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Secure dynamic multiparty 
quantum private comparison
Hussein Abulkasim1,2,3*, Ahmed farouk  1,4*, Safwat Hamad6, Atefeh Mashatan1 & 
Shohini Ghose4,5

We propose a feasible and efficient dynamic multiparty quantum private comparison protocol that is 
fully secure against participant attacks. In the proposed scheme, two almost-dishonest third parties 
generate two random keys and send them to all participants. Every participant independently encrypts 
their private information with the encryption keys and sends it to the third parties. The third parties 
can analyze the equality of all or some participants’ secrets without gaining access to the secret 
information. New participants can dynamically join the protocol without the need for any additional 
conditions in the protocol. We provide detailed correctness and security analysis of the proposed 
protocol. Our security analysis of the proposed protocol against both inside and outside attacks proves 
that attackers cannot extract any secret information.

The pioneering work of Bennett and Brassard1 laid the groundwork for the rapidly growing field of quantum cryp-
tography and quantum communication. Subsequently, various quantum protocols have been proposed including 
Shor’s algorithm for factoring2–4, quantum teleportation5–9, superdense coding10–13, quantum secure direct com-
munication14–16, quantum secret sharing17–21, quantum dialogue22,23 and quantum key agreement24,25. In 1982, 
the millionaires’ problem was proposed as a possible application of secure multiparty computing26, the goal is for 
two parties to compare their wealth and learn who is wealthier without revealing any extra data about the other’s 
wealth. In 2001, an efficient and fair solution to the socialist millionaires’ problem was proposed27. Furthermore, a 
solution for the socialist millionaires’ problem based on homomorphic encryption in a semi-honest environment 
was discussed28. Lo29 proved that the task of secure two-party computation is unachievable even with quantum 
cryptography29. Therefore, a quantum private comparison (QPC) protocol for comparing the equality of infor-
mation with the help of a third party (TP) was proposed30. Furthermore, Hung et al.31 proposed a secure QPC 
protocol with two almost-dishonest TPs. In general, there are four common levels of TP’s trustworthiness32,33: (1) 
TP is fully honest. In this circumstance, the participants only send their encrypted secrets to the TP. The TP then 
compares the private information of the participants and announces the final result. This situation is surely ideal, 
but finding a fully honest TP in the real world could be challenging. (2) TP is dishonest such that all participants 
cannot trust the TP. This assumption is equivalent to the standard two-party QPC protocols without a TP, whose 
insecurity was proved by Lo29. (3) TP is semi-honest. Under this circumstance, the participants can partially trust 
the TP. The TP honestly executes the required processes and may eavesdrop on participants’ private information 
using passive attacks31. (4) TP is almost-dishonest. This situation, which is more reasonable, assumes that the 
participants can partially trust the TP, and the TP may perform any active attack while executing the protocol, 
except conspiring with dishonest participants31. In general, QPC protocols can be used for novel and existing 
applications, including quantum voting34,35, quantum bidding36, and quantum auctions37–39.

Chang et al. proposed the first multiparty quantum private comparison (MQPC) protocol for comparing 
the equality of secrets of any two parties among M participants40. The protocol used GHZ states as a quan-
tum resource. Subsequently, a novel QPC protocol that included the support of a semi-honest TP and used 
d-dimensional entangled photons was proposed41. An MQPC protocol based on entanglement swapping of Bell 
states was subsequently presented42. This scheme used the one-way hash function to address information leak-
age issue and to encrypt secret information between the communicating parties. A pioneering M-participant 
QPC protocol that addressed the possibility of a dishonest TP collaborating with participants was discussed43. 
Furthermore, a novel MQPC protocol with a semi-honest TP that used entanglement swapping of d-level states 
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and a unitary operation to encrypt the participants’ secrets was proposed44. Then, Hung et al.31 presented a QPC 
protocol consisting of two third-parties in which one is malicious and the other is almost dishonest was pre-
sented. A multi-user QPC protocol that employs both scattered preparation operation and one-way convergent 
transmission operation of quantum states was also proposed45, where two participants can compare their secrets 
with the support of the remaining participants using the polarization and spatial-mode degrees of freedom of 
photons to transmit information. Liu et al.46 proposed a QPC protocol in which any participant can join dynam-
ically to participate in the comparison of M participants.

These quantum private comparison protocols still suffer from low efficiency and an inadequate level of secu-
rity. Therefore, this work proposes a feasible, efficient, and secure dynamic multiparty quantum private com-
parison protocol (DMQPC) that uses single-photons to encode and send encrypted information. Our proposed 
scheme has several important features. First, dishonest participants cannot individually or jointly attack the 
scheme to gain any private or secret information since every participant independently encrypts and transmits 
secret information to two TPs without the involvement or assistance of other participants. Second, our protocol 
is dynamic and flexible such that multiple participants can join or leave the protocol and the two TPs can success-
fully compare the encrypted information of any subset of M participants. Third, the participants only generate 
and transmit single photons, and the two TPs generate single photons and perform single-photon measurements. 
Hence, the cost of the deployed quantum devices and the employed quantum operations is reduced, and the 
efficiency of the proposed protocol is increased. Finally, the communication cost is significantly reduced since 
the proposed protocol can be executed in a variable number of rounds. We describe our scheme and provide 
proofs and illustrative examples in the following sections. Section 2 introduces the proposed DMQPC protocol. 
Section 3 verifies the correctness of the proposed scheme. The security analysis is presented in Section 4. Section 
5 discussed the efficiency of the scheme and comparisons to some previous protocols. We show that our scheme 
is more feasible, efficient, secure and flexible compared to other protocols. Section 6 introduces comparisons to 
some existing QPC protocols. A summary and conclusion is presented in Section 7.

The Proposed DMQPC Protocol
Here, we will discuss the DMQPC protocol for three different scenarios, namely two-party QPC with two rounds, 
DMQPC with two rounds and DMQPC with B-block. Before the comparison of data, there are two main pro-
cesses: (1) validation check process; (2) the initial preparation and encryption process. The two processes are 
similar in the three scenarios. So, they will be described in detail only for two-party QPC with two rounds.

Two-party QPC with two rounds. Suppose that Alice and Bob intend to compare the equality of their 
secrets X and Y, respectively, with the help of two almost-dishonest TPs. The binary representation of X in F2n 
is (x0, x1, ..., xn−1), and the binary representation of Y in F2n is (y0, y1, ..., yn−1) where Xi, Yi ∈ {0, 1}n and n ≥ 2 is 
the number of secret bits. In general, a protocol with two TPs has many advantages such as: (1) improving load 
balance performance since we can distribute the workload to two TPs (servers) instead of only one; (2) increasing 
availability that ensures continuity of communication; (3) ensuring security since one TP can monitor the perfor-
mance of the other one31. The idea of adopting two TPs to execute the comparison task in QPC was first suggested 
by Hung et al.31. In our work, the advantage of using two TPs is that one can generate two independent random 
keys by two different TPs. More specifically, the first third-party (TP1) computes the comparison result of the first 
round. The second third-party (TP2) computes the comparison result of the second-round. Both TP1 and TP2 
prepare a random secret key and send it to both Alice and Bob.

Validation check process. Firstly, X and Y must have the same length. Secondly, to correctly execute the proposed 
QPC protocol, secret data must be checked as follows; If the length of X(Y) is odd, then Alice (Bob) must replace 
the last bit with two bits;

→
→{0 00

1 10 (1)

Initial Preparation and Encryption Process. TP1 and TP2 prepare two random secret keys Krand
TP1  and Krand

TP2 , respec-
tively, and send them through quantum channels to both Alice and Bob16,47. Alice and Bob compute 

= ⊕K K Krand rand
TP

rand
TP1 2 , where = = = =K X YK Krand rand

TP
rand
TP1 2 . Then Alice and Bob split Krand into two 

equal parts Krand
1  and Krand

2 , where Krand ∈ {0, 1}n and ∈K K, {0, 1}rand rand
n1 2 2 . To reduce the communication cost, 

Alice also divides X into two equal parts Xpart_1 and Xpart_2. Alice then computes

X K X _ , (2)rand part1
1

1= ⊕

X K X _ (3)rand part2
2

2= ⊕ .

The encrypted parts X1 and X2 can be represented as follows.

{ }( )X x x x, , , ,
(4)

n1 1,0 1,1 1, 2 1= ... −
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= ...+ −{ }( )X x x x, , , ,
(5)

n n n2 2, 2 2, 2 1 2,( 1)

where X1 and X2 are the first and second parts of X encrypted with Krand
1  and Krand

2 , respectively. Similarly, Bob 
computes Y1 and Y2 just as Alice does.

= ... −{ }( )Y y y y, , , ,
(6)

n1 1,0 1,1 1, 2 1

{ }( )Y y y y, , , ,
(7)

n n n2 2, 2 2, 2 1 2,( 1)= ...+ −

where Y1 and Y2 are the first and second parts of Y encrypted with Krand
1  and Krand

2 , respectively. Also, we have 
X12 = X1 ⊕ X2 and Y12 = Y1 ⊕ Y2. Here, ⊕ is the exclusive-OR operation.

As shown in Table 1, Alice generates new encoded parts ′X1 and ′X12 from X1, X2, and X12 according to the fol-
lowing rule: If the bit value of X1 = X12 = 0(X1 = X12 = 1) then = = = =′ ′ ′ ′X X X X1 ( 0)1 12 1 12 . Otherwise, =′X X1 1 
and X X12 12=′ , where ′X1 and ′X12 are updated parts of X1 and X12. The purpose of this process is to relate the secret 
message parts to each other so that we can reduce the communication cost. That is to say, it is possible to only 
compare one part of the secret messages in some situations to get the final result.

From Table 1, we can get the sequences X1
′, X12, and ′X12, with length n

2
:

=





…







′ ′ ′
−

′

( )X x x x, , ,
(8)

n1 1,0 1,1 1, 2 1

= …+ −{ }( )X x x x, , , ,
(9)

n n n12 2 2 1 ( 1)

= … .′ ′
+

′
−

′{ }X x x x, , , (10)
n n n12 2 ( 2 1) ( 1)

Alice uses the XOR function to encrypt X1 with X1
′ getting Ca1,

( ) ( )C X X x x x x x x{( ), ( ), , ,
(11)

a n n1 1 1 1,0 1,0 1,1 1,1 1, 2 1 1, 2 1
= ⊕ = ⊕ ⊕ ...






⊕







′ ′ ′
− −

′

Similarly, Bob performs the same processes as Alice does,

= ⊕ ′C Y Y , (12)b1 1 1

Alice computes X12 = X1 ⊕ X2:

( ) ( ) ( )X x x x x x x, , ,
(13)

n n n n12 1,0 2, 2 1,1 2, 2 1 1, 2 1 2,( 1)=





⊕


 ⊕



 ...



 ⊕









.+ − −

Bob also computes Y12 = Y1 ⊕ Y2:

=







 ⊕







 ⊕



 ...





⊕








.+ − −( )Y y y y y y y, , ,
(14)

n n n n12 1,0 2, 2 1,1 2,( 2 1) 1, 2 1 2,( 1)

In our protocol, we have three options to compute and announce the comparison result. The first option 
would be for TP1 to compute and announce (in the first and second rounds) the comparison result. The second 
option would be for TP2 to compute and announce the comparison result. These two options can be used when 

X1 X2 X12 = X1 ⊕ X2 X1
′ ′X12

x1,0 0 x n2, 2
0 xn

2
0 x1,0

′ 1 xn
2
′ 1

x1,1 0 +( )x n2, 2 1 1 ( )x n
2 1+ 1 x1,1

′ 0 ( )x n
2 1+

′ 1

x1,2 1 ( )x n2, 2 2+ 0 ( )x n
2 2+ 1 ′x1,2 0 +

′

( )x n
2 2 0

… … … … … … … … … …

( )x n1, 2 1− 1 x2,(n−1) 1 x(n−1) 0
−

′

( )x n1, 2 1
1 x n( 1)−

′ 0

Table 1. Illustration of the proposed technique for preparing ′X1 and X12
′ .
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availability of at least one TP is the most important requirement. The third option would be for the two TPs to 
collaborate to compute and announce the final result. The steps for executing the two rounds to compare the 
equality of parties’ secrets are similar in the three options. The choice of which of the three options to use depends 
on whether the priority is availability, workload or security. The two rounds are described as follows.

The first-round. Step 1. TP1 asks Alice and Bob to prepare Ca1 = X1 ⊕ ′X1 and Cb1 = Y1 ⊕ ′Y1, respectively.
Step 2. Alice prepares a sequence of n

2
 single photons, called Sa1, corresponding to Ca1 in the Z-basis {|0〉, |1〉} 

or the X-basis + = + − = −{ }( 0 1 ), ( 0 1 )1
2

1
2

.
Step 3. For the eavesdropping check, Alice randomly prepares a sequence of decoy photons la1 in one of the 

states {|0〉, |1〉, |+〉, |−〉}. At random positions, she inserts la1 into Sa1 producing a new sequence ′Sa1. Then, Alice 
transmits Sa1

′  to the TP1.
Step 4. Alice announces the random positions and the measurement bases of la1 to TP1 for performing single 

photon measurements. TP1 then reveals the measurement outcomes. Hence, TP1 and Alice analyze the error rate. 
If the rate is higher than a predetermined threshold, then they terminate the protocol and restart the process 
again. Otherwise, TP1 discards la1 from ′Sa1 and extracts Sa1. Then TP1 can restore Ca1, where Sa1 represents Ca1.

Step 5. Bob and TP1 perform the same Steps 2–4 as Alice and TP1 to send Cb1 to TP1.
Step 6. TP1 performs a comparison between the first part of Alice’s and Bob’s secrets by computing 

R1 = Ca1 ⊕ Cb1. If R1 = 0, this indicates that X and Y may be equal. In this case, they move to the next round to 
check whether Alice’s and Bob’s secrets are equal or not. Otherwise, X and Y are not equal, so there is no need to 
continue to the second-round to check the equality of the second parts.

The second-round. Step 7. TP1 informs TP2 that the first-round comparison result may be equal. Then TP2 asks 
Alice and Bob to prepare X12 and Y12, respectively.

Step 8. Alice and Bob perform the same processes described in Steps 2–4 to send X12 and Y12 to TP2.
Step 9. TP2 computes R2 = X12 ⊕ Y12. If R = R1 + R2 = 0 then X and Y are equal. Otherwise, X and Y are not 

equal. A detailed example to check the equality of X = {001100110010} and Y = {011100110010} is shown in 
Tables 2 and 3.

Adding new participants. One of the main features of this protocol is the ease of joining of one or more 
participants. Without loss of generality, suppose a new participant called Charlie want to joint the old participants 
(Alice and Bob). The steps for adding a new participant are described as follows.

The first-round. Step 1. Charlie asks TP1 and TP2 to join the protocol.
Step 2. TP1 asks Charlie to prepare C Z Zc1 1 1= ⊕ ′  using the same protocol as Alice and Bob to prepare Ca1 and 

Cb1, respectively.
Step 3. Charlie prepares a sequence of n

2
 single photons, called Sc1, corresponding to Cc1 in the Z-basis {|0〉, |1〉} 

or the X-basis { }( 0 1 ), ( 0 1 )1
2

1
2

+ = + − = − .

The private information X = {001100110010} Y = {011100110010}

Random keys
=K {010110010110}rand

TP1 , =K {111111010010}rand
TP2

K K K {101001000100}rand rand
TP

rand
TP1 2= ⊕ = , K {101001}rand

1 = , K {000100}rand
2 =

Validity check
Length check for equality X_length = Y_length = 12

Length check for 2 blocks = 612
2

Initial preparation Xpart_1 = {001100}, Xpart_2 = {110010}, K {101001}rand
1 = , 

K {000100}rand
2 = .

Ypart_1 = {011100}, Ypart_2 = {110010}, K {101001}rand
1 = , 

=K {000100}rand
2 .

Encryption = ⊕X K X _rand part1
1

1, = ⊕X K X _rand part2
2

2, 
X1 = {100101}, X2 = {110110}

Y K Y _rand part1
1

1= ⊕ , Y K Y _rand part2
2

2= ⊕ , 
Y1 = {110101}, Y2 = {110110}.

Encoding
If = = = =X X X X0 ( 1)1 12 1 12  then 

= = = =′ ′ ′ ′X X X X1 ( 0)1 12 1 12 . Else, X X1 1=′  & 
=′X X12 12

The same process for Y

X 1001011 = , =′X 1011001 , =X 01001112 . Y 1101011 = , =′Y 1111001 , Y 00001112 = .

Compute = ⊕ ′C X Xa1 1 1, X X X12 1 2= ⊕ , & 
= ⊕ ′C Y Yb1 1 1, = ⊕Y Y Y12 1 2. =C {001001}a1 , X {010011}12 = . =C {001001}b1 , Y {000011}12 = .

Table 2. Illustration of preparation of encrypted secrets for two participants.
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Step 4. For eavesdropping check, Charlie randomly prepares a sequence of decoy photons lc1 in one of the 
states {|0〉, |1〉, |+〉, |−〉}. At random positions, he inserts lc1 into Sc1 producing a new sequence Sc1

′ . Then, Charlie 
transmits Sc1

′  to the TP1.
Step 5. Upon receiving Sc1

′ , Charlie announces the random positions and the measurement bases of lc1 to TP1 
for performing single photon measurements. TP1 then reveals the measurement outcomes. Hence, TP1 and 
Charlie analyze the error rate. If the rate is higher than a predetermined threshold, then they terminate the proto-
col and restart the process again. Otherwise, TP1 discards lc1 from ′Sc1 and extracts Sc1. Then TP1 can restore Cc1.

Step 6. TP1 performs a comparison between the first part of Alice’s, Bob’s, and Charlie’s secrets by computing 
R1 = (Ca1 ⊕ Cb1) + (Cb1 ⊕ Cc1). If R1 = 0, this indicates that X, Y, and Z may be equal. In this case, they move to the 
next round to check whether Alice’s, Bob’s, and Charlie’s secrets are equal or not. Otherwise, X, Y, and Z are not 
equal, so there is no need to continue to the second-round to check the equality of the second parts.

The second-round. Step 7. TP1 informs TP2 that the first-round comparison result may be equal. Then TP2 asks 
Charlie to prepare Z12 using the same protocol as Alice and Bob to prepare X12 and Y12, respectively.

Step 8. Charlie performs the same processes described in Steps 3–4 to send Z12 to TP2.
Step 9. TP2 computes R2 = (X12 ⊕ Y12) + (Y12 ⊕ Z12). If R = R1 + R2 = 0, TP2 announces to Alice, Bob, and 

Charlie that X, Y, and Z are equal. Otherwise, X, Y, and Z are not equal.

Deleting old participants. Without loss of generality, suppose we have three participants Alice, Bob, and 
Charlie. TP1 and TP2 are allowed to delete one or more participants (e.g., Charlie) for several reasons. For exam-
ple, they may want to compare just Bob’s and Alice’s private information. The detailed steps for deleting Charlie 
are as follows.

The first-round. Step 1. TP1 and TP2 agree to delete Charlie. TP1 then discards Cc1.
Step 2. TP1 updates the comparison process, to be only between Alice and Bob, TP1 then recomputes R1. 

In that case, TP1 computes and considers the result of R1 = Ca1 ⊕ Cb1 instead of R1 = (Ca1 ⊕ Cb1) + (Cb1 ⊕ Cc1). 
If the result of R1 = 0, this indicates that X and Y may be equal. In this case, they move to the next round to 
check whether Alice’s and Bob’s secrets are equal or not. Otherwise, X and Y are not equal and the final result is 
announced.

The second-round. Step 3. TP1 informs TP2 that the first-round comparison result of Alice’s and Bob’s secrets 
may be equal.Step 4. TP2 discards the encrypted information of Charlie (Z12) and only considers the private infor-
mation of Alice and Bob, that is, X12 and Y12, respectively.

Step 5. TP2 computes and considers R2 = X12 ⊕ Y12 instead of R2 = (X12 ⊕ Y12) + (Y12 ⊕ Z12). If R = R1 + R2 = 0 
then X and Y are equal. Otherwise, X and Y are not equal.

Multi-party QPC with two rounds. The proposed two-party QPC protocol is easy to extend to M partici-
pants (see Fig. 1). In this scenario, there are M participants Pi (i = 1, 2, ..., M), and each of them has secret infor-
mation ⁎Xi  with length n. Firstly, participants check the validity of their secrets according to the validation check 

Round 1 Alice TP1 Bob

Step 1: Preparation 〈Alice〉 Prepares =C {001001}a1  
in Z-basis or X-basis

Steps 2&4: Eavesdropping check 〈Alice, TP1〉 <error rate specified Threshold, TP1 obtains Ca1.
Else, the communication process is terminated.

Step 5: Preparation 〈Bob〉
Prepares
C {001001}b1 = , in 
Z-basis or X-basis

Step 5: Eavesdropping check 〈Bob, TP1〉 <error rate specified Threshold, TP1 obtains Cb1.
Else, the communication process is terminated.

Step 6: Check the equality
If = ⊕ ≠R C C 0a b1 1 1 ; ≠X Y1 1, ≠X Y .
The protocol will terminate and no need for a second-
round. Otherwise, they continue to Round 2.

Round 2 Alice TP2 Bob

Step 7: Preparation 〈Alice〉 Prepares X {010011}12 =  
in Z-basis or X-basis

Step 8: Eavesdropping check 〈Alice, TP2〉
error rate < specified Threshold, TP2 obtains X12.
Otherwise, the communication process is terminated.

Step 7: Preparation 〈Bob〉
Prepares

=Y {000011}12  in 
Z-basis or X-basis

Step 8: Eavesdropping check 〈Bob, TP2〉
error rate < specified Threshold, TP2 obtains Y12.
Otherwise, the communication process is terminated.

Step 9: Check the equality If R X Y 02 12 12= ⊕ = ; X = Y. Otherwise, X ≠ Y.

Table 3. Illustration of the equality check of X and Y.
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process. After they make sure that their secrets are valid for applying the proposed protocol, TP1 and TP2 send two 
random secret keys (Krand

TP1  and Krand
TP2 ) with length n to all participants. Pi then perform the initial preparation and 

encryption process as shown in Eqs. (2–5) for producing Xi ,1
⁎  and Xi ,2

⁎ . From Table 1, each participant gets the 
sequences ⁎Xi ,1 and ⁎Xi ,2, with length n

2
 for each sequence. Also, each participant computes Ci,1 = Xi ,1

⁎  ⊕ Xi ,1
′ . Now 

each participant has completed preparing encrypted secrets, and they are ready for checking the equality of their 
secrets using the QPC protocol.

The first-round. Step 1. TP1 asks each participant to prepare Ci,1.
Step 2. Pi prepares a quantum sequence containing n

2
 single photons corresponding to Ci,1 (i.e. Si,1) in the 

Z-basis {|0〉, |1〉} or X-basis { }( 0 1 , ( 0 1 )1
2

1
2

+ = + − = − .
Step 3. For the eavesdropping check, Pi randomly prepares a sequence of decoy photons li,1 in one of the states 

{|0〉, |1〉, |+〉, |−〉}. At random positions, Pi inserts li,1 into Si,1 producing a new sequence Si ,1
′ . Then, Pi sends ′Si ,1 to 

the TP1.
Step 4. Upon receiving ′Si ,1, Pi announces the random positions and the measurement bases of li,1 to TP1 for 

performing single photon measurements. TP1 then announces the measurement outcomes. TP1 and Pi analyze the 
error rate. If the rate is higher than a predetermined threshold, they terminate the communication and restart the 
process again. Otherwise, TP1 discards li,1 from ′Si ,1 and extracts Si,1. Then the TP1 can restore Ci,1, where Si,1 repre-
sents Ci,1.

Step 5. TP1 performs a comparison of the first part of Pi’s secret, where for M = 3

= ⊕ + ⊕R C C C C( ) ( ), (15)1 1,1 2,1 2,1 3,1

For M > 3

= ⊕ + ⊕ + + ⊕ .−R C C C C C C( ) ( ) ( ) (16)M M1 1,1 2,1 2,1 3,1 1,1 ,1

If R1 = 0, ⁎ ⁎ ⁎…X X X, , , M1 2  may be equal. Hence, they move to the next round to compute the comparison check 
of Xi,12. Otherwise, …X X X, , , M1 2

⁎ ⁎ ⁎  are not equal. Then it is not necessary to execute the second-round to check 
the equality of Xi,12.

The second-round. Step 6. TP1 informs TP2 that the first-round comparison result may be equal. Then TP2 asks 
Pi to prepare Xi,12.

Step 7. Pi performs the same processes as in Steps 2–4 to send Xi,12 to TP2.
Step 8. TP2 computes the comparison check of Xi,12,
where for M = 3

R X X X X( ) ( ), (17)2 1,12 2,12 2,12 3,12= ⊕ + ⊕

for M > 3

= ⊕ + ⊕ + + ⊕−R X X X X X X( ) ( ) ( ), (18)M M2 1,12 2,12 2,12 3,12 1,12 ,12

Now, TP2 can compute R = R1 + R2 to determine whether …⁎ ⁎ ⁎X X X, , , M1 2  are equal or not. If ⁎ ⁎ ⁎…X X X, , , M1 2  
are equal. Otherwise, ⁎ ⁎ ⁎…X X X, , , M1 2  are not equal. Obviously, it is easy to add or remove any subset of partici-
pants to the protocol, where participants independently perform the required processes to prepare their secret for 
the final step of the protocol. Moreover, TP1 and TP2 can easily compare the equality of the secrets of any subset 
of M participants without any additional conditions.

Figure 1. The proposed DMQPC protocol for M participants.

https://doi.org/10.1038/s41598-019-53967-9


7Scientific RepoRtS |         (2019) 9:17818  | https://doi.org/10.1038/s41598-019-53967-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

Multi-Party QPC with B blocks. The secret data can be divided into several blocks (B), which could be 
useful in comparing the equality of big data. Each block contains n

B
 bits and is executed in two rounds, where n

B
 is 

an even number such that,

n
B

n
B is even

B is odd and n
B

is even2 ,
(19)

≤ ≤







.

Suppose there are M participants Pi (i = 1, 2, ..., M). Each of them has secret information Xi with a length of n, 
and they would like to check the equality of their secrets. Firstly, all participants check the validity of their secrets 
according to the previously described validation check. After they make sure that their secrets are valid for apply-
ing the proposed protocol, TP1 and TP2 send two random secret keys (Krand

TP1  and Krand
TP2 ) with length n to all partic-

ipants. Based on the length of the secret data (n), TP1 and TP2 agree with participants on the value of B (see Fig. 2). 
Pi computes = ⊕K K Krand rand

TP
rand
TP1 2  and divides Krand into B blocks. Each block contains two sub-keys Krand

j1,  and 
Krand

j2, , where j = 1,2, …, B.
Subsequently, Pi performs the initial preparations as previously indicated in Eq. (2) and Eq. (3) for generating 

Xi j,
1  and Xi j,

2 , where i = 1, 2, …, M. At this point, using Table 1, participants can easily prepare their encrypted 
secret information producing Ci,j and X i j

12
, , and are ready to check the equality of their secrets using the following 

steps.

The first-round. Step 1. TP1 asks each participant to prepare Ci,j.
Step 2. Pi prepares a sequence of n

B2
 single photons for each block, called Si,j, corresponding to Ci,j, in the 

Z-basis {|0,〉 |1〉} or X-basis { }( 0 1 ), ( 0 1 )1
2

1
2

+ = + − = − .
Step 3. To prevent eavesdropping, Pi randomly prepares a sequence of decoy photons li,j in one of the states 

{|0〉, |1〉, |+〉, |−〉}. At random positions, Pi inserts li,j into Si,j producing a new sequence Si ,1
′ . Pi then sends 

S S S( , , )i i i B,1 ,2 ,…′ ′ ′  to TP1.
Step 4. Upon receiving ′Si j, , Pi announces the random positions and the measurement bases of li,j to TP1 for 

performing single photon measurements. TP1 then announces the measurement outcomes. TP1 and Pi analyze the 
error rate. For any error rate above a predetermined threshold, they cancel the communication and restart all over 
again. Otherwise, TP1 discards li,j from ′Si j,  and extracts Si,j. TP1 then can construct Ci,j, where Si,j represents Ci,j.

Step 5. TP1 computes the comparison check of Ci,j, where for M = 3

= ⊕ + ⊕ = ⊕ + ⊕ …
= ⊕ + ⊕ .

R C C C C R C C C C R
C C C C

( ) ( )( ( ) ( ), ,
( ) ( )) (20)

B

B B B B

1
1

1,1 2,1 2,1 3,1 1
2

1,2 2,2 2,2 3,2 1

1, 2, 2, 3,

For M > 3

Figure 2. A secret of length 12 can be divided into: (a) 1 block divided into two parts and executed in two 
rounds; (b) 2 blocks; (c) 3 blocks; (d) 6 blocks with two rounds for each block.
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= ⊕ + ⊕ + … + ⊕ = ⊕

+ ⊕ + … + ⊕ … = ⊕
+ ⊕ + … + ⊕ .

−

−

−

R C C C C C C R C C

C C C C R C C
C C C C

( ) ( ) ( )( ( )

( ) ( ), , ( )
( ) ( )) (21)

M M

M M
B

B B

B B M B M B

1
1

1,1 2,1 2,1 3,1 1,1 ,1 1
2

1,2 2,2

2,2 3,2 1,2 ,2 1 1, 2,

2, 3, 1, ,

If R R R0 ( 0, , 0)B
1
1

1
2

1= = … = , X1, X2, …, XM may be equal, where R B
1 is the comparison result of the first round 

of block number B for all participants. Hence, they move to the next round to compute the comparison check of 
X i

12
,1 X X, ,i i B

12
,2

12
,… . Otherwise, their secrets are not equal.

The second-round. Step 6. TP1 informs TP2 that the first-round comparison result of the 1st−block (2 nd−block, …, 
Bth−block) may be equal. Then TP2 asks Pi to prepare X i

12
,1 …X X( , , )i i B

12
,2

12
, .

Step 7. Pi performs the same processes as in Steps 2–4 to send …X X X( , , )i i i B
12

,1
12

,2
12

,  to TP2.
Step 8. TP2 computes the comparison check of X X X( , , )i i i B

12
,1

12
,2

12
,… , where for M = 3

= ⊕ + ⊕ = ⊕

+ ⊕ … = ⊕ + ⊕

R X X X X R X X

X X R X X X X

( ) ( )( ( )

( ), , ( ) ( )), (22)B B B B B
2
1

12
1,1

12
2,1

12
2,1

12
3,1

2
2

12
1,2

12
2,2

12
2,2

12
3,2

2 12
1,

12
2,

12
2,

12
3,

for M > 3

R X X X X X X R X X

X X X X R X X

X X X X

( ) ( ) ( )( ( )

( ) ( ), , ( )

( ) ( )) (23)

M M

M M B B B

B B M B M B

2
1

12
1,1

12
2,1

12
2,1

12
3,1

12
1,1

12
,1

2
2

12
1,2

12
2,2

12
2,2

12
3,2

12
1,2

12
,2

2 12
1,

12
2,

12
2,

12
3,

12
1,

12
,

= ⊕ + ⊕ + … + ⊕ = ⊕

+ ⊕ + … + ⊕ … = ⊕

+ ⊕ + … + ⊕ .

−

−

−

If R R R R R R R 0B B
1
1

2
1

1
2

2
2

1 2= + = + = … = + = , this means that X1, X2, …, XM are equal. Otherwise, X1, X2, …, 
XM are not equal. Note, participants check the result of the first block (R2

1) and if R2
1 = 0 they continue to check the 

next block and so on until they reach the last block; otherwise, TP2 announces that the secrets are not equal.

correctness
From Table 4, according to our initial preparation and encryption method, for every two bits we get two different 
encrypted bits, that is to say, we get Ca1 = 1 and X12 = 0 only when X1 = 0 and X2 = 0. So, the bit values of Ca1 and 
X12 together are decisive in determining the bit values of X1 and X2. Assume we have two participants Alice and 
Bob, and each participant has two bits X = 00 and Y = 10, respectively, and Krand = 00. Alice computes 

= ⊕ = ⊕ ⊕′ ′C X X K X Xa rand part1 1 1
1

11
 g e t t i n g  1 ,  a n d  s e n d s  i t  t o  T P 1 .  B o b  a l s o  c o mp u t e s 

= ⊕ = ⊕ ⊕′ ′C Y Y K Y Y_b rand part1 1 1
1

1 1 getting 1, and sends it to TP1. When TP1 computes R1 = Ca1 ⊕ Cb1 he gets 
R1 = 0, which means that the secrets of Alice and Bob may be equal or unequal (note if R1 = 1, TP1 announces that 
the secrets of Alice and Bob are not equal). So, they should move to the second-round to compare X12 and Y12.

In the second-round, Alice and Bob send X X X K X K X_ _rand part rand part12 1 2
1

1
2

2= ⊕ = ⊕ ⊕ ⊕  and 
Y Y Y K Y K Y_ _rand part rand part12 1 2

1
1

2
2= ⊕ = ⊕ ⊕ ⊕  to TP2, respectively. TP2 computes R2 = X12 ⊕ Y12 = 0 ⊕ 1 

getting R2 = 1. TP1 then computes R = R1 + R2 getting R = 1, which means that X and Y are not equal. Thus, X and 
Y are equal if and only if R = R1 = R2 = 0. For example, suppose we have X = 0000 and Krand = 0000. Then X1 = 00 
and X2 = 00. As shown in Table 5, we must get Ca1 = X1 ⊕ X1

′ = 11 and X12 = 00 only when X1 = 00 and X2 = 00. 
Also, if we have Y = 0000 and Krand = 0000, then Y1 = 00 and Y2 = 00. Hence, we get Cb1 = Y1 ⊕ Y1

′ = 11 and 
Y12 = 00. Now the two TPs can announce that the two inputs are equal by computing R = (Ca1 ⊕ Cb1) + 
(X12 ⊕ Y12) = 0, which proves the correctness of this protocol. Note that if we proposed that Ca1 = X2 ⊕ ′X2 and 
Cb1 = Y2 ⊕ ′Y2 instead of Ca1 = X1 ⊕ X1

′ and Cb1 = Y1 ⊕ ′Y1 respectively, we also get the same correct comparison 
result.

Here, we provide the necessary equations to verify the equality check by TP1 and TP2 for the various suggested 
protocols.

Two-party QPC with two rounds. From Eqs. (11) and (12), TP1 computes

X1 X2 X12
′X1

′X12

To be sent to TP1 To be sent to TP2

Ca1 = X1 ⊕ ′X1 X12

0 0 0 1 1 1 0

0 1 1 0 1 0 1

1 0 1 0 0 1 1

1 1 0 1 0 0 0

Table 4. All possible encrypted data from two bits according to the initial preparation and encryption method, 
where = ⊕X K X _rand part1

1
1, = ⊕X K X _rand part2

2
2.
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R C C

X X Y Y

K X X K Y Y

X X Y Y

,

,

_ _

_ _

a b

rand part rand part

part part

1 1 1

1 1 1 1
1

1 1
1

1 1

1 1 1 1

= ⊕

= ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ .

′ ′

′ ′

′ ′

From Eqs. (13) and (14), TP2 computes

R X Y
X X Y Y
K X K X K Y K Y
X X Y Y

,
,

_ _ _ _
_ _ _ _

rand part rand part rand part rand part

part part part part

2 12 12

1 2 1 2
1

1
2

2
1

1
2

2

1 2 1 2

= ⊕
= ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ .

= ⊕ ⊕ ⊕ .

In the proposed protocol, computing only R2 is not sufficient for getting the comparison result. For example, if we 
have X1 = X2 = 0, Y1 = Y2 = 1, and K K 0rand rand

1 2= = . Then R2 = 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0. This means that X and Y are 
equal in contrast to the correct comparison result (R = R1 + R2 = 1 + 0 = 1). In such a case, R1 guarantees the 
correctness of the final result.

MDQPC with two rounds. From Eq. (15), for M = 3, TP1 computes

X1 X2 X12
′X1

′X12

To be sent to TP1 To be sent to TP2

Ca1 = X1 ⊕ ′X1 X12

0 0 0 1 1 1 0

0 0 0 1 1 1 0

0 0 0 1 1 1 0

1 1 0 1 0 0 0

1 1 0 1 0 0 0

0 0 0 1 1 1 0

1 1 0 1 0 0 0

1 1 0 1 0 0 0

0 0 0 1 1 1 0

1 0 1 0 0 1 1

0 0 0 1 1 1 0

0 1 1 0 1 0 1

1 1 0 1 0 0 0

1 0 1 0 0 1 1

1 1 0 1 0 0 0

0 1 1 0 1 0 1

1 0 1 0 0 1 1

0 0 0 1 1 1 0

1 0 1 0 0 1 1

1 1 0 1 0 0 0

0 1 1 0 0 0 1

0 0 0 1 1 1 0

0 1 1 0 1 0 1

1 1 0 1 0 0 0

1 0 1 0 0 1 1

1 0 1 0 0 1 1

1 0 1 0 0 1 1

0 1 1 0 1 0 1

0 1 1 0 1 0 1

0 0 1 1 1 1 1

0 1 1 0 1 0 1

0 1 1 0 1 0 1

Table 5. All possible encrypted data when X contains four bits, and both X1 and X2 include two bits, where 
X K X _rand part1

1
1= ⊕ , X K X _rand part2

2
2= ⊕ .
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R C C C C

R X X X X X X X X

R K X X K X X

K X X K X X

( ) ( )

( ) ( )

( _ _ )

( _ _ )
rand part rand part

rand part rand part

1 1,1 2,1 2,1 3,1

1 1,1 1,1 2,1 2,1 2,1 2,1 3,1 3,1

1
1

1, 1 1,1
1

2, 1 2,1
1

2, 1 2,1
1

3, 1 3,1

= ⊕ + ⊕ .

= ⊕ ⊕ ⊕ + ⊕ ⊕ ⊕ .

= ⊕ ⊕ ⊕ ⊕ ⊕

+ ⊕ ⊕ ⊕ ⊕ ⊕ .

′ ′ ′ ′

′ ′

′ ′

From Eq. (16), for M > 3, TP1 computes







= ⊕ + ⊕ + + ⊕

= ⊕ ⊕ ⊕ + ⊕ ⊕ ⊕ +

+ ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕ ⊕

+ ⊕ ⊕ ⊕ ⊕ ⊕

+ + ⊕ ⊕ ⊕ ⊕ ⊕ .

−
′ ′ ′ ′

− −
′ ′

′ ′

′ ′

− −
′ ′

R C C C C C C

R X X X X X X X X

X X X X

R K X X K X X

K X X K X X

K X X K X X

( ) ( ) ( ),

( ) ( )

( ),

( _ _ )

( _ _ )

( _ _ )

M M

M M M M

rand part rand part

rand part rand part

rand M part M rand M part M

1 1,1 2,1 2,1 3,1 1,1 ,1

1 1,1 1,1 2,1 2,1 2,1 2,1 3,1 3,1

1,1 1,1 ,1 ,1

1
1

1, 1 1,1
1

2, 1 2,1
1

2, 1 2,1
1

3, 1 3,1
1

1, 1 1,1
1

, 1 ,1

In addition, from Eq. (17), for M = 3, TP2 computes

= ⊕ + ⊕
= ⊕ ⊕ ⊕ + ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

+ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

R X X X X
R X X X X X X X X

R K X K X K X K X

K X K X K X K X

( ) ( ),
( ) ( ),

( )

( ),
rand part rand part rand part rand part

rand part rand part rand part rand part

2 1,12 2,12 2,12 3,12

2 1,1 1,2 2,1 2,2 2,1 2,2 3,1 3,2

2
1

1,
2

1,
1

2,
2

2,
1

2,
2

2,
1

3,
2

3,

1 2 1 2

1 2 1 2

where Krand
1  and Krand

2  represent the random encryption keys for the first and second parts of the private informa-
tion. Xi,part_1 and Xi,part_2 represent the first part and second part of the private information of Pi.

From Eq. (18), for M > 3, TP2 computes

= ⊕ + ⊕ + + ⊕ .

= ⊕ ⊕ ⊕ + ⊕ ⊕ ⊕

+ + ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

+ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

+ + ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ .

−

− −

− −

R X X X X X X
R X X X X X X X X

X X X X

R K X K X K X K X

K X K X K X K X

K X K X K X K X

( ) ( ) ( )
( ) ( )

( ),

( _ _ _ _ )

( _ _ _ _ )

( _ _ _ _ )

M M

M M M M

rand part rand part rand part rand part

rand part rand part rand part rand part

rand M part rand M part rand M part rand M part

2 1,12 2,12 2,12 3,12 1,12 ,12

2 1,1 1,2 2,1 2,2 2,1 2,2 3,1 3,2

1,1 1,2 ,1 ,2

2
1

1, 1
2

1, 2
1

2, 1
2

2, 2
1

2, 1
2

2, 2
1

3, 1
2

3, 2
1

1, 1
2

1, 2
1

, 1
2

, 2







Thus, if R1 = 0 and R2 = 0, R = R1 + R2 = 0, hence X1, X2, ..., XM are equal. Otherwise, X1, X2, ..., XM are not equal.

MDQPC with B-block. From Eq. (20), for M = 3, TP1 computes

R C C C C R C C

C C R C C C C

( ) ( )( ( )

( ), , ( ) ( )),B
B B B B

1
1

1,1 2,1 2,1 3,1 1
2

1,2 2,2

2,2 3,2 1 1, 2, 2, 3,

= ⊕ + ⊕ = ⊕

+ ⊕ … = ⊕ + ⊕

So,

= ⊕ ⊕ ⊕ + ⊕ ⊕ ⊕

× = ⊕ ⊕ ⊕ + ⊕ ⊕ ⊕ …

= ⊕ ⊕ ⊕ + ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕ ⊕

+ ⊕ ⊕ ⊕ ⊕ ⊕

× = ⊕ ⊕ ⊕ ⊕ ⊕

+ ⊕ ⊕ ⊕ ⊕ ⊕ …

= ⊕ ⊕ ⊕ ⊕ ⊕

+ ⊕ ⊕ ⊕ ⊕ ⊕ .

′ ′ ′ ′

′ ′ ′ ′

′ ′ ′ ′

′ ′

′ ′

′ ′

′ ′

′ ′

′ ′

R X X X X X X X X

R X X X X X X X X

R X X X X X X X X

R K X X K X X

K X X K X X

R K X X K X X

K X X K X X

R K X X K X X

K X X K X X

( ) ( )

( ( ) ( ), ,

( ) ( )),

( _ _ )

( _ _ )

( ( _ _ )

( _ _ ), ,

( _ _ )

( _ _ ))

B
B B B B B B B B

rand part rand part

rand part rand part

rand part rand part

rand part rand part
B

rand part B rand part B

rand part B rand part B

1
1

1,1 1,1 2,1 2,1 2,1 2,1 3,1 3,1

1
2

1,2 1,2 2,2 2,2 2,2 2,2 3,2 3,2

1 1, 1, 2, 2, 2, 2, 3, 3,

1
1 1

1, 1 1,1
1

2, 1 2,1
1

2, 1 2,1
1

3, 1 3,1

1
2 1,,2

1, 2 1,2
1,2

2, 2 2,2
1,2

2, 2 2,2
1,2

3, 2 3,2

1
1,B

1, B 1,
1,B

2, B 2,
1,B

2, B 2,
1,B

3, B 3,

For M > 3,
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R C C C C C C R C C

C C C C R C C
C C C C

( ) ( ) ( )( ( )

( ) ( ), , ( )
( ) ( )),

M M

M M M
B

B B

B B M B M B

1
1

1,1 2,1 2,1 3,1 1,1 ,1 1
2

1,2 2,2

2,2 3,2 1,2 ,2 1, 2,

2, 3, 1, 1 ,

= ⊕ + ⊕ + … + ⊕ = ⊕

+ ⊕ + … + ⊕ … = ⊕
+ ⊕ + … + ⊕

−

−

− −

So,

R X X X X X X X X

X X X X

R X X X X X X X X

X X X X R X X X X

X X X X X X X X

R K X X K X X

K X X K X X

K X X K X X

R K X X K X X

K X X K X X

K X X K X X

R K X X K X X

K X X K X X

K X X K X X

( ) ( )

( )

( ( ) ( )

( ), , ( )

( ) ( )),

( _ _ )

( _ _ )

( _ _ )

( ( _ _ )

( _ _ )

( _ _ ), ,

( _ _ )

( _ _ )

( _ _ _ )),

M M M M

M M M M M
B

B B B B

B B B B M B M B M B M B

rand part rand part

rand part rand part

rand M part M rand M part M

rand part rand part

rand part rand part

rand M part M rand M part M

M
B

rand
B

part B rand
B

part B

rand
B

part B rand
B

part B

rand
B

M part M B rand
B

M part M B

1
1

1,1 1,1 2,1 2,1 2,1 2,1 3,1 3,1

1,1 1,1 ,1 ,1

1
2

1,2 1,2 2,2 2,2 2,2 2,2 3,2 3,2

1,2 1,2 ,2 ,2 1, 1, 2, 2,

2, 2, 3, 3, 1, 1, , ,

1
1 1,1

1, 1 1,1
1,1

2, 1 2,1
1,1

2, 1 2,1
1,1

3, 1 3,1
1,1

1, 1 1,1
1,1

, 1 ,1

1
2 1,2

1, 2 1,2
1,2

2, 2 2,2
1,2

2, 1 2,2
1,2

3, 2 3,2
1,2

1, 2 1,2
1,2

, 2 ,2
1,

1, B 1,
1,

2, B 2,
1,

2, B 2,
1,

3, B 3,
1,

1, B 1,
1,

, B ,

= ⊕ ⊕ ⊕ + ⊕ ⊕ ⊕

+ … + ⊕ ⊕ ⊕

× = ⊕ ⊕ ⊕ + ⊕ ⊕ ⊕ + …

+ ⊕ ⊕ ⊕ … = ⊕ ⊕ ⊕

+ ⊕ ⊕ ⊕ + … + ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕ ⊕

+ ⊕ ⊕ ⊕ ⊕ ⊕ + …

+ ⊕ ⊕ ⊕ ⊕ ⊕

× = ⊕ ⊕ ⊕ ⊕ ⊕

+ ⊕ ⊕ ⊕ ⊕ ⊕ + …

+ ⊕ ⊕ ⊕ ⊕ ⊕ …

= ⊕ ⊕ ⊕ ⊕ ⊕

+ ⊕ ⊕ ⊕ ⊕ ⊕ + …

+ ⊕ ⊕ ⊕ ⊕ ⊕

′ ′ ′ ′

− −
′ ′

′ ′ ′ ′

− −
′ ′ ′ ′

′ ′
− −

′ ′

′ ′

′ ′

− −
′ ′

′ ′

′ ′

− −
′ ′

′ ′

′ ′

−
′ ′

In addition, from Eq. (22), for M = 3, TP2 computes

R X X X X R X X

X X R X X X X
R X X X X X X X X

R X X X X X X X X

R X X X X X X X X

( ) ( )( ( )

( ), , ( ) ( )),
( ) ( )

( ( ) ( ), ,

( ) ( )),

B B B B B

B B B B B B B B B

2
1
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where Krand
j1,  and Krand

j2,  are random subkeys for encrypting the first and second part of the jth block, j = 1, 2, …, B.
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Thus, if R R R 0B
2
1

2
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2= = = = , X1, X2, …, XM are equal. Otherwise, X1, X2, …, XM are not equal.

Security analysis. Here, we will show the robustness of the proposed QPC protocol against insider and 
outsider attacks. If the length of the secrets is odd, it should be modified. This process not only contributes to 
correctly executing the proposed protocol but also assists in enhancing the security of the protocol by altering the 
original secret bits without affecting the final comparison result. Moreover, two random keys are generated and 
distributed between TPs and participants to encrypt the private information of parties. As discussed in30,48, for 
improving the efficiency of the proposed DMQPC protocol, the private information of parties can be divided into 
several blocks of data. If the comparison result of a particular block is not equal, TP1 announces that the outcome 
of the comparison is not similar; hence there is no need to execute the remaining rounds. The three protocols in 
subsections 2.1, 2.4, and 2.5 are similar. Also, in the two-party QPC with two rounds, the quantum channel in the 
first-round is similar to the quantum channel in the second-round, so here we only analyze the quantum commu-
nication in the first-round between the participants and TP1.

Outside attack. In the two-party situation, Alice (Bob) sends ′Sa (Sb
′) to TP1, protected by single decoy pho-

tons la1 (lb1). Alice (Bob) then announces the measurement bases and the positions of all inserted decoy particles. 
Subsequently, the TP1 announces the measurement results of all embedded decoy particles. Alice (Bob) then 
checks the security of the communication by checking whether the measurement results of the decoy particles are 
correct. Since the outside attacker does not learn the measurement bases of the decoy particles and their positions 
ahead of time, the well-known attacks such as entangle-resend attacks32, correlation-elicitation attacks49, and 
intercept-resend attacks50 can be detected with nonzero probability51. For instance, if the eavesdropper, Eve, 
attempts to measure the decoy photons |0〉 or |1〉 in ′Sa ( ′Sb) with the correct basis (e.g., Z-basis), she successfully 
passes the public eavesdropping check. But, If Eve attempts to measure the decoy photons |0〉 or |1〉 in Sa

′ (Sb
′) with 

an incorrect basis (e.g., X-basis), she will be detected with a probability of 50%. The probability of choosing the 
wrong measuring basis is 50%. Thus, the rate of detecting Eve for each single decoy photon is 25% (i.e., 50% × 
50%). Hence, the rate of detecting Eve for l single decoy photon is 1−(3/4)l, where |l| = |la1| = |lb1|. This rate 
approaches 1 when l is large enough. Furthermore, a Trojan-horse attack52 is prevented since photons are trans-
mitted only once from participants to the TP1. So, our two-party QPC protocol is fully secure against outsider 
attacks. Since the proposed DMQPC protocol uses the same strategy as the two-party process, it is also secure 
against outsider attacks.

Participant’s attack. A significant advantage of our three different scenarios is that participant attacks such 
as collusion attack and cheating attack are not possible for the proposed protocols. Each participant receives two 
random keys from TP1 and TP2 for encrypting her/his secret without the participation or assistance of other 
parties. Therefore, there is no exchange of information or even communication among participants, and each 
participant sends the private information directly to the TP1 and TP2 through quantum channels. Thus, to steal 
confidential information, dishonest participants must adopt Eve’s attack strategies because they act as outside 
attackers. As discussed above, the protocol is secure against outside attacks.

TP’s attack. TP’s attack is another type of participant’s attack which could threaten the security of the proto-
col. Here we prove that our scheme is secure against dishonest or malicious TPs. Firstly, with the assumption that 
the two TPs are not allowed to collude together or with participants, our protocol is secure since the encrypted 
data is distributed to two independent TPs for computing the final comparison result. To clarify, assume we have 
a secret a and an encryption key b and c = a ⊕ b. The probability of an attacker to know a is 1

2n , where n is the 
length of the secret a53. In the proposed protocol, from TP2’s point of view, as shown in Table 4, X12 = X1 ⊕ X2. 
From Eqs. (2) and (3), X K X _rand part1

1
1= ⊕  and = ⊕X K X _rand part2

2
2 where Xpart_1 is the first part of the 

secret message (X) and Xpart_2 is the second part of X. The probability of TP2 to know X is 1

2
n
2

, where n is the length 
of the secret X, and n

2
 is the length of X12. When n is large enough, the probability of getting the secret data is neg-

ligible. In addition, according to Table 4, TP2 can obtain X12 = 1 ⊕ ′X1. Hence, if X12 = 0 then TP2 can learn that 
X1

′ = 1, otherwise ′X1 = 0. However, the private information of Alice is still secure against TP2’s attack for two 
reasons: (1) TP2 cannot learn any private information of Alice using ′X1; (2) the private information of Alice 
(Xpart_1 and Xpart_2) is protected by two random keys (Krand

1  and Krand
2 ).

From TP1’s point of view, Alice sends her encrypted secret (i.e., Ca1 = X1 ⊕ X1
′ (Ca2 = X2 ⊕ X2

′)) to TP1. TP1 
cannot reveal any useful information without knowing X1 or X1

′ (X2 or ′X2). The probability of knowing the origi-
nal secret is 1

2
n
2

, where n is the length of the secret X, and n
2

 is the length of Ca1(Ca2). When n is large enough, the 
probability of TP1 to know the original secret is negligible. Also, when participants’ secret data is divided into B 
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blocks, the probability of TP1(TP2) to identify the original secret is 








( )( )

B
1

2
n
B /2

, where B is the number of blocks. In 

addition, according to Table 4, TP1 can obtain Ca1 = 1 ⊕ X2 and X2 = 1 ⊕ Ca1. Hence, if Ca1 = 0; then TP1 can learn 
that X2 = 1, otherwise X2 = 0. However, the private information of Alice (Xpart_1 and Xpart_2) is still secure against 
TP1’s attack, since = ⊕X X K_part rand1 1

1  and = ⊕X X K_part rand2 2
2 .

Efficiency Analysis
The used qubit efficiency is defined as η = C

q
 54–56, where C refers to all classical bits that can be transmitted, and q 

refers to the total number of used photons. In the two-party case, the proposed protocol is executed in one or two 
rounds depending on the first-round result. If the proposed protocol is executed in one round, both Alice and Bob 
prepare n

2
 single photons. The protocol is completed in one round when the comparison result of the first parts of 

Alice’s secret and Bob’s secret are not equal. Thus, the qubit efficiency is n
n n
2 2

+
 (i.e., 100%). However, if the first 

parts of Alice’s secret and Bob’s secret are equal, the proposed protocol is executed in two rounds. Hence, the qubit 
efficiency is 

+( )
n

2 n n
2 2

 (i.e. 50%). In the multi-party protocol with two rounds, the qubit efficiency of one round is 

n
M n

2

, and the qubit efficiency for the two rounds is n
Mn

. In the multi-party protocol with B blocks, the proposed 

protocol is executed in one or more blocks depending on the previous block result. Thus, the qubit efficiency is 
ranging from n

Mrn
 to n

Mn
, where =rn

n
B2

 is the number of bits in each round and B is the number of determined 
blocks. For example, consider four participants (M = 4) who would like to compare their secrets of length 12 bits 
(n = 12). In this case, they can divide the secret into 2, 3, or 6 blocks, each part containing 6 bits, 4 bits, or 2 bits, 
respectively. Assume that they choose to divide the secrets into 2 blocks (i.e., B = 2) and each block contains 6 bits 
(i.e., = 6n

B
); hence the = =r 3n

12
4

. Then the qubit efficiency ranges from 25% to 100%. It should be noted that 
the qubit efficiency increases or decreases depending on the number of participants and selected blocks. For 
comparison, in Liu and Wang’s protocol46, the qubit efficiency is 

+( )
n

M n n
2 2

, and for n = 12 and M = 4, the qubit 

efficiency is equal to 40%.

comparison
Here we compare the performance of our DMQPC proposed scheme with previous MQPC schemes. We first 
compare our DMQPC protocol with Liu and Wang’s protocol46 (see Table 6). We then compare our DMQPC 
protocol with previous MQPC protocols.

Parameters Liu-Wang protocol46 Our protocol

Quantum resource Single photon states Single photon states

Number of TPs One Two

Secure against participant attack No Yes

Quantum measurement (TP) Single photon measurements Single photon measurements

Quantum measurement (parties) Single photon measurements Single photon measurements

Preparing single photons (TP) Yes Yes

Preparing single photons (parties) Yes Yes

Dynamic Yes Yes

The Flexibility of comparing the 
private information of parties

TP can compare the secret information of 
any two parties of M (M ≥ 4) parties with the 
assistance of other M−2 parties

TPs can compare the secret information of any 
subset of M parties without any assistance of other 
parties

Joining and leaving the comparison 
protocol

Any subset of M parties can join in the protocol 
before the quantum states are measured

Any subset of M parties can join in or leave the 
protocol at any time without any extra conditions

The cost of transmission
All private information of parties should be 
transmitted among parties for deducing the 
final result of the comparison

In case of executing the protocol in one round, only 
the first part of the secret bits is transmitted to TP1 
for deducing the final result of the comparison

Table 6. Comparison to Liu-Wang protocol46.

Features Ref. 58 Ref. 40 Ref. 41 Ref. 42 Ref. 43 Ref. 44 Ref. 31 Ref. 45 Ref. 46 Our

Multiparty No Yes Yes Yes Yes Yes Yes Yes Yes Yes

Dynamic No No No No No No No No Yes Yes

Secure against participant attack Yes Yes No Yes Yes Yes Yes Yes No Yes

Secure against the malicious TP No No No No No No No No No Yes

Work in strangers’ environment31 No No No No No No Yes No Yes Yes

Table 7. Comparison to some existing QPC protocols.
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Abulkasim et al.57 showed that the Liu-Wang protocol suffers from participant attack. In our proposed proto-
col, participant attack is not possible. Thus, our protocol is safe not only against well-known participant attacks 
but also against potential participant attacks. Both the Liu-Wang protocol and our protocol use single photon 
states as a quantum resource and perform single photon measurements. The Liu-Wang protocol uses one TP who 
performs single photon measurements. In our protocol, two TPs are adopted and they also perform single photon 
preparation and measurements.

Like the Liu-Wang protocol, in our scheme, both the TP and the participants prepare single photons for 
deducing the comparison result. Like the Liu-Wang protocol, our protocol is dynamic so that any new subset of 
M parties can join or leave the protocol at any time. However, in the Liu-Wang protocol, new participants have to 
participate in the protocol before the quantum states are measured. Unlike the Liu-Wang protocol, in our scheme, 
the TPs can compare the private information of any subset of M parties without any assistance from other parties. 
In contrary to the Liu-Wang protocol, our scheme reduces the cost of communication by half, in some situations, 
where the protocol can be executed in one round to get the final comparison result.

From Table 7, like the protocols in refs. 31,40,42–45,58, our protocol is secure against participant attack. In contrast 
with the proposed protocols in refs. 31,40–46, which suppose that there is a semi-honest TP who executes the QPC 
protocol loyally, our proposed protocol allows for almost-dishonest TPs. Unlike the protocols in refs. 31,40–46,58, our 
protocol is secure against a malicious TP1(TP2). Like the protocols in refs. 31,46, our protocol works in an environ-
ment where participants and TPs could be strangers, where there is no need for authenticated channels to prevent 
secret information from leaking. Compared to previous work, our main contribution is that participant attack is 
not possible in this work, since there is no exchange of information or even communication among participants. 
In addition, our scheme reduces the cost of communication.

conclusion
This work proposes a novel dynamic multiparty quantum private comparison protocol that does not allow par-
ticipant attack. The proposed protocol divides the private information into equal parts, and every participant 
independently encrypts her/his secrets using two random keys before sending them to two third parties using 
quantum channels. The protocol is executed in one or more rounds depending on the result of the previous 
round. The private information can also be divided into a number of blocks, with each block containing two 
equal parts of the secret. The dynamic nature of the proposed protocol enables the two TPs to compare the private 
information of any subset of M parties without any assistance from other parties. Any subset of M parties can join 
in or leave the protocol at any time without any extra conditions. Our analysis proves that the proposed protocol 
is correct and fully secure against outside attack. Furthermore, the scheme is not open to participant attacks. 
Compared to existing schemes, our protocol is more efficient, more secure and more feasible. Thus, our scheme is 
an ideal choice for comparing private information of M parties.
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