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Pulsed field ablation can increase membrane permeability and is an emerging

non-thermal ablation. While ablating tumor tissues, electrical pulses not only

act on the membrane structure of cells to cause irreversible electroporation,

but also convert tumors into an immune active state, increase the permeability

of microvessels, inhibit the proliferation of pathological blood vessels, and

soften the extracellular matrix thereby inhibiting infiltrative tumor growth.

Electrical pulses can alter the tumor microenvironment, making the

inhibitory effect on the tumor not limited to short-term killing, but mobilizing

the collective immune system to inhibit tumor growth and invasion together.
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Introduction

The cells demonstrate atypia as they go from normal to malignant cells, including

pleomorphism, hyperchromasia, and an increase in mitotic figure. The tumor tissues also

show atypia, that is, the arrangement of tumor cells becomes disordered and irregular.

Changes in the tumor microenvironment have gotten a lot of attention in recent years

when it comes to the occurrence and progression of cancer. The tumor

microenvironment, including tumor chemical environment, immune cells,

extracellular matrix (ECM), and tumor vascular system, is the tiny environment in

which tumors live (1). The enhancement of tumor proliferation signal, the resistance of

apoptosis, avoidance of immunity, and promotion of tumor microvascular formation are

all related to the microenvironment (2).

As an emerging ablation technique, irreversible electroporation (IRE) has the

advantages of good tissue selectivity, clear ablation limits, no influence of large vessel

heat sink effect, short ablation time, and few postoperative complications (3). Pulsed field

ablation is different from traditional thermal ablation techniques such as radiofrequency
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ablation, microwave ablation, high intensity focused ultrasound

therapy, etc. It is a heat-independent ablation with a delayed

release of transient high-voltage electrical pulses that cause

damage to the membrane structure of cells within the target

ablation foci. The release of electrical pulses to tissues or cells can

cause reversible or irreversible perforation of cell membranes,

and apoptosis can be observed. There are several ablation

techniques that perforate cells by electrical pulses to induce

apoptosis, which can be classified according to the characteristics

of the pulsed electric field parameters: nanosecond pulsed

electric fields (nsPEF) deliver electrical pulses with very short

pulse widths (in the range of 10-300 ns) and strong field

strengths (20-150 kV/cm), and all pores remain small. IRE’s

pulse widths range from microseconds to milliseconds but its

amplitudes are less than 10 kV/cm, causing a wide range of pore

size variations (4, 5). High-frequency irreversible electroporation

(H-FIRE) systems that split the ~100 ms monopolar pulse into a

series of shorter duration ~1 ms alternating polarity pulses (6).

There is also electrochemotherapy (ECT), which allows the

uptake of drugs by reversible electroporation (2). Despite the

different pulse parameters, IRE, nsPEF, and H-FIRE can all act

through irreversible damage to the cell membrane (4–6).

Studies have shown the safety and efficacy of pulsed field

ablation (7–9). Pulsed field ablation can form perforations in the

membrane and induce a complex immune process that alters the

local microenvironment of the tumor (10, 11). In this review, we

summarize changes in tumor cells, immunogenic effects,

vascularity, extracellular matrix, and chemical environment

induced by electric pulses.
Changes in tumor cells

Cell signal pathway

After delivering high-voltage electric pulses to tumor cells, it

kills them via a variety of mechanisms including cell membrane

perforation, mitochondrial damage, reactive oxygen species

(ROS), and DNA damage (4, 12, 13). Firstly, IRE, nsPEF, and

H-FIRE all cause damage to cell membranes, resulting in osmotic

imbalance and cell swelling (14, 15). And electrical pulses can also

lead to DNA damage, but whether the direct effect or the indirect

effect induced by apoptosis is not clear (16–18). ROS is also one of

the mechanisms of damage. High levels of ROS were found after

PEF treated melanoma cells (19). What needs to be emphasized is

that mitochondrial damage is more studied in nsPEF, because

nsPEF has shorter pulse width, increasing the possibility of

causing damage to organelles, and nsPEF causes mitochondrial

damage by the loss of mitochondrial membrane potential (14, 20).

Thus, damage to cells through different mechanisms may lead to

changes in cellular signaling pathways.

Some articles have focused on the effects of electrical pulses

on cellular signaling pathways. According to one study, applying
Frontiers in Oncology 02
nsPEF to the human pancreatic carcinoma cell line (PANC-1)

can change the protein expression of the Wnt/b-catenin
signaling pathway, matrix metalloproteinases (MMP) family,

and vascular endothelial growth factor (VEGF). The

downstream signals of the Wnt/b-catenin signaling pathway,

including hDPR1, b-catenin, and c-Myc, are dose-dependently

decreased by nanosecond pulses (21). Wnt/b-Catenin has two

pathways, the canonical pathway and the non-canonical, and the

canonical pathway can lead to the transcription of target genes

such as myc and cyclin D1, nanosecond pulses inhibit the

transcription of target genes through this pathway, thereby

inhibiting the proliferation of tumor cells (22). In addition to

Wnt/b-catenin pathway, the expression of NF-kB pathway

proteins including IKK-a, IKK-b, IkB-a, NF-kB p-65, and p-

p65 is also significantly reduced (21). Not only that, the

expression of proapoptotic lymphocytes/leukemia-2 (Bcl-2)

family proteins (Bax, Bim, and BID) is promoted, and the

express ion of ant iapoptot ic Bcl-2 fami ly prote ins

phosphorylated Bcl-2 protein (p-Bcl-2), Bcl-xL and myeloid

leukemia-1 (Mcl-1) are inhibited (22, 23). The MMPs family

and VEGF are also lower than those of the control group.

Downgrading of MMPs and VEGF can inhibit tumor invasion

and metastasis. It is explained in detail in “4. Vascularity, stroma

and chemical environment “.

Sun S et al. performed IRE on human pancreatic cancer cell

line AsPC-1 and BxPC-3 in vitro and found that IRE can trigger

ROS-dependent apoptosis in pancreatic cancer through the

PI3K/Akt pathway (11). Another study found that the gene

expression of KRAS and EGFR pathway signaling molecules

changed significantly after IRE treatment on pancreatic tumors.

EGFR signaling was inhibited: (i) causing a decrease in AKT,

NF-kB, and VEGF expression, which inhibited tumor growth

and invasion, metastasis, etc. (ii) leading to the inhibition of JAK

and STAT3, thus providing inhibition of G0 to G1 phase

transformation and reducing tumor cell replication. While K-

RAS was inhibited, MEK1/2, JNK, and ERK1/2 expression were

down-regulated, thus inhibiting cell replication and

proliferation. IRE significantly altered the cancer hallmarks

and immunosuppressive biological pathways in the PDX

pancreatic tumor model. And necrosis, regeneration/repair,

and inflammatory signaling were significantly increased after

IRE (23).

Wnt/b-Catenin, KRAS, EGFR, as well as downstream

cellular pathways like MMP and VEGF were found to be

downregulated after electrical pulses were applied to

pancreatic cancer, and then cancer biology, including

proliferation, cell death, invasion, and metastasis, all changed

(Figure 1). Both IRE and nsPEF can exert anti-tumor effects by

inhibiting cell replication, increasing the expression of pro-

apoptotic proteins and suppressing the expression of

antiapoptosis proteins, but there is not enough evidence to

prove a significant difference between IRE and nsPEF in

causing changes in cellular pathways.
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Cell death

Pulsed electric field ablation is known for its ability to cause

apoptosis-a kind of programmed cell death. Because pro-

apoptotic and anti-apoptotic factors regulate cell apoptosis, the

increase in Bax, Bim, and BID and decrease in p-Bcl-2, Bcl-XL,

and McL-1 after an electric pulse suggests that electroporation

can promote cell apoptosis (18, 22, 24–26). Significantly

increased cleavaged and active caspase 3, 7, and 9 were also

detected after IRE (4, 21, 26–29), which are the markers of

apoptosis. Cells exhibit the pathological characteristics of

apoptosis after electrical impulses: nuclear pyknosis,

nucleolysis, nuclear fragmentation, and apoptotic bodies were

observed (21, 30–33).

However, during the delivery of electrical pulses, some heat

will inevitably be generated. Tissues and cells exhibit distinct

death features depending on their distance from the electrode

needle. Generally speaking, the closer to the needle track, the

easier it is to necrosis, the middle part shows irreversible

electroporation, and the cells far away from the needle track

are easy to form reversible perforation, which may be related to

temperature, the closer the needle track is to the more heated the

tissue, the more serious the thermal damage caused, which is

characterized by zones of white coagulation (30, 34). The

necrosis zone shows endoplasmic reticulum and nuclear

membrane expansion and random DNA degradation (4, 16).
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Pyroptosis and necroptosis belong to immunogenic cell

death (ICD) that rely on the release of damage associated

molecular patterns (DAMPs) to drive local immune responses.

Pyroptosis forms intracellular inflammatory vesicles and

activates caspase-1, gasdermin D (GSDMD) channels are

formed on the cell surface and interleukin (IL)-1b, IL-18, and
DAMP molecules are released from the cell via GSDMD pores,

where they stimulate an immune response. Water and ion can

also influx the cell from GSDMD, causing edema of the cell (4).

Activation of caspase-1 and GSDMD was observed in rat liver

tissue at 6 and 24 hours after electroporation, illustrating that

IRE can cause pyroptosis (16). Necroptosis is initiated by the

necrosome and activates the receptor interacting serine/

threonine kinase 3 (RIPK3), which activates mixed lineage

kinase domain-like pseudokinase (MLKL). Activated MLKL

molecules aggregate and form pores in the cell membrane,

allowing the release of DAMPs and the influx of water and

ions, causing cellular edema and cell membrane disintegration,

similar to the morphological manifestation of necrosis (4).

Elevated RIP3 and MLKL were harvested after IRE, and cell

morphology was observed with loss of the plasma membrane

and release of organelles and chromatin, which is consistent with

the morphology of necroptosis (21). Multiple modes of cell death

may exist in the target area after electrical pulses, but they can

change over time, and genetic analysis revealed that apoptosis

was the predominant mode of cell death after H-FIRE (2000V,
FIGURE 1

Effect of pulsed field ablation on cell signal pathway.
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100ms, bipolar pulses, a 2ms positive pulse, 5ms inter-pulse delay,
2;ms negative pulse, and a 5ms inter-pulse delay) was applied to

the mouse 4T1 mammary tumor at 2 hours, while necrosis and

pyroptosis were predominant by 24 hours (27). In addition, the

mode of cell death can change with parameters, more energy

may have greater thermal damage, more necrosis. Brock et al.

conducted IRE on utilizing patient-derived xenograft (PDX)

models, and found that apoptosis was evident at 500 V/cm but

necrosis was more prominent at 2500 V/cm (23).
Immune response

DAMPs and immunity

Common DAMPs include the non-histone chromatin

protein high mobility group box 1 (HMGB1), cell surface

calcium reticulum protein (CRT), and other endoplasmic

reticulum (ER) proteins, and adenosine triphosphate (ATP),

which are associated with cell death. CD91, toll-like receptor 4

(TLR4), and The P2X7 receptor (P2RX7) are expressed by

dendritic cells (DCs) and promote phagocytosis of dead cells,

presentation of tumor antigens, and production of IL-1b,
respectively (35). The release of DAMPs (ATP, calreticulin,

nucleic acids and uric acid) increases with increasing pulse

amplitude after IRE on cells in vitro (12, 29, 36–39) and

causes mass ive immune cel l aggregat ion in post-

electroporation pancreatic cancer tissue in vivo (36) (Table 1).

The release of DAMPs is related to the parameters of the pulses,

at IRE (500-1500 V, 100 ms, 8-24 pulses) with increasing voltage,

the release of DAMP increases (29), similarly, the number of

DAMP releases is related to the number of pulses, after IRE

(1000 V, 100 ms, 8/40/80 pulses), CRT, ATP, and HMGB1 were

released most at 40 pulses and less at 8 and 80 pulses, suggesting

that there may be a suitable number of pulses, neither too less

nor too more, that would allow the most DAMP release, Go EJ

et al. speculated that low pulses (<40) would not induce ICD and

high pulses (>40) would lead to rapid cell death, thus limiting

DAMP expression (38). Most of the studies about DAMP are in

vitro, and the appropriate parameters, as well as the intensity-

release dependence, may require further studies.

(i) CRT is the most abundant in the endoplasmic reticulum.

After activation of ICD-related signaling pathways, it transfers

from the endoplasmic reticulum to the cell membrane surface

and can interact with transmembrane receptors including CD49,

CD69, CD91 (also known as the low density lipoprotein (LDL)

receptor-related protein-1 (LRP1)), and integrins. The most

important is the CD91 molecule. CRT releases effective

phagocytic signals to CD91-positive cells (mainly macrophages

and DCs) and causes the production of pro-inflammatory

cytokines (including IL-6 and TNF-a) (35, 40). (ii)In addition

to participating in purinergic neurotransmission, ATP released

from damaged cells can bind to the P2Y2 receptor of
Frontiers in Oncology 04
macrophages, promoting the infiltration of macrophages in

tumor sites, and can also bind to the P2RX7 of DC cells,

leading to DC maturation and release of IL-1b. (iii) HMGB1

can bind to protein toll-like receptor 4 (TLR-4) and receptor for

advanced glycation end products (RAGE) to activate monocytes/

macrophages. HMGB1 can also upregulate costimulatory

molecules and major histocompatibility complex (MHC) class

II to transfer immature DC to mature DC (35, 41, 42). HMGB1

stimulates neutrophils and monocytes, enabling these cells to

adhere to activated vascular endothelium and migrate to

inflamed tissues (43).

Electrical pulse stimulation triggers the release of DAMPs, which

acts as a “find me” signal, enhances tumor immunogenicity and

subsequently induces antigen-presenting cells (APC) activation.

These signals enhance the ability of APC to phagocytose, process,

and present tumor-derived antigens to T cells, thereby facilitating the

induction of tumor-specific adaptive immunity. So, the level of these

DAMPs and cells increases after pulsed electric field (29, 36–39).
Innate immune

Phagocytes
There are many phagocytic cells in the body, and the first

one worth mentioning is macrophages. Macrophages have

multiple functions: phagocytosis of dead cells and debris;

acting as APC to process antigens and participate in adaptive

immunity through MHCmolecules; production and secretion of

cytokines, including IL-1, IL-6, TNF-a, etc (44).
Polarized macrophages mainly exist in two distinct subsets:

M1 and M2. The secreted cytokines are the key feature to

distinguish the two: M1 type can secrete IL-6, IL-12 and

tumor necrosis factor (TNF), M2 type can secrete IL-10, IL-1

receptor antagonist (IL-1ra), and the type II IL-1 decoy receptor.

Type M1 is an effective inflammatory effector cell that can

produce a large number of cytokines and kill tumor cells

through the production of ROS. Type M2 is more inclined to

promote angiogenesis and promote fibrosis to remodel and

repair tissues (44, 45). Tumor-associated macrophages (TAM)

have a phenotype and function similar to M2 macrophages,

which reduce the killing of tumor cells by cytotoxic T cells and

NK cells (45). Tumor cells secrete chemokine (C-C motif) ligand

2 (CCL-2) (lung tumors, breast cancer, cervical cancer, ovarian

cancer, etc.) to cause the accumulation of macrophages. Low

levels of CCL-2 promote tumor growth, and high levels of CCL-2

cause a large number of macrophages to accumulate and tumor

destruction (45). After pancreatic ductal cell adenocarcinoma

(PDAC) undergoes electroporation, the expression of CD16/32

in macrophages (a hallmark of M1 macrophages) increases and

changes from a rod shape to a round shape, indicating that the

formation of irreversible electroporation can induce M1

macrophages polarization of cells. In addition, positive-

feedback release or expression of HMGB1 and RAGE in
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TABLE 1 Effects of pulsed field ablation on tumor microenvironment.

Factors Intervention Parameters Mode of action In vitro
or

in vivo

Type of tumor

V EFS PW PRF N

DAMP

1.CRT IRE
&
RE

1000
1000
1000

–

–

–

100
100
100

–

–

–

80
40
8

24h: Increased by about 6.1 times.
24h: Increased by about 30 times.
24h: Increased by about 6.9 times

In vitro The Lewis lung carcinoma
(LLC, CRL-1642) (38)

2.ATP IRE
&
RE

200 – 100 1 20 Within 30min: No significant difference. In vitro KRAS* (36)

960
200
960

–

–

–

100
100
100

1
1
1

20
20
20

Within 30min: Increased
Within 30min: Increased slightly
Within 30min: Increased

In vitro KRAS* (36)
B16F10 (36)
B16F10 (36)

1000 – 100 – 80
40
8

24h: Increased by about 1.6 times.
24h: Increased by about 8.7 times.
24h: Increased by about 5.4 times.

In vitro The Lewis lung carcinoma
(LLC, CRL-1642) (38)

500
1000

–

–

100
100

1
1

20
20

Increased In vitro KPC (37)

nsPEF –

–

7000
7000

0.2
0.2

10
10

–

–

No significant difference (CT26)
Increased (EL-4)

In vitro EL-4 lymphoma; CT26 colon
carcinoma cells (39)

3. HMGB1 IRE
&
RE

200
960

–

–

100
100

1
1

20
20

Within 30min: No significant difference at
200V, increased at 960V.

In vitro KRAS* (36)

200
960

–

–

100
100

1
1

20
20

Within 30min: No significant difference at
200V, increased at 960V.

In vitro B16F10 (36)

500–
1500

– 100 – 8
16
24

24h: Increased in a strength-dependent
manner.

In vitro Panc-1, Bxpc-3, Pan02 (29)

1000 – 100 – 8
40
80

24h: Increased by about 7.3 times.
24h: Increased by about 12.3 times.
24h: No increase.

In vitro The Lewis lung carcinoma (38)

nsPEF –

–

7000
7000

0.2
0.2

10
10

–

–

Increased
Increased

In vitro EL-4 lymphoma; CT26 colon
carcinoma cells (39)

4.HSP70 IRE
&
RE

500–
1500

– 100 – 24
16
8

24h: Increased in a strength-dependent
manner

In vitro Panc-1, Bxpc-3, Pan02 (29)

5.Calreticulin IRE
&
RE

500–
1500

– 100 – 24
16
8

24h: Increased in a strength-dependent
manner

In vitro Panc-1, Bxpc-3, Pan02 (29)

Phagocytes

1.Macrophages IRE 1000 – 100 1 80 Day 7: M1 polarized and Increased in
a strength-dependent manner
Day 7: M2 decreased

In vivo PC (29)

2.DC IRE 1200 – 100 1 99 Day 9: No significant difference. In vivo PC (36)

3.NK IRE – – – – – Day 3: decreased
Day 7: increased

In vivo PC (37)

nsPEF 20000 – 0.3 4 1000 Day 8: increased In vivo HCC (56)

Cytokines and complements

IL-1a IRE 3000 – 70 – 90 2 h: increased In vivo HCC (51)

IL-1b IRE 3000 – 70 – 90 2 h: increased In vivo HCC (51)

nsPEF 30000 – 0.3 – 400 Day 7: increased In vivo PC (53)

IL-2 IRE 3000 – 70 – 90 2 h: increased In vivo HCC (51)

– – – – – Day 7: increased (more than Day 3 and
preOP)

In vivo PC (50)

nsPEF 20000 – 0.3 4 1000 Day 8: increased In vivo HCC (56)

IL-5 nsPEF 20000 – 0.3 4 1000 Day 8: increased In vivo HCC (56)

(Continued)
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TABLE 1 Continued

Factors Intervention Parameters Mode of action In vitro
or

in vivo

Type of tumor

V EFS PW PRF N

IL-6 IRE – – – – – Day 3: increased
Day 7: decreased

In vivo PC (50)

nsPEF 20000 – 0.3 4 1000 Day 8: increased In vivo HCC (56)

30000 – 0.3 – 400 Day 3: decreased In vivo PC (53)

IL-10 IRE – – – – – Day 3: increased
Day 7: decreased

In vivo PC (50)

3000 – 70 – 90 2 h: increased
Day 2: increased dramatically

In vivo HCC (51)

nsPEF 20000 – 0.3 4 1000 Day 8: increased In vivo HCC (56)

IL-12 IRE 3000 – 70 – 90 2 h: increased
Day 2: increased dramatically

In vivo HCC (51)

IL-17A nsPEF 20000 – 0.3 4 1000 Day 8: increased In vivo HCC (56)

IL-17F nsPEF 20000 – 0.3 4 1000 Day 8: increased In vivo HCC (56)

IL-21 nsPEF 20000 – 0.3 4 1000 Day 8: increased In vivo HCC (56)

IL-22 nsPEF 20000 – 0.3 4 1000 Day 8: increased In vivo HCC (56)

IFN-g IRE – – – – – No significant difference In vivo PC (50)

3000 – 70 – 90 2 h: increased
Day 2: increased dramatically

In vivo HCC (51)

nsPEF 20000 – 0.3 4 1000 Day 8: increased In vivo HCC (56)

TNF-a IRE 3000 – 70 – 90 2 h: increased
Day 2: increased dramatically

In vivo HCC (51)

nsPEF 30000 – 0.3 – 400 Day 7: increased In vivo PC (53)

20000 – 0.3 4 1000 Day 8: increased In vivo HCC (56)

GM-CSF IRE 3000 – 70 – 90 2 h: increased
Day 2: increased dramatically

In vivo HCC (51)

C3 IRE – – – – – Day 3: decreased
Day 7: increased

In vivo PC (50)

C4 IRE – – – – – Day 3: decreased
Day 7: increased

In vivo PC (50)

Immune-suppressive cells

1.Treg IRE – – – – – Day 3: increased
Day 7: decreased

In vivo PC (50)

– 1500 90 – – Week 2: decreased In vivo PC (46)

1200 – 100 1 99 Day 9: No significant difference In vivo PC (36)

nsPEF – 30000 0.3 – 400 Day 3: slightly increased
Day 7: significantly decreased

In vivo PC (53)

– 30000 0.1 1 200 Day 4: decreased In vivo Malignant melanoma (67)

H-FIRE – 2500 100 – – Day 2: increased In vivo 4T1 mammary tumor (27)

2.TAM H-FIRE – 2500 100 – – Day 2: decreased In vivo 4T1 mammary tumor (27)

3.MDSC IRE – 1500 90 – – Day 14: eMDSC decreased In vivo PC (46)

nsPEF – 30000 0.3 – 400 Day 3&7: nMDSC & mMDSC decreased In vivo PC (53)

– 30000 0.1 1 200 Day 4: decreased In vivo Malignant melanoma (67)

H-FIRE – 2500 100 – – Day 2: pMDSC decreased In vivo 4T1 mammary tumor (27)

4.TAN H-FIRE – 2500 100 – – Day 2: decreased In vivo 4T1 mammary tumor (27)

Adaptive immunity

CD 4+ T cell IRE – – – – – Week 2: increased In vivo PC (38)

1200 – 100 1 99 Day 9: No significant difference In vivo PC (36)

– – – – – In vivo PC (50)

(Continued)
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macrophages via the MAPK-ERK pathway promoted M1

macrophage polarization (29, 38), and M1/M2 ratio tends to

increase in a strength-dependent manner (29). In addition to the

MAPK - ERK pathway, a stimulator of interferon genes (STING)

signaling is involved in the activation and repolarization of

macrophages, one study found that this macrophage

repolarization was most pronounced when tumors were

treated with a combination of IRE and STING agonist (38).
Frontiers in Oncology 07
After the electric pulse acts on the tissue, in addition to

macrophages, the ablation zone also found the accumulation

and activation of neutrophils, DC cells, and NK cells (Table 1).

Like macrophages, these phagocytes can kill perforated cells (10,

36, 37, 46, 47).

Immature DC cells highly express TLRs, opsonizing

receptors, etc. After receiving the DAMPs signal released by

the perforated cells, the low-expressed MHC class II molecules
TABLE 1 Continued

Factors Intervention Parameters Mode of action In vitro
or

in vivo

Type of tumor

V EFS PW PRF N

Day 3: decreased
Day 7: increased

nsPEF – 20000 300 4 1000 Day 8: increased In vivo HCC (56)

CD 8+ T cell IRE 1200 – 100 1 99 Day 9: increased In vivo PC (36)

– – – – – Day 3: decreased
Day 7: increased

In vivo PC (50)

1000 – 100 – 90 increased In vivo HCC (70)

nsPEF – 20000 300 4 1000 Day 8: increased In vivo HCC (56)

B cell IRE 1200 – 100 1 99 Day 9: No significant difference In vivo PC (36)

nsPEF – 20000 300 4 1000 Day 8: increased In vivo HCC (56)

IgA IRE – – – – – Day 3&7: No significant difference In vivo PC (50)

IgG IRE – – – – – Day 3: decreased
Day 7: increased

In vivo PC (50)

IgM IRE – – – – – Day 3&7: No significant difference In vivo PC (50)

Vasculature, extracellular matrix, and chemical environment

VEGF nsPEF – 20000 0.1 – 100 1h: decrease In vivo HCC (21)

CD31 IRE 1000 – 100 1 80 Day 7: increased In vivo PC (46)

1200 – 100 1 99 Day 4: transient increase
Day 6: decreased

In vivo PC (36)

CD34 nsPEF – 20000 0.1 – 100 1h: decrease In vivo Hep-3B HCC (21)

FITC-
conjugated
dextran

IRE 1200 – 100 1 99 Day 4: increased
Day 6: decrease, but still higher than that of
untreated tumors

In vivo PC (36)

FAPa IRE 1200 – 100 1 99 Day 4: decreased
Day 6: rebounded back

In vivo PC (36)

HABP1 IRE 1200 – 100 1 99 Day 6: decreased In vivo PC (36)

nsPEF 1000 – 100 1 80 Day 3: decreased
Day 7: decreased

In vivo PC (53)

LOX IRE 1000 – 100 1 80 Day 3: decreased
Day 7: decreased

In vivo PC (46)

1200 – 100 1 99 Day 6: decreased In vivo PC (36)

a- SMA IRE 1200 – 100 1 99 Day 6: No significant difference In vivo PC (36)

nsPEF 1000 – 100 1 80 Day 3&7: No significant difference In vivo PC (53)

MMP nsPEF 20000–
60000

100 – 100 1 h: decrease In vivo HCC (21)

CA-IX IRE 1200 – 100 1 99 Day 6: decreased In vivo PC (36)

HIF-1a IRE 1200 – 100 1 99 Day 6: decreased In vivo PC (36)
V, Voltage (V); EFS, electric field intensity (V/cm); PW, Pulse width (µs); PRF, Pulse repetition frequency (Hz); N, Number of pulses; min, minutes; h, hour; HCC, hepatic cancer; PC,
pancreatic cancer; RE, reversible electroporation; IRE, irreversible elecrtroporation; nsPEF, nanosecond pulsed electric fields; H-FIRE, High-frequency irreversible electroporation.
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and costimulatory molecules are activated to become mature DC

cells, which effectively present antigens in adaptive immunity

(48). After electric pulse treatment of mouse KRAS* cells in

vitro, the CD40, MHC-II, chemokine receptor (CCR) 7, and

CD86 surface markers of DC cells increased relatively, which

suggested the activation of DC cells (36). Combining IRE and

DC vaccines for mouse pancreatic cancer, it can be found that

IRE can overcome the immunosuppressive environment of

pancreatic cancer, thereby enhancing the effect of DC

vaccination (37).

NK cells can be defined into two subsets according to the

levels of CD56 and CD 16: CD56hi CD16± and CD56lo CD16hi,

the former promoting the inflammatory response by releasing

cytokines and the latter killing cells by perforin and granzyme

(49). IRE can increase the concentration of mouse NK1.1 cells in

the blood and tumor accumulation in animal experiments (37),

and it can also cause an increase in peripheral blood NK cells in

humans (50). NK cell therapy can also increase the killing effect

on tumor cells. The combination of IRE ablation and NK cells

can have a synergistic therapeutic effect on stage IV

hepatocellular carcinoma. The combined treatment group’s IL-

2, tumor necrosis factor (TNF), and interferon (IFN) levels are

higher in both groups than in the single treatment group.

Synergistic treatment of liver cancer with IRE and NK also

increases the levels of lymphocytes and Th1-type cytokine

decreases the expression of alpha-fetoprotein and increases the

survival time of patients (49). So, increasing NK cells will inhibit

tumor growth, and electrical pulses can have a synergistic effect

with NK cell therapy.

Cytokines
Chen X found IL-1a, IL-1ra, IL-1b, IL-2, IL-6, IL-8, and IL-

18 levels are significantly higher 2 hours after IRE ablation. IL-4,

IL-10, IL-12, TNF-a, IFN-r, granulocyte-macrophage colony-

stimulating factor (GM-CSF) increased dramatically 2 days after

ablation (51). Most of these cytokines can activate cytotoxic

immunity, including IL-2, IL-4, IL-5, IL-6, IL-7, IL-10, IL-12,

and IL-15. IL-16 and IL-17 also facilitate cellular immunity (52).

And Chen X’s result indicated that changes the abnormal drifted

Th2 in HCC back to Th1 status (51). Zhao et al. found that after

seven days the TNF-a and IL-1b levels in blood were increased,

while IL-6 levels were decreased (53). IFN-g stimulates antigen

presentation and cytokine production by monocyte, and also

stimulates monocyte adhesion, phagocytosis, and other effector

functions. One of the most important biological activities of IL-1

is its ability to activate T lymphocytes by enhancing IL-2

production and IL-2 receptor expression. IL-6 is mainly

produced by monocytes and mediates T cell activation,

growth, and differentiation (52). IL-10 is a compound with

both immunosuppressive and anti-angiogenic functions and is

a direct inhibitor of Th1 function (54, 55). Yimingjiang et al.

found significantly higher IL-10 in tumor-bearing mice after
Frontiers in Oncology 08
nanosecond pulses than in controls (56), while He et al. found

that after IRE, IL-10 levels in pancreatic cancer increased on day

3 and decreased on day 7 (46). The immunosuppressive effect of

IL-10, the function of recruitment to Treg makes IL-10 seem to

promote tumor growth, while the changes in IL-10 levels after

electrical pulses vary from experiment to experiment and need to

be further verified (46, 51, 52, 56).

Thus, electrical pulses can activate phagocytosis, adhesion

phagocytosis, activation of T lymphocytes, and induction of

cytotoxic T lymphocyte (CTL) direct killer cells for immune

response to post-perforation cells by triggering the secretion of

pro-inflammatory cytokines in vivo.
Immune-suppressive cells

A large number of immunosuppressive cells are present in

tumors, including T regulatory cells (Tregs), tumor-associated

macrophages (TAMs), cancer-associated fibroblasts (CAFs), and

myeloid-derived suppressor cells (MDSCs), and the

upregulation of these cell types in tumors depends on the

reciprocal signaling between these cells and tumor cells.

The production of Treg (usually CD4+CD25+Foxp3+ T

cells) depends mainly on transforming growth factor-b (TGF-

b) and IL-2, which negatively regulate immunity and can

produce TGF-b and IL-10 to suppress immune responses (55,

57, 58). And Tregs’ infiltration is negatively correlated with

median survival OS in many patients with solid tumors (59).

Tregs can effectively suppress effector T lymphocytes and can

inhibit the function of B, NK, dendritic cells, and macrophages

through different mechanisms (58, 60).

TAM has an M2 macrophage-like phenotype and promotes

tumor progression through several mechanisms: secretion of

VEGF, which promotes tumor angiogenesis; promotion of tumor

invasion mainly through the release of metalloproteinases,

matrix remodeling enzymes, and chemotactic growth factors

from the environment; and suppression of innate immune

responses (61).

There are mainly two types of MDSC: polymorphonuclear

MDSC (P-MDSC) which resemble neutrophils morphologically

and phenotypically, and monocyte MDSC (M-MDSC) which

resemble monocytes. MDSC has potent immunosuppressive

activity through multiple pathways: promoting Tregs’

production and promoting fibroblast differentiation into

cancer-associated fibroblasts (CAF) depleting L-arginine

eliminates key trophic factors required for T cell proliferation,

nitrates chemokines and blocks CD8+ T cells from entering the

tumor, and produces immunosuppressive cytokines such as IL-

10 and TGF-b (61, 62).

Unlike normal myofibroblasts, CAF does not undergo

apoptosis and can release various cytokines and MMPs to

hydrolyze extracellular matrix, stimulate angiogenesis and
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promote tumor growth and invasion (63). (As described in 4.

Vasculature, extracellular matrix, and chemical environment).

Reduction of systemic Tregs in locally advanced pancreatic

cancer (LAPC) patients 2 weeks after IRE was found in clinical

trials (64). However, a transient increase in Tregs on day three

followed by a decrease on day seven was found in the clinical

trial by He C (46). Similar results were also found in Harshul

et al.’s study, where LAPC patients could have a procedure-

mediated Treg attenuation between the third and fifth day after

IRE (65). A reduction in Li- CD33+ HLA-DR- early myeloid-

derived suppressor cells (eMDSC) was observed 2 weeks after

IRE treatment (64). IRE combined with OX40 agonist induced a

significant reduction in MDSC in primary and distant tumors

(66). H-FIRE resulted in a reduction of MDSCs and TAMs in the

tumor microenvironment of mammary carcinoma in mice 2

days after procedure (27). NsPEF treated with C57 malignant

melanoma reduced Treg cells from 4.3% to 2.4% and MDSC by

39.0% to 19.7%, which was observed 4 days later (67). NsPEF can

act on mice with pancreatic cancer after 3 days postoperative, 7

days postoperative decreased the percentage of nMDSCs and

mMDSCs in the spleen, although Tregs slightly increased at 3

days postoperatively, but significantly decreased at 7 days

postoperative (53), indicates that the immunosuppressed state

can be reversed in this period of time, which would facilitate the

combination with immunotherapy.

Therefore, electrical pulses can inhibit the proliferation of

tumor-associated immune cells in the tumor microenvironment

and promote anti-tumor responses to create an immune

environment conducive to tumor suppression. However, the

reversion of immunosuppression after IRE or nsPEF is time-

dependent and this may start after day 3, but a longer and more

subtle follow-up is needed to determine the time window for

combination with immunotherapy.
Adaptive immunity

Adaptive immunity is achieved through regulated

interactions between APC and T and B cells. Circulating

antigens or APC-treated antigens are presented to T and B

cells, eliciting cellular and humoral immunity, respectively. The

largest T cell population in the body is the CD4+ab T cell

receptor (TCR) population. Most of these cells have a helper

function and are called helper T (Th) cells, which produce many

cytokines. CTL is a type of CD8+ T cells that kill target host cells

through a contact-dependent mechanism: increased expression

of FasL on CTL binds to Fas receptors in target tissues,

participates in apoptosis, and acts on target cells by releasing

substances such as perforin and granzyme. Adaptive humoral

immunity is mediated by antibodies produced by plasma

cells (55).

Several studies have found that electrical pulses acting on

cells induce increased circulation and ablation foci of CD8+ T
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cells (24, 37, 46, 64, 68–70), and some experiments have found

elevated CD4+ levels (38, 46, 55, 56), however, some studies has

also shown no significant increase in CD4+ levels (10, 23)

(Table 1). Zhao et al. found an increased CD8+ T cells and

CD4+ T after nanosecond pulses acting on pancreatic cancer in

mice, and a significantly higher CD8/CD3 ratio in tumors

compared to controls (53). He et al. found an increase of

effector CD8+ T cells, effector CD4+ T cells, and memory T

cells at 7 days after IRE, despite decrease at day 3, so it can

effectively induce the activation of T cells over a period of time,

and the experiment also found that IRE can inhibit the growth of

potential tumors through the distant effect (50). However, Dai

et al. implied that IRE treatment significantly inhibited HCC

growth by more CD8+ T and dendritic cells, but not CD4+ T or

B cells infiltrating into the peri-ablative region. CD8+ depleted T

cells induced local tumor regeneration and distant metastasis

after IRE (10). Most of the IRE or nsPEF studies have activated

the proliferation of CD8+T, but the proliferation of CD4+T is

not obvious in some studies, revealing that CD8+ T-mediated

cellular immunity plays a great role in electric pulses induced

immunity. Effective T cell initiation requires several events,

including: release of endogenous antigens from cancer cells,

release of “danger signals” from damaged cells, processing of

cancer antigens, antigens presented to naive T cells by APC,

activation and proliferation of cancer-specific cytotoxic T cells

(55, 69, 71). The current results suggest that pulsed electric field

can promote cellular immunity through these sessions: 1) induce

immunogenic death, resulting in the massive release of DAMP

(29, 36, 38, 39); 2) Proliferation and activation of antigen

presenting cells (29, 36, 38); 3) Activation, proliferation and

function of cancer-specific cytotoxic T cells (36, 64, 66, 67, 70).

In addition, Shao et al. compared IRE, thermal therapy (Heat),

cryosurgery (Cryo) in vitro, and found that IRE can cause more

protein release than other ablation. Although the released

protein has 40% denatureation, T cell proliferation is still 2-3

times higher than Cryo (69). IRE induces OX40 expression in

CD8+ T cells in vivo, and OX40 acts as a co-stimulatory

molecule to increase T cell expansion and cytokine secretion

(66). The combination of IRE and TLR 3/9 agonists and PD-1

blockade can effectively reverse the depletion of intratumoral

CD8+T and enhance local immunity against tumors (72).

Brandon et al. made a deeper exploration by combining anti-

T-lymphocyte-associated protein-4 (anti-CTLA-4) therapy prior

with IRE on prostate cancer to promote neoantigen-specific T-

cell responses, resulting in increased numbers of splenic systemic

SPAS-1+ T cells concentrated in tumors and distant sites.

Circulating memory CD8+ T cells, in addition to central

memory (TCM) and effector memory (TEM), have tissue-

resident memory (TRM). Endogenous SPAS-1 neoantigen-

specific CD8+ T cells were increased in number and enriched

in tumors following TRAMP-C2 tumor cell were attack and

generated CD8+ TRM cells in different tissues (68). In addition,

Shi et al. treated hepatocellular carcinoma (HCC) with IRE in
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combination with an anti-PD-L1 monoclonal antibody and

found enhanced off-target necrosis and inflammatory

infiltration, with IRE significantly increasing the inflammatory

infiltration index and increasing CD8+ T infiltration not only in

target tissues but also in non-target tissues (untreated tumors)

(70). Immunotherapy Combined IRE induced more CD8+ T

proliferation and enrichment in tumors as well as other sites

than immunotherapy alone, probably because: 1) IRE increased

its immunogenicity: IRE caused immunogenic death of tumor

tissues, massive release of DAMPs, causing activation of APCs

and presentation to T cells, leading to tumor specific T-cell

population expansion and enhanced systemic antitumor effects;

2) Reversal of the immune tolerant tumor microenvironment,

with M1 macrophages polarizing CD4+ Th1 cell differentiation

to enhance CD8+ T cell survival and tumor infiltration; 3) IRE-

induced regulation of the tumor stroma, extracellular matrix,

and/or vascular system may be another reason (21, 36, 46, 53,

68, 73).
Vasculature, extracellular matrix,
and chemical environment

Vasculature

Several studies have demonstrated the protective effect of

ablation foci on large vessels (9, 16, 74). For example, researchers

followed 158 vessels with a mean distance of 2.3 ± 2.5 mm from

the treatment area and found only 7 (4.4%) with abnormal

vascular changes, including stenosis and thrombosis (9).

However, the effect of IRE on microvessels is uncertain, and in

some studies, microvessels remain histopathologically preserved

in the area after ablation and the structure is still present (75),

but can show microvascular distortion, occlusion, and

thrombosis when observed under electron microscopy (32),

and after disruption of vascular continuity there can be

hemorrhagic necrosis with infiltration of surrounding

neutrophils (76), and endothelial cells are damaged

significantly. Thereafter, the disrupted vessel can be recognized

by new endothelial cells derived from neighboring cells and/or

circulating endothelial progenitor cells (32). Non-thermal

irreversible electroporation can cause a decellularizing effect of

the vessel at 3 days, the vessel skeleton survives while cells are

shed, however, at 7 days this skeleton has endothelial

ingrowth (74).

The changes of the microvasculature after IRE are:

immediate congestion (75); necrosis of endothelial cells,

hemorrhage, and peripheral inflammatory response (32, 76);

and there can be regeneration of new vessels (32). It is worth

mentioning that in Lv et al.’s theoretical study of the effect of

perforation on tumor vasculature and normal vasculature, by

establishing a multilayer dielectric model, explored that rich
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vascular smooth muscle cells (VSMCs) might have a protective

effect on normal vasculature, thus demonstrated that

electroporation may have a stronger destructive effect on

tumor vasculature (77).

At the level of regulation of angiogenesis, tumor growth

requires nutritional support from blood vessels, and angiogenesis

is influenced by the expression of pro-angiogenic factors and anti-

angiogenic factors; the VEGF family, composed of six growth

factors (VEGFA-F), is essential for angiogenesis (78, 79), and

angiopoietin 1-2 (Ang1-2) is independent of VEGF, while Ang-2

is mainly present in vascular expressed in remodeled tissues and in

the hypoxic tumor microenvironment (80). VEGF can also exert

inhibitory effects on DC cells and effector T cells in driving

neoangiogenesis, as well as increase TAM infiltration and the

expansion of Tregs and MDSCs (78, 81–84). However, due to the

overexpression of pro-angiogenic factors and less in tumors, tumor

vessels exhibit functional abnormalities with abnormal leakage,

rapid growth, high tortuosity, and little perivascular pericytes and

smooth muscle cells coverage (78, 79). A decrease in VEGF and

CD34 proteins can be detected 1 hour after nanosecond pulse

treatment of pancreatic cancer (21). He et al. also found increased

expression of CD31 in tumor after IRE (53). In addition, nsPEFs

and everolimus (The mammalian target of rapamycin (mTOR)

inhibitor) synergistically inhibited angiogenesis by decreasing the

expression of vascular endothelial growth factor (VEGF), VEGF

receptor (VEGFR), and CD34 (85). In addition to inhibiting the

expression of pathological proangiogenic factors, a study by Zhao

et al. found a transient increase in CD31 calculated tumor

microvascular density microvessel density (MVD) followed by a

decrease four days after IRE treatment of pancreatic cancer and an

increase in microvascular permeability determined by fluorescein

isothiocynate (FITC)-bound dextran (73). Therefore, pulsed electric

field can inhibit the growth of tumor pathological blood vessels and

blood supply around the tumor, and also preserve the permeability

of functional blood vessels to a certain extent, which is conducive to

the infiltration of immune cells and factors.
Extracellular matrix

In the tumor microenvironment, not only tumor cells

proliferate rapidly, but also stromal deposition and remodeling as

well as cancer cells and stromal cells increase, and CAFs form the

main support structure of tumor tissues (1, 2). CAFs also promote

cancer development by secreting growth-promoting factors such as

TGF-b, stromal degrading enzymes and angiogenic factors such as

MMP or VEGF, a smooth muscle actin (a-SMA) is a reliable

biomarker for CAFs, and fibroblast activating protein a (FAP-a,
seprase) is a surface glycoprotein that is selectively expressed on

solid tumor fibroblasts. MMP hydrolyzes the extracellular matrix

and its expression correlates with the aggressive phenotype of

tumor cells and tumor progression (86).
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Extracellular matrix and collagen structures can exist intact

after IRE action because IRE acts on phospholipid bilayers

(3, 74).

MMPs family proteins (MMP1, MMP2, MMP9, MMP11,

MMP12, MMP14, and MMP21) are expressed at different levels

of nsPEF intensity (21). In a study by Zhao et al. collagen matrix

or aSMA+ CAFs were not affected by IRE, and FAP-a,
hyaluronic acid (indicated by HABP1 expression levels) and

lysyl oxidase (LOX, a marker of extracellular matrix stiffness)

were decreased to varying degrees (36). Vasculature and collagen

were still present in IRE-treated lung tissue 2 days after

treatment and 28 days after a significant increase, indicating

remodeling and regeneration of the mesenchyme, but decorin

and heparan sulfate decreased after ablation (87).

Therefore, when electric pulses cause irreversible

electroporation of cells, the presence of stromal and collagen

structures can be observed histopathologically, but they can also

microscopically modulate the cellular matrix and reduce the

levels of CAFs and MMPs (Table 1). With the preservation of

functional vessels and increased vascular permeability, softened

extracellular matrix is beneficial to infiltration of inflammation

and distant effects (16, 36, 53, 67).
Improving hypoxia

Tumor vessels show characteristics of tortuous, twisted, and

easily occluded, and the tumor presents a relatively hypoxic state

due to the rapid proliferation of tumor cells and the increase of

extracellular matrix leading to the increase of tumor tissue

pressure. Hypoxia leads to the accumulation of hypoxia-

inducible factor 1-a (HIF-1a), which promotes further tumor

angiogenesis and suppresses T-cell function (2, 88). Moreover,

hypoxia increases anaerobic enzymes and lactate accumulation

further reduces T and NK cell activation (89). Reversal of

intratumoral hypoxia effectively increases the infiltration of

immune cells. The downregulation of HIF-1a and carbonic

anhydrase 9 (CA-IX) and increased vascular permeability after

IRE suggest that IRE may also increase the number and action of

local T cells, NK cells by alleviating tumor hypoxia (36).
Discussion

Compared with other local thermal techniques, pulsed

electric field has several advantages in the regulation of the

microenvironment: 1) It can protect the structure of large and

medium vessels, and the elastic fibers and smooth muscle fibers

in vessels can maintain the basic normal structure of vessels,

with some damaged endothelial cells can be replaced (32, 74).

2) The protection of functional blood vessels makes sure the

cell’s “eat me” signals be found and recognized by APC (10, 29,

37, 43). 3) APC presents antigens to activate immunity, and the
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retained blood vessels are more conducive to the infiltration of

immune cells, which may reduce the occurrence of residual

cancer (10, 29, 46). 4) Triggering a shift from the innate

immunosuppressive microenvironment to the immune-

promoted antitumor microenvironment (27, 36, 46, 53, 64,

70) . Combining pulsed electr ic field therapy with

immunotherapy is beneficial to mobilize the body’s immunity

to kill tumors (37, 38, 66, 68). 5) It promotes systemic

immunization and has the effect of distant effect, inhibiting

tumors that may metastasize elsewhere (67, 70).

Although many studies of the effect of electric pulses on

tumor microenvironment have been reported, there are still

some questions that need to be addressed and more in-depth

studies can be done in the future in the following areas.
1. The differences in the effects of IRE, nsPEF, and H-FIRE

on cell and microenvironment need to be further

studied. They have different parametric characteristics,

the most prominent of which is the difference in pulse

duration. They are capable of disrupting the structure of

the cell membrane. However, nsPEF is characterized by

high compression power, ultrashort pulse duration, fast

rise time, and high electric field. When the pulse

duration is shorter than the charging time of the cell

membrane (mostly 100 ns), the charge cannot

accumulate on the surface of the cell membrane and

the applied electric field is mainly received by the

membranes of intracellular organelles such as the

nucleus, endoplasmic reticulum and mitochondria.

When a 300 ns pulse (or longer) is applied, the pulse

is long enough to allow the electric field to interact only

with the plasma membrane and not the intracellular

organelles (90, 91). The change of subcellular membrane

potential may affect a series of signaling pathways. IRE

and nsPEF are different in causing cell damage, which

needs further study.

2. Even though it is the same modality, different

parameters can bring about different changes. In IRE,

the most studied is the voltage/field strength. Compared

to a field strength of 500 V/cm, IRE using 2500 V/cm

seems to be more capable of causing cellular damage,

whether this is a thermal or non-thermal effect and by

what exact mechanism of damage (including membrane

damage, ATP depletion, mitochondrial damage,

increase in ROS, DNA and protein damage) needs to

be further investigated (4, 36). And changes in electric

field strength bring about proportional changes in the

mode of cell death, with the promotion of apoptosis

evident at 500 V/cm but increased necrosis at 2500 V/

cm (23), in between which there should be a suitable

range of electric field strength that would keep the

ablation zone within the desired range and cause more

immunogenic death, but the appropriate field strength
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Fron
may vary with the conductivity of the ablated tissue

changes.

3. The complex cascade of responses induced by IRE,

nsPEF, and H-FIRE remains to be investigated. The

effect of pulsed electric fields on Wnt/b-Catenin, KRAS,
EGFR, and downstream NF-kB signaling may be critical

in determining therapeutic strategies, as these signals are

often dysregulated in tumorigenic development (92, 93).

More studies should address the complex signaling

cascade response activated after pulsed electric fields.

4. The structure of antigens released by pulsed electric

fields is uncertain. In experiments in vitro, IRE, despite

releasing the highest amount of protein, which could be

due to membrane rupture, was present with 40%

denatured proteins, possibly related to the interactions

of the high electric field, the charged amino acid residues

of proteins, and solvent molecules. Alterations in the

secondary structure of proteins are essential for APC

processing and antigen presentation (69). Future in vivo

experiments are still needed to evaluate the antigenic

characteristics of IRE or nsPEF release, which will be

important to optimize its stimulation of APC and thus

the initiation and activation of T cells.

5. The effect of IRE on microvasculature remains

controversial. A study found that CD31 was increased

at 7 days after IRE (1000 V; 100 ms; 1 Hz; 80 pulses) in

the tumor area (46), but some studies found that CD31

was increased on day 4 after IRE (200 V/960 V, 100 us,

1 Hz, 20 pulses) but fell back at day 7 (36). The difference

in parameters does not seem to explain this. What is

certain, however, is that IRE does preserve local vascular

structures better than other thermal ablations, and in the

study by Bulvik et al. there was an observed infiltration of

inflammatory cells around the vessels, which was not seen

with radiofrequency ablation (73). Therefore, it is

important to clarify whether IRE is able to create a time

window with the right number of microvessels and

increased permeability, as this could provide more

support for the timing of combined immunotherapy.

6. The effect of IRE on immunomodulatory activity has

become an area of intensive research. However, most

previous studies have provided only some descriptive

data on temporal level changes in immune cells. Less has

been explored regarding the precise IRE-mediated

immune response.

7. Energy-based local therapies and immunotherapy can

be synergistically combined is also a future direction.

Pulsed electric fields can promote antigen preservation

and local inflammation, and synergistic effects exist

between them and immunotherapy (37, 38, 49, 66–68).
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Conclusion

High voltage electrical pulses cause changes in multiple

intracellular signaling pathways to inhibit replication and

proliferation of tumor cells, and also kill tumor cells

through multiple modes of death by necrosis, pyroptosis,

and necroptosis. Pulsed electric fields can contribute to

immunogenic death, increase tumor immunogenicity, reverse

the immune tolerance environment, and can promote activation

and proliferation of cancer-specific cytotoxic T cells acting

locally and systemically.
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