/srep26223

have no homologs in the host genome are potential antimicrobial drug targets28. To test whether known antibi-
otic target proteins are more likely to be hubs in PseudomonasNet, we examined the network centrality scores 
of 73 P. aeruginosa orthologues of 93 bacterial proteins that have previously been reported as antimicrobial drug 
targets29. Two different network centrality measures were used for this analysis: degree centrality, in which a gene 
with more connected neighbours is considered to be more central, and betweenness centrality, in which a gene 
located on the shortest path between the larger number of gene pairs is more central. We observed significantly 
higher distribution of network centrality for known antimicrobial drug targets than that for all P. aeruginosa genes 
in PseudomonasNet (Fig. 1C, P-value =  2.2e-16 and 4.81e-13 for degree and betweenness centrality, respectively; 
Wilcoxon rank-sum test), which suggests that PseudomonasNet may be used to predict novel microbial drug tar-
gets for the development of antibiotics against P. aeruginosa. We found that essential genes30 also tend to be hubs 
in PseudomonasNet and 48 of the 73 drug target (65.8%) are essential genes.

Algorithms for network-assisted hypothesis generation. The main purpose for the development of 
PseudomonasNet was to provide experimental biologists with an accessible research platform to generate testable 
hypothesis about traits of clinical importance. We implemented three complementary network-search algorithms 
for such hypothesis generation: (i) pathway-centric search, (ii) gene-centric search, and (iii) context-centric 
search.

Pathway-centric search (Fig. 2A) starts with a set of known genes for a pathway or trait. Assuming all con-
nected genes in the network are functionally coupled, we expect that known genes for the same pathway or trait 
are interconnected in PseudomonasNet, and additional genes that are well-connected to the known genes are also 
likely to be involved in the same pathway or trait. Therefore, if we have known genes for a pathway or a trait of 
interest, this search method would be the best choice for hypothesis generation. In contrast, gene-centric search 
(Fig. 2B), which starts with an uncharacterised query gene, can infer the function of the query gene by searching 
for an enriched function among network neighbours of the query gene.

Context-centric search (Fig. 2C) differs from the two previous algorithms in that it uses differential expressed 
genes (DEGs) as input. DEGs are a molecular signature of a specific biological context. The key idea of this algo-
rithm is that if the neighbours of a hub gene respond to a certain cellular context, then the hub gene is likely to 
be involved in the cellular context. If a set of network neighbours of a hub gene has significant overlap with input 
DEGs for a clinical condition, we may hypothesise that the hub gene is associated with the clinical condition. 
For given expression profiles of a clinical condition, this network-search method provides an alternative way to 
identify novel genes involved in pathogenic traits such as antibiotic resistance.

We implemented all three network-search algorithms in the companion web server to PseudomonasNet 
(www.inetbio.org/pseudomonasnet). For example, the web server reports receiver operating characteristic (ROC) 
curve which indicates retrieval rate of the user-input genes by PseudomonasNet. ROC analyses for KEGG path-
ways suggest that PseudomonasNet is highly predictive for many cellular processes (Supplementary Fig. S3). We 
also examined contribution of P. aeruginosa specific data to the pathway prediction by testing a network with 
no links derived from only other bacterial data (EC-CC, EC-CX, BA-HT, BA-LC of Table 1). We found that a 
network of Psedomonas-derived links only, which contains 157,395 links (~77.5% of PseudomonasNet) is highly 
predictive for the same KEGG pathways, but not as much as PsedomonasNet, which suggest that significant 
portion of predictive power for the P. aeruginosa pathways was originated from the links derived from E. coli 
and other bacterial species. Below, we will demonstrate how these network-search algorithms are used to predict 

Code Description # of genes # of links

PA-CC Links inferred by co-citation across PubMed central 
articles for P. aeruginosa 2,673 72,947

PA-CX Links inferred by co-expression across gene expression 
profiles of the GEO database 4,271 49,483

PA-DP Links inferred by the correlation of protein domain profiles 
of P. aeruginosa coding genes 2,589 5,000

PA-GN Links inferred by the neighbourhood of P. aeruginosa 
orthologues in bacterial genomes 4,022 32,000

PA-PG Links inferred by the correlation of phylogenetic profiles of 
P. aeruginosa genes 2,031 31,496

EC-CC Associalogs of links inferred by co-citation across PubMed 
central articles for E. coli biology 1,403 26,484

EC-CX Associalogs of links inferred by co-expression across E. coli 
gene expression profiles of GEO database 1,999 37,483

BA-HT Associalogs of bacterial protein-protein interactions 
derived from high-throughput analysis 1,768 12,361

BA-LC Associalogs of bacterial protein-protein interactions 
derived from the literature curation of small-scale analyses 626 893

PseudomonasNet Integrated network of the nine component networks 5,456 203,118

Table 1.  Nine component networks incorporated into PseudomonasNet. PA, P. aeruginosa; EC, E. coli; BA, 
other bacteria; CC, co-citation; CX, co-expression; DP, domain profiling method; GN, gene neighbourhood 
method; PG, phylogenetic profiling method; HT, protein-protein interactions by high-throughput assay; LC, 
literature-curated protein-protein interactions.

http://www.inetbio.org/pseudomonasnet
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novel genes for virulence and antibiotic resistance. All predictions in this manuscript can be reproduced by users 
with example input data available on the web server.

PseudomonasNet predicts novel virulence-associated genes. In addition to the computational 
demonstration of the prediction power of PseudomonasNet as described above, we sought to experimen-
tally validate its usefulness in predicting novel genes associated with P. aeruginosa traits related to infection. 
Although P. aeruginosa is a human pathogen, its virulence factors are also effective in exerting cytotoxicity to 
diverse infection hosts, including mouse9, nematode31, and plant32. In a recent genome-wide screening study 
using Caenorhabditis elegans as an infection host, 41 genes of the P. aeruginosa PA14 strain were shown to affect 
virulence33. Orthologues for 38 of these 41 PA14 genes involved in virulence are present in PAO1 (Supplementary 
Table S1). These orthologues can be used as seed genes to retrieve more virulence-associated genes in PAO1 by 
PseudomonasNet.

First, we measured the prediction power of PseudomonasNet for the 38 virulence-associated genes. Assuming 
an accurate functional network with well-connected functionally coherent genes, we expect that virulence genes 
will score high when the scoring is based on connectivity to known virulence-associated genes. Receiver operat-
ing characteristic (ROC) analysis of the ranked virulence-associated genes, which can be summarised by an area 
under the ROC curve (AUC) score, results in a score of 0.85. This score indicates that PseudomonasNet is highly 
predictive for virulence in C. elegans. Therefore, we may expect that other genes that are highly connected to the 
38 virulence genes are also strong candidates.

We prioritised PAO1 genes using the pathway-centric search algorithm (see Fig. 2A) on the PseudomonasNet 
web server using the 38 virulence genes as input data. We selected 27 genes from the top-ranked candidates based 
on the availability of transposon-insertion mutants for follow-up experimental analysis. To validate whether the 
selected genes are involved in P. aeruginosa virulence, we examined the effect of each gene disruption on bacterial 
virulence towards C. elegans. We monitored the survival rate of worms (n =  90) fed with each mutant. The aver-
age lifespan of the C. elegans N2 worms fed PAO1 was 8.38 ±  0.40 days (Fig. 3A, black line), whereas N2 worms 
fed the standard E. coli OP50 strain lived for 11.08 ±  0.47 days (Fig. 3A, green line). Among 27 tested genes, the 
disruption of six genes significantly altered the survival rate of C. elegans N2 compared with worms fed wild-type 
PAO1 (p-value <  0.05 by log-rank test, Supplementary Table S2). Three of these genes, PA0996 (pqsA), PA0999 
(pqsD), and PA3478 (rhlB), were determined to positively regulate PAO1 virulence. The survival rate of C. elegans 
increased substantially when fed with each of these mutants (Fig. 3A, blue lines). The pqsAD genes are compo-
nents of a five-gene operon involved in the production of Pseudomonas Quinolone Signal (PQS), a molecule 
that mediates P. aeruginosa quorum sensing (QS)34–36. The rhlB gene encodes a subunit of rhamnosyltransferase. 
Notably, the rhlB gene is located adjacent to rhlR, a gene that encodes a major QS regulator37. Although these 
genes were previously characterised to be associated with virulence, their apparent roles in the C. elegans infection 
model were not recognised in a previous genome-wide screening study33. It is therefore reasonable to claim that 
the network-assisted approach can complement genetic screening, which sometimes suffer from false negative 
identifications.

Disruptions of three other genes (PA2553, PA3329, and PA3972) resulted in elevated P. aeruginosa PAO1 viru-
lence in C. elegans (Fig. 3A, red lines). The survival rate of C. elegans was significantly decreased when the worms 
were fed with each of these three mutants. This effect was the most significant for the PA2553 gene mutation; 

Figure 2. Three network-search algorithms were implemented on the PseudomonasNet web server. (A) The 
pathway-centric search prioritises candidate genes for a pathway or trait by connectivity to the user-provided 
seed genes. (B) The gene-centric search prioritises candidate functional terms (e.g., Gene Ontology biological 
process terms) for a query gene based on the enrichment of known functional terms among its neighbours. 
(C) The context-centric search prioritises candidate genes for a context (e.g., a clinical condition, such as a 
drug response) as represented by differential expressed genes (DEGs). The statistical association between the 
neighbours of a hub gene and the DEGs are measured by a one-tail Fisher’s exact test.
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worms fed this mutant had an average lifespan of less than seven days. The functional roles of these genes are not 
clearly defined. To search for functional clues about these new negative regulators of virulence, we employed the 
gene-centric search algorithm (see Fig. 2B) on the PseudomonasNet web server, in which candidate GO biological 
process terms are prioritised for a query gene by their enrichment among network neighbours of the query gene. 
Gene-centric searches for PA2553 and PA3972 predicted ‘phenylacetate catabolic processes’ within the top three 
candidate-associated pathways (Supplementary Table S3). The phenylacetate catabolic pathway has previously 
been reported to be required for virulence of Burkholderia cenocepacia, which is another opportunistic patho-
gen in cystic fibrosis, in the C. elegans host model38. Together, these findings suggest that PA2553 and PA3972 
are also associated with virulence in C. elegans via this metabolic pathway. A gene-centric search for PA3329 
predicted ‘quorum sensing’ as the third-ranked candidate pathway and ‘phenazine biosynthetic processes’ as the 
eighth-ranked GO biological process term. Phenazine was previously reported as a signalling factor in the quo-
rum sensing network of P. aeruginosa39. Thus, the gene-centric search report suggests that a mutation in PA3329 
increases virulence in the C. elegans host via the modulation of phenazine biosynthesis, which mediates quorum 
sensing. These results together demonstrate the usefulness of the gene-centric search method for the study of 
molecular mechanisms of the identified genes involved in clinical traits.

PseudomonasNet predicts novel genes for antibiotic resistance. We then examined whether 
network-assisted interrogation can identify genes involved in antibiotic resistance, which is an important trait of 
P. aeruginosa as a major nosocomial pathogen. We employed the context-centric search algorithm (see Fig. 2C), 
which uses DEGs as input data, to predict genes related to antibiotic resistance. We predicted genes related to 
ceftazidime resistance using 325 PAO1 genes that were determined to be differentially expressed in response to 
treatment with ceftazidime (250 ng/mL) (P-value <  1.0e-5)40. We selected 30 genes from the top candidates by 
context-centric search in PseudomonasNet based on the availability of transposon-insertion mutants, and exam-
ined the effect of each gene deletion on the sensitivity to ceftazidime. Notably, four different mutants, in which 
PA1556, PA4067, PA0511, or PA0510 gene was inactivated, exhibited elevated ceftazidime resistance. Minimal 
inhibitory concentration (MIC) values were increased more than 3-fold in each of these mutants when compared 
with the MIC of ceftazidime in the wide-type PAO1 strain (Supplementary Table S4). Consistent with this result, 
enhanced resistance against ceftazidime was visible on a disc diffusion assay when each of these four genes was 
disrupted (Fig. 3B).

We employed the gene-centric search algorithm on the PseudomonasNet web server to search for functional 
clues in the four novel genes involved in ceftazidime resistance (see Fig. 2B). Interestingly, all four genes were pre-
dicted to fall into the category of  ‘generation of precursor metabolites and energy’ as the top candidate-associated 
pathways (Supplementary Table S5). PA0510 and PA0511 are likely involved in the biosynthesis of heme, whereas 
PA1556 encodes a subunit of cytochrome oxidase. As a major outer membrane protein, OprG, which is encoded 

Figure 3. Network-assisted identification of novel genes for virulence and drug resistance. (A) The 
survival curve of C. elegans fed with E. coli OP50, wild-type and each of six PAO1 mutants. Average survival 
time in day of 90 worms for each strain is indicated in the parenthesis. Three mutants conferred a significantly 
increased survival rate (blue lines) whereas three other mutants significantly decreased the survival rate (red 
lines) compared to that of wild-type PAO1. The degree of difference was statistically significant in both cases 
as determined by a log-rank analysis (P <  0.05). (B) Disc diffusion antibiograms of wild-type PAO1 and four 
mutants with ceftazidime are shown. Filter discs with increasing concentrations of ceftazidime (as indicated 
at the top) were placed on LB agar plates and inoculated with the indicated bacterial strains. After overnight 
growth, the cleared zones of inhibition were visualised. The numbers below disc plates indicate diameters of 
inhibition zone (mm).
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by PA4067, has been reported to be involved in iron uptake41. During the MIC test, it was observed that muta-
tions in PA4067, PA0510, and PA0511 genes resulted in slow bacterial growth compared with the wild-type PAO1 
strain. After static overnight culture in LB, OD600 values of these three mutants were approximately 87% of that 
of the wild-type PAO1 strain (data not shown). This result further suggests that antibiotic susceptibility is closely 
related to bacterial growth rate42,43. More importantly, our network-assisted functional predictions yielded a set 
of genes that show consistent phenotypes in a given context.

PseudomonasNet accounts for the pervasiveness of cross-resistance and provides mechanistic 
insights into the trade-off in resistance to different drugs. In order to extend our network-assisted 
investigation to the antibiotic-resistance system, we constructed a network of antibiotic-resistant genes against 
multiple drugs based on PseudomonasNet. A total of 372 PAO1 genes involved in the regulation of resistance 
against six different antibiotics were collected from previous studies: ceftazidime44, ciprofloxacin45, imipenem44, 
meropenem44, polymyxin B46, and tobramycin47,48 (Supplementary Table S6). The direction of mutational effect in 
antibiotic resistance exerted by each gene was determined based on the change in drug resistance following dis-
ruption of the gene. The inactivation of each gene resulted in either increased or decreased drug resistance, which 
suggests that each gene regulates drug resistance in either direction. The genes that are determined to affect each 
drug resistance in each direction are modular and highly predictive in PseudomonasNet, as indicated by the high 
AUC scores (Supplementary Table S6). We also included four newly identified genes whose mutation increase 
ceftazidime resistance, PA1556, PA4067, PA0511, or PA0510, into our investigation of antibiotic-resistance sys-
tem. PseudomonasNet connects 339 unique antibiotic-resistant genes into the largest component network, which 
will be referred to as the ‘antibiotic-resistance network’ below. We observed that the antibiotic-resistance network 
is partitioned into two network communities, each corresponding to a direction of mutational effect to drug 
resistance: genes whose inactivation results in increased resistance (red) and genes whose inactivation results in 
decreased resistance (blue) (Fig. 4A). The node size is proportional to the number of antibiotics whose resistance 
is affected by perturbation of the gene. To conduct a more quantitative analysis of the modularity of genes for 
each direction of mutational effect on drug resistance, we devised a score to measure the adherence to either 
group of genes (see Methods for details). We confirmed that antibiotic-resistant genes are significantly more 
adherent to other genes with the same direction of mutational effect (P =  6.49e-11 and P =  4.29e-13 for genes 
with increased and decreased drug resistance by knockout, respectively; Wilcoxon signed rank test, Fig. 4B). 
These results suggest that the antibiotic resistance systems of P. aeruginosa have modular genetic organisations 
for individual drugs as well as for each direction of mutational effect on resistance, which accounts for the prev-
alence of cross-resistance, in which the knockout of a gene affects the resistance to multiple drugs with the same 
direction of effect.

The antibiotic resistance network also includes 17 genes that participate in both directions of mutational effect 
(yellow nodes of the network in Fig. 4A), showing insignificant adherence to both directions of mutational effect 
(P =  0.1075 by Wilcoxon signed rank test, Fig. 4B). The direction of mutational effect of these genes depends on 
the antibiotic that is used for treatment. We categorised these genes as those involved in the trade-off in resistance. 
Interestingly, the genes that show this trade-off in resistance are located between the two network communities 
for the two directions of mutational effect. Based on this network topology, we hypothesised that these genes 
change their directions of mutational effect for different drugs by switching interaction partners between the 
two groups of genes, whose mutations decrease resistance and those increase resistance. To test this hypothesis, 
we analysed the interaction-bias of these 17 genes towards genes for the same direction of mutational effect 
under different drug conditions (see Methods for details). We found that 13 of these 17 genes have connections 
to both groups of genes in the network of 339 antibiotic-resistant genes. From the interaction-bias analysis, we 
found that six (PA0338, PA2023, PA4222, PA4223, PA4748, and PA5000) of these 13 genes (46%) switch their 
interaction-bias towards the same direction of mutational effect between different drug conditions (Fig. 4B), 
which is a significant observation compared with those by randomised networks (P-value =  0.01 by permutation 
test using 1,000 randomised networks) (Fig. 4C). These results demonstrate that PseudomonasNet can facilitate 
the study of the underlying biology for the resistance of P. aeruginosa to different antibiotics.

Discussion
The genetic system of the human opportunistic bacterial pathogen P. aeruginosa is highly complex, which enables 
P. aeruginosa to be robust and adaptable under many host and drug conditions. Functional gene network models 
have been utilised to facilitate the genetic dissection of complex traits such as human diseases49. Although bac-
teria are single-celled organisms, screening for their virulence and antibiotic resistance generally uncovers many 
associated genes. Moreover, the subset of these genes that form the network for clinically important traits varies 
across different infection conditions. To explore the large genetic search space for pathogenicity and antibiotic 
resistance in P. aeruginosa, a research platform for the systematic dissection of the genetic components of com-
plex traits is needed. In this study, we presented a genome-scale functional network of P. aeruginosa genes, and 
demonstrated the feasibility of network-assisted gene identification for virulence and antibiotic resistance with 
experimental validation. We used two different network-assisted search algorithms to predict candidate genes 
for clinically important traits: the pathway-centric search, which starts with known genes for a pathway or trait, 
and the context-centric search, which starts with DEGs for a clinical condition. We achieved ~22% (6/27) and 
~13% (4/30) discovery rates for genes involved in virulence within the C. elegans host and ceftazidime resist-
ance, respectively. These discovery rates are ~32-fold and ~13-fold more effective than unbiased genome-wide 
screens for the genes involved in virulence within C. elegans (38/5572 =  0.68%) and ceftazidime resistance 
(55/5572 =  0.99%), respectively. Therefore, if some genes for virulence have already been identified from initial 
unbiased genome-wide screens, then it would be more effective to experimentally test only the candidates pre-
dicted from the pathway-centric search option of the web server using the seed genes identified from the screen 
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than to repeat the same genome-wide screen. Similarly, if we have gene expression data for a condition related to 
a clinical trait, then the context-centric search would be a cost-effective approach for the next round of screen.

PseudomonasNet revealed the functional communities of genes for each direction of mutational effect on 
antibiotic resistance across multiple drugs. Thus, the antibiotic resistance network suggest that direction of muta-
tional effect on drug resistance is regulated by pathways rather than individual genes, and explains the frequently 
observed cross-resistance of P. aeruginosa genes to multiple drugs via the high functional coherence for each 
direction of mutational effect. In addition, PseudomonasNet provides mechanistic insights into the trade-off in 
resistance to different drugs by showing a switch in the interaction-bias towards genes with the same direction of 
mutational effect on different drugs. These results demonstrate the value of genome-scale functional networks to 
study the underlying mechanisms of multi-drug resistance in pathogenic microbes.

Functional networks map co-functional relationships between genes, which do not necessarily indicate spe-
cific underlying mechanisms for the functional associations. For example, co-cited genes are likely to be func-
tionally coupled, albeit no clue whether they interact directly or indirectly. Functional networks are therefore 

Figure 4. Analysis of cross-resistance and trade-offs in resistance to different antibiotics using an antibiotic 
resistance network. (A) A network of 339 antibiotic-resistant genes based on PseudomonasNet is shown. 
Blue nodes represent genes in which antibiotic resistance is decreased by knockout (i.e., positive regulation of 
antibiotic resistance) and red nodes represent genes in which antibiotic resistance in increased by knockout 
(i.e., negative regulation of antibiotic resistance). Yellow nodes represent genes that show a trade-off in 
resistance to different antibiotics. The node size is proportional to the number of antibiotics whose resistance 
are changed by perturbation of the gene. (B) Adherence of the genes with each direction of mutational effect 
to the same directional group of genes in PseudomonasNet. Box and error bars represent distribution of mean 
adherence score and standard deviation, respectively, for each group of genes. (C) The normalised connection 
scores to two groups of genes for different directions of mutational effect are represented as bars projecting 
in opposite directions: right for those that decrease antibiotic resistance by knockout and left for those that 
increase antibiotic resistance by knockout. If the given gene interacts with other genes with the same direction 
of mutational effect for each drug, then the blue bars are expected to project to the right and the red bars are 
expected to project to the left. The asterisk symbol (*) represents genes that exhibit adherence to the same 
direction of mutational effect. Genes that are underlined were shown to switch their interactions between 
directions of mutational effect in different antibiotic treatments. (D) The distribution of the number of genes 
that switch their interactions between directions of mutational effect under different antibiotic conditions for 
1,000 randomised networks is shown.
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inherently limited for the study of underlying molecular interactions for the phenotypes such as bacterial 
pathogenicity. However, as demonstrated in this study, combined use of the functional network in prioritizing 
candidate genes and loss-of-function analysis will accelerate discovery of new genetic components of bacterial 
pathogenicity. Investigation of specific molecular mechanisms of their involvement in the pathogenicity may need 
additional computational and experimental tools.

Recently, studies of the molecular evolution of P. aeruginosa that have sequenced bacterial clones isolated 
from patients have identified genes that show parallel evolution; these genes are suggested to be critical to host 
adaptation50. This sequencing-based approach has been applied to cancer genomes, which has uncovered several 
cancer gene candidates based on the mutation frequency among patients. However, these studies have revealed 
that somatic mutations in cancer genes occur in only a minority of patients51, which suggests that the ability 
to identify cancer genes from mutational information is limited. A sequencing-based approach to study clin-
ically important traits such as the virulence and drug resistance of bacterial pathogens in patients may suffer 
from similar limitations in the future. Cancer genomics now employ pathway and network approaches to analyse 
somatic mutation data derived from patients52. Similarly, the analysis of mutation data from pathogenic bacterial 
strains isolated from patients could benefit from these pathway and network approaches. For example, iden-
tification of subnetworks enriched for mutations among drug resistance strains may reveal genes or pathways 
that drives antibiotic resistance. Thus, genome-scale functional networks for these pathogenic microbes, such as 
PseudomonasNet, may be a useful resource for pathway and network approaches in the future analysis of clinical 
microbial genomics data.

P. aeruginosa is a versatile organism with a robust capability to adapt to diverse growth conditions. 
Microarray-based whole-genome typing indicates that P. aeruginosa strains, regardless of whether they are recov-
ered from the environment or a patient, possess a highly conserved genome53. Inside the airway mucus layer of 
patients with cystic fibrosis, P. aeruginosa strains with mutations in the mucA gene, which encodes an anti-sigma 
factor1, and lasR, a gene involved in QS54, have been isolated. Together, these results suggest that P. aeruginosa 
can increase its survival fitness by selectively acquiring or losing only a small number of regulatory genes rather 
than by a larger degree of genome rearrangement. PseudomonasNet will be useful to explore the physiological 
consequences of a defined gene mutation, which may be detected in certain clinical isolates from patients with 
significant disease symptoms.

PseudomonasNet has proved its prediction power as described in the present study. Massive amount of 
genomics data generated by next generation sequencing in coming years can be incorporated into the current 
network by retraining and will potentially improve predictions. We anticipate that PseudomonasNet will acceler-
ate the functional annotation of unknown genes as well as expand our understanding of clinically important traits 
of P. aeruginosa, which may lead to the development of novel antibiotics or anti-virulence therapies in the future.

Methods
Sequences and functional annotation data for Pseudomonas aeruginosa. The genome sequence 
and 5,572 protein-coding genes for P. aeruginosa PAO1 were downloaded from the Pseudomonas Genome 
Database55, and the reference functional annotation data for P. aeruginosa were downloaded from Gene 
Ontology23.

Construction of PseudomonasNet. Co-functional links were inferred from nine distinct data types (see 
Table 1) using machine learning methods, and then integrated into PseudomonasNet using a Bayesian statis-
tical framework. A detailed description of the network construction is provided in the Supplementary Online 
Methods.

Network visualisation and centrality analysis. All network visualisations are performed on Cytoscape 
software56 with the organic layout option. The degree centrality for gene t represents the number of genes that 
have a direct link with gene t. The betweenness centrality for gene t (Bt) is calculated as:

∑ σ

σ
= ≠ ≠B

t( )

(1)
t j k t

jk

jk

In eq. (1), σjk represents the number of shortest paths between node j and node k, and σjk(t) represents the 
number of shortest paths between node j and node k that pass through node t. The edge weight score is ignored 
when calculating the betweenness centrality.

Adherence score and interaction-bias analysis. For the given network of genes involved in antibiotic 
resistance, we calculated the adherence of gene t to genes with increased or decreased resistance to drug d by 
knockout (AId(t) or ADd(t) respectively) by the following equations:

=
+

×
+AI t N I t

N I t ND t
SI SD
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In eqs (2) and (3), NI and ND represent the number of neighbours with increased and decreased resistance by 
knockout, respectively, and SI and SD represent the number of genes with increased and decreased resistance by 
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knockout, respectively. For a given drug d, naïve adherence scores +( for AI t( )N I t
N I t ND t d

( )
( ) ( )

d

d d  and 

+ )for AD t( )N D t
N I t N D t d

( )
( ) ( )

d

d d
 need to be normalized by the ratio of SI and SD 

+( SI
SI SD

d

d d
 and 

+ )SD
SI SD

d

d d
, respectively, 

to account for the difference in the total number of antibiotic resistance genes among drugs.
We determined whether gene t switches interactions between directions of mutational effect in different drugs 

using the following criteria: i) if t increases the resistance to d by knockout and > . ×AI t AD t( ) 1 5 ( )d d  or ii) if t 
decreases the resistance to d by knockout and > . ×AD t AI t( ) 1 5 ( )d d .

Virulence test in C. elegans, MIC determination, and disc diffusion assay. Virulence tests were 
performed following procedures that have been described previously57. In brief, 10 μ l each of overnight-grown 
bacterial culture was spotted on Nematode Growth Medium (NGM) agar plates. After incubation for 2 h at room 
temperature, each plate was seeded with 10 adult hermaphrodite worms (nine replicates per trial) and incubated 
at 20 °C. Viability of worms was monitored every 24 hr and live worms were transferred to fresh NGM plates 
every 48 hr to exclude the newborn larvae. PAO1 was used as a control. The MIC test and disc diffusion assay were 
performed as described previously58.
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