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Abstract

Diffusion-weighted imaging coupled with tractography is the only method for in vivo mapping of 

human white-matter fascicles. Tractography takes diffusion measurements as input and produces a 

large collection of white-matter fascicles as output; the connectome. We introduce a method to 

evaluate the evidence supporting connectomes. Linear Fascicle Evaluation (LiFE) takes any 

connectome as input and predicts diffusion measurements as output, using the difference between 

the measured and predicted diffusion signals to measure prediction error. Finally, we introduce 

two metrics that use the prediction error to evaluate the evidence supporting properties of the 

connectome. One metric compares the mean prediction error between alternative hypotheses, and 

the second metric compares full distributions of prediction error. We use these metrics to (1) 

compare tractography algorithms, and (2) test hypotheses about tracts and connections.
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Introduction

In a remarkable advance over the last decade, MR diffusion imaging methods and 

tractography algorithms now estimate the trajectories of white-matter fascicles (tracts) in the 

living human brain1–3. Because these measurements are in the living human brain, they can 

be used to clarify the relationship between the tract tissue properties and behavior, cognition, 

and development as well as to identify disease biomarkers. Experimental measurements 

combining behavior and diffusion show that tissue properties of specific tracts are correlated 

with a range of cognitive abilities. These tracts are living wires whose properties change 
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during development and in response to experience. For example, changes in tissue property 

are correlated with developmental progress, language, cognition, decision making, disease 

and trauma4–9.

The complete collection of white matter tracts and connections in a large volume is called a 

connectome10,11. A key limitation of current practice concerns how to establish confidence 

in the connectome and specific fascicles within the connectome. Establishing confidence is 

important because in current practice selecting different parameters or different algorithms 

produces substantially different candidate connectomes (Fig. 1). The estimates differ in 

ways that are very meaningful to neuroscientists12–14. Investigators are interested in 

measuring the strength of the evidence supporting each of the models for this particular 

individual with this particular instrument.

We introduce a method that reduces a candidate connectome containing many fascicles to an 

optimized connectome. Fascicles are retained for the optimized connectome only if they are 

needed to predict the diffusion data. We then present two sets of results that rely upon this 

method. The first set shows that the optimized connectome predicts the diffusion data 

accurately and analyzes the properties of the optimized connectome. The second set 

introduces methods that evaluate the strength of the evidence concerning specific tracts and 

connections. The methods that create the optimized connectome and evaluate the evidence 

in support of connectome properties are the main contributions of this paper. Software 

implementation of the method provided at https://francopestilli.github.io/life. Data provided 

at http://purl.stanford.edu/cs392kv3054.

Results

LiFE: Linear Fascicle Evaluation

Deriving the optimized connectome—Tractography algorithms use diffusion-

weighted images to derive many fascicles that comprise the candidate connectome. 

Conventional tractography generates fascicles one at the time; these algorithms do not assess 

how well the full connectome predicts the diffusion data.

The Linear Fascicle Evaluation (LiFE) algorithm evaluates how well the entire connectome 

fits the white-matter diffusion data. The method solves a set of simultaneous linear 

equations (see Supplementary Fig. 2 and Methods) to estimate a weight for each fascicle; 

this weight describes the fascicle’s contribution towards predicting the data. These equations 

are solved by non-negative linear least squares algorithms15. Only fascicles with positive 

weight are retained (see Methods and Supplementary Fig. 2). This connectome evaluation is 

global: The fascicles in the optimized connectome all contribute to predict the diffusion data 

measured in the full white matter volume.

The LiFE method can be applied to a candidate connectome created with any number of 

fascicles, parameter settings and tractography algorithm; the method identifies the subset of 

fascicles that are supported by the diffusion data.
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Prediction accuracy of the optimized connectome—We evaluated the prediction 

accuracy using cross-validation (Fig. 2). In the examples here and below, we began with 

candidate connectomes generated using constrained spherical deconvolution based 

probabilistic tractography16 (Lmax= 10, 5×105 seeds). We analyzed data from two different 

data sets. Dataset STN150 was obtained using 150 angles and 2 mm isotropic spatial 

resolution, b-value of 2000s/mm2. Dataset STN96 includes 96 diffusion directions at 

1.5mm3, b-value 2000s/mm2. Both of these are whole-brain connectomes. In each case, the 

candidate connectome contains 500,000 fascicles.

Fig. 2 (and Supplementary Fig. 2) shows the measured and predicted diffusion modulation, 

i.e., the diffusion relative to the mean isotropic signal in each voxel for one diffusion 

direction. Data were divided into two parts, D1 and D2 (Fig. 2a). We tracked and estimated 

the fascicle weights that best fit D1. We used the connectome and the estimated weights 

from D1 to predict the diffusion signal in D2 (Fig. 2b). We use the root mean squared error 

(RMSE; Fig. 2c) between the prediction and D2 to measure prediction error. The RMSE is 

uniformly distributed across the white matter (Fig. 2c).

The optimized connectome performs better than test-retest reliability—We 

compared the model prediction to the test-retest reliability of the data, which is the RMSE 

between the two data sets, Drmse. The model prediction error (Mrmse) is the RMSE between 

the connectome prediction and D2. We compared the model and test-retest reliability at each 

voxel using the ratio: Rrmse = Mrmse / Drmse. When Rrmse is below one, the model predicts 

D2 more accurately than D1 predicts D2. For most voxels Rrmse is less than 1 (Mrmse is lower 

than Drmse). More than 70% of the voxels have an Rrmse less than 1 (Fig. 2d and 

Supplementary Fig. 2). In summary, the connectome model predicts the second data set 

slightly more accurately than assuming that the second data set equals the first.

Fascicle lengths and weights—The candidate and optimized connectomes include 

many more short (1–5 cm) than long (10 cm) fibers (Fig. 3a and Supplementary Fig. 3). 

Histology shows17,18 that there are vastly more short fibers (< 1 cm), but these are not 

picked up by the tractography. Optimizing the connectome reduced the count in long and 

short fascicles approximately equally.

The number and values of the positive weights in the optimized connectome will depend on 

the spatial resolution, angular resolution, and signal-to-noise in the acquired data. The 

number of positive weights for STN96 and STN150 were both about 95,000. For all three 

data sets (STN150, STN96 and HCP90), the fascicle weight distribution is approximately 

symmetric on a log-weight axis (Fig. 3b). There is a large range of assigned weights. Some 

fascicles contribute more to the predictions than others, and their weights can be as much as 

two orders of magnitude greater.

Fascicle density—Axon density varies across the white matter. For example, in the 

corpus callosum the axon density range is about 1.3:119. Examining only the axons with a 

diameter greater than three microns, the range can be as large as 30:119. Yet, typical 

candidate connectomes can have ranges on the order of 300:1 or more20 (Fig. 3c,d and 

Supplementary Fig. 3). This range exceeds the range observed in biological material. 
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Recently, investigators considered principled methods to bring the dynamic range of the 

fascicles into biologically plausible ranges20–22.

The optimized connectome fascicle density is close to a biologically plausible level (Fig. 

3d). The optimized connectome has a much smaller dynamic range because many fibers in 

the core of the white matter are eliminated. The number of fascicles per voxel in the white 

matter adjacent to cortex remains stable.

Naturally, any change in the power of the data - such as reducing the number of directions, 

making the sample size coarser, or decreasing the SNR - will impact how many of the 

fascicles are supported by the measurements and thus retained in the optimized connectome. 

This is an important characteristic of the procedure as it allows researchers to evaluate the 

acquisition parameters that are needed to measure specific tracts (Supplementary Fig. 3c).

Statistical inference on models, tracts and connections

Comparing connectome models—Using LiFE, we can compare the prediction error of 

optimized connectomes derived from different tractography methods. There will no single 

tractography method optimal for all data acquisitions (e.g., 30-direction on a 1.5T scanner 

vs. 256-direction on a 3T scanner). Hence it is crucial to have a method to select the optimal 

algorithm for particular data sets and research question.

We illustrate how to use LiFE to compare connectome models using two tractography 

methods16. In one case we used a tensor-based deterministic algorithm16,23,24. In the second 

case we used probabilistic tractography based on constrained spherical deconvolution 

(Lmax=1016,25,26). The resulting connectomes are very different (Fig. 1 and Supplementary 

Fig. 1). One important difference is that the probabilistic candidate connectome spans the 

entire white-matter volume; the deterministic connectome spans about 80% of the voxels in 

the white matter volume.

Next, we compared the voxel-wise prediction error (RMSE) from the optimal probabilistic 

and deterministic connectomes (Fig. 4a). In the voxels without any fascicles from the 

deterministic connectome, we set the diffusion signal prediction to an isotropic diffusion 

signal. For most voxels the RMSE is higher for the tensor-based deterministic algorithm 

than the CSD-based probabilistic algorithm (Fig. 4b). This quantifies the widely held belief 

that tensor-based deterministic algorithms fail to capitalize on all the information present in 

the data.

We used a bootstrap method27 to quantify the strength of the evidence showing that the 

mean RMSE of the probabilistic connectome is smaller than the mean RMSE of the 

deterministic connectome (Fig. 4c). We resampled (with replacement) the distribution of 

RMSE values and computed the mean RMSE of each resample. The distribution of mean 

RMSE values for the deterministic algorithm is higher than the mean RMSE from the 

probabilistic algorithm. We summarize the strength of the evidence for one model versus the 

other by using a measure of distance between these two distributions, S.. We calculate the 

distance as the difference in the two means (μ) divided by their pooled standard deviations 

(σ).
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The values  and  are the bootstrapped means and variances of the RMSE for 

deterministic and probabilistic connectomes, respectively. The denominator is a 

conservative upper-bound estimate of the standard deviation of the distribution of mean 

RMSE pooled between deterministic and probabilistic connectomes28. The distance between 

the means, S, is on the order of 90 standard deviation units, a measure that is equivalent to d-

prime. This indicates that the evidence is very strong that the mean RMSE of the 

probabilistic connectome is smaller than that of the deterministic connectome for this data 

set and instrument. This result is consistent across data sets (Supplementary Fig. 4) 

suggesting that in many measurement conditions probabilistic tracking is superior.

In addition to the mean RMSE, we can compare the complete RMSE distributions of the two 

models (Fig. 4b). We evaluated three additional metrics to compare RMSE distributions: the 

Earth Mover’s Distance29, Kullback-Leibler divergence, and Jeffrey’s divergence 

(Supplementary Fig. 4). The strength of evidence (S) and Earth Movers Distance (E) are 

both informative and reliable across a range of experimentally plausible conditions. Hence, 

we use these two measures for statistical evidence.

The virtual lesion method: evidence for a brain connection—In this section we 

explain how to use the connectome model to measure the strength of the evidence 

supporting the existence of specific tracts connecting different brain regions.

The LiFE algorithm requires that fascicles in the optimized connectome contribute to the 

data prediction; removing any fascicle from the optimized connectome increases model 

prediction error. The impact on error depends on the number and weights of the removed 

fascicles. Removing very few fascicles, or only removing fascicles with small weights, 

increases error slightly. But removing a large number of fascicles or fascicles with large 

weights increases error greatly. We use the magnitude of the error increase to measure the 

strength of the evidence supporting the existence of any specific set of fascicles. We 

describe the analysis of fascicle removal as a virtual lesion.

Here illustrate a virtual lesion using an example tract connecting the Superior Parietal Gyrus 

(SPG) and human MT+30,31. First, we created a candidate connectome using MRtrix 

(Lmax=10, 1,500,000 fibers). Second, we identified all fascicles terminating in the SPG and 

hMT+. Third, we identified the path-neighborhood of the fascicle, a useful concept 

introduced by Wedeen and colleagues13. Suppose that f is the set of fascicles under test in 

the optimized connectome, for example the SPG-hMT+ tract (Fig. 4d). The fascicle passes 

through a set of white matter voxels, v(f). The collection of all the other fascicles that pass 

through at least one of the voxels in v(f) is the path-neighborhood of f. We refer to the path-

neighborhood with the symbol F (Fig. 4d). Only the fascicles in F contribute to the model 

prediction of the diffusion signal in v(f).
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We measured the strength of the evidence in favor of the existence of the fascicles, f, using a 

bootstrap method27. We calculated the RMSE of the predicted diffusion signal in each 

voxel, v(f), using the path-neighborhood, F. We then calculated the RMSE using a model in 

which we remove the fascicles in f, F’ = F − f. The histograms in Fig. 4e compare the RMSE 

distribution for the path-neighborhood v(f) for the lesioned and unlesioned model. 

Supplementary Fig. 4 shows similar results for additional subjects and reports the mean 

values for S and E across subjects and datasets STN96, HCP90.

The analysis supports the existence of a white-matter tract between the SPG and hMT+, 

which has not been reported in humans. The tract is contained within the larger vertical 

occipital fasciculus32,33. This anatomical evidence in the living brain is consistent with 

functional data and post-mortem dissections in human34–36 and macaque30,31,37.

LiFE confirms twenty major white-matter tracts—We calculated the strength of the 

evidence in favor of the existence of each of twenty long tracts that are known to exist in the 

human brain3 (n=5). The S and E values strongly support the existence of all twenty major 

tracts (Fig. 5 and Supplementary Fig. 5).

Further, these twenty tracts comprise twelve left-right pairs. In each case, the strength of the 

evidence supporting the corresponding left and right tract is very similar, and approximately 

consistent with their size. The SLF and arcuate are both large tracts and there is more data 

supporting their existence. The Uncinate and Cingulum projecting to the hippocampus are 

somewhat smaller and the S values for these tracts are smaller. Whereas the strength of 

evidence computed using S depends on the size of the tract, the characteristics of the data 

acquisition (e.g., signal-to-noise), and the effect of the lesion, E depends only on the data 

and the lesion effect size (see Supplementary Fig. 4 and 5). This analysis validates LiFE by 

showing that it confirms the existence of known white matter tracts.

Supplementary Fig. 5 also shows that LiFE can alter the matrix of connectivity between 

brain regions.

Discussion

Connectome generation

Investigators can choose from a large set of diffusion measurements and tractography 

algorithms to generate white-matter fascicles (Supplementary Table 1). Each algorithm 

generates connectomes using its own set of theoretical principles and heuristics, and the 

choice of parameters and algorithms has a significant impact on the tract estimates (Fig. 1). 

LiFE is a method that is applied to the white matter tracts from any tractography algorithm. 

The method helps the investigator measure the strength of the evidence supporting the 

existence of specific candidate tracts.

Tractography estimates can fail if they miss a real fascicle or generate a fascicle that does 

not exist (false alarm). The LiFE method reduces false alarms (Fig. 3). But it is not a 

tractography algorithm, and thus LiFE does not supply missed tracts. Consequently, when 
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using LiFE investigators should begin with large candidate connectomes that are created to 

minimize misses but tolerate false alarms.

Global tractography—The first algorithms for tractography were deterministic, local and 

greedy38. Following this early work, probabilistic formulations were introduced to account 

for uncertainty16,25,26. Also, non-local algorithms that operate on more than a single voxel at 

a time were proposed39–43. These and most tractography algorithms combine connectome 

generation with some form of indirect evaluation39–41.

Sherbondy et al.43,44 suggested separating connectome generation and evaluation 

algorithms. This separation enables investigators to measure the accuracy of predictions 

derived from different global tractography algorithms and to measure the accuracy of 

connectomes in predicting diffusion data. The principle of separating connectome generation 

and evaluation is adopted in several recent publications45.

Global tractography algorithms can be further subdivided into two types, fascicle-global and 

connectome-global. Most global tractography algorithms are global in the sense that they 

consider constrains to path generation computed over entire fascicles; but they do not 

constrain path generation over the complete connectome39–41,44. The principal goal of 

fascicle-global algorithms is to impose some degree of smoothness on the fascicle path. 

Connectome-global algorithms generate paths by constraining entire connectomes21,43. The 

goal of these algorithms is path generation; they do not provide mechanisms for evaluating 

tractography solution. LiFE provides a computational algorithm and a statistical inference 

framework that can evaluate virtually any connectome against the measured diffusion data.

Connectome model validation

One approach to validation asks whether the tract estimates conform to measurements made 

using another method12,14,46,47. LiFE makes a different and equally important assessment: 

How much support exists for the tract estimates in the present data? We consider the utility 

of these two different types of validation.

The most common approach to connectome validation is to compare tractography with 

another method. First, validation has been performed qualitatively by comparing tract 

estimates in individual ex-vivo brains using both diffusion tractography and histology48,49. 

This method has various limitations. It is extremely time consuming; the neural tissue is 

distorted and shrunk during the histological preparation; and the method can only be applied 

to a few cubic millimeters of white-matter volume of a single pathway50. Second, 

tractography estimates from probabilistic tractography in-vivo also can be compared with 

blunt dissection in ex-vivo specimens. For example, the overall shape and length of the optic 

radiation obtained with probabilistic tractography in living brains agree well with estimates 

obtained using ex-vivo data44. Third, tractography algorithms are evaluated using artificially 

constructed physical or simulated phantoms of the fibers51–53.

Using a separate method to confirm the existence of tracts is helpful for establishing general 

confidence in tractography. But this approach fails to inform us about the strength of the 

evidence in a specific data set. There is value in knowing that a tract estimated from a child 
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at 3T is also found in an ex-vivo brain measurement at 7T. But it is fundamental to measure 

the degree of support for the presence or absence of a specific tract with specific anatomy in 

the 3T data from that child. What if this child has developed a tumor that changed the shape 

of the tract? Or the same child undergone radiation therapy for a cancer treatment that 

affected the white-matter in the tract54? We would like to know the strength of the evidence 

given the data in this particular subject using this particular instrumentation. LiFE 

establishes confidence about tracts and data obtained with specific instruments and subjects, 

rather than relying on related measurements made with other instruments, methods and 

specimens.

Using LiFE investigators can compare the accuracy of different connectomes and quantify 

the support in the data for specific tracts. New computational methods in quantitative MRI 

will clarify much more about the tissue properties of these tracts55. Taken together, the 

measurements and algorithms are helping us to build a complete model of the locations, 

organization, and tissue properties of the human connectome. Because this work is being 

done in human, we have an excellent opportunity to see the relationship between the 

connectome and the human mind.

Online Methods

STN96 and STN150 data sets: Diffusion-weighted MRI acquisition

Magnetic Resonance Imaging diffusion-weighted data (DWI) were collected at Stanford’s 

Center for Cognitive and Neurobiological Imaging (www.cni.stanford.edu). We collected 

data in six males, age 37 – 39 using a 3T General Electric Discovery 750 (General Electric 

Healthcare, Milwaukee, WI) equipped with a 32-channel head coil (Nova Medical, 

Wilmington, MA). Data collection procedures were approved by the Stanford University 

Institutional Review Board. Written consent was collected from each participant. Stanford 

96 diffusion directions data set (STN96): For six subjects we acquired two diffusion 

weighted scans within a single scan session. Water diffusion was measured at 96 different 

directions across the surface of a sphere as determined by the electro-static repulsion 

algorithm of Jones, Horsfield, & Simmons56. In all subjects, data were acquired at 1.5 mm3 

spatial resolution and diffusion gradient strength was set to 2000 s/mm2 (TE 96.8 msec). We 

used a dual-spin echo diffusion-weighted sequences with full head coverage. Individual data 

sets were acquired with using two excitations (nex = 2) that were averaged in k-space. We 

obtained 10 non-diffusion weighted (b=0) images at the beginning of each data set. The 

signal-to-noise-ratio calculated over repeats of the non-diffusion images was greater than 20 

in all data sets. Stanford 150 diffusion directions data set (STN150): For one subject we 

acquired multiple data sets with 150 directions at 2 mm3 spatial resolution and b values of 

1000, 2000 and 4000 s/mm2 (TE 83.1/93.6/106.9 msec).

MRI images for STN96 and STN150 were corrected for spatial distortions due to B0 field 

inhomogeneity. To do so we measured the B0 magnetic field maps. Field maps were 

collected in the same slices as the functional data using a 16-shot, gradient-echo spiral-

trajectory pulse sequence. Two volumes were successively acquired one with TE set to 

9.091 ms and the other with TE increased by 2.272 ms, and the phase difference between the 

volumes was used as an estimate of the magnetic field. To track slow drifts in the magnetic 
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field (e.g. due to gradient heating), field maps were collected before, after and between the 

two diffusion scans.

Subjects’ motion was corrected using a rigid body alignment algorithm57. Diffusion-

gradients were adjusted to account for the rotation applied to the measurements during 

motion correction. The dual-spin echo sequence we used does not require eddy current 

correction because it has a relatively long delay between the RF excitation pulse and image 

acquisition. This allows for sufficient time for the eddy currents to dephase. Pre-processing 

are publicly available as part of the vistasoft software distribution (http://github.com/

vistalab/vistasoft/mrDiffusion).

HCP90 data set

We used 7 brains with DWI data downloaded from https://www.humanconnectome.org/

data/58. Measurements from the 2000 s/mm2 shell were extracted from the original data and 

were used for further analyses. Processing methods described in the following articles are 

applied to all HCP open access pre-processed diffusion data59.

Anatomical MRI acquisition and tissue segmentation

The white- and gray-matter border was defined using a 0.7 mm3 T1-weighted FSPGR 

image. White/gray matter tissue contrast was increased by averaging two T1 measurements 

acquired in the same scan session. An initial segmentation was performed using an 

automated procedure (Freesurfer60) and refined manually (http://www.itksnap.org/pmwiki/

pmwiki.php).

Generating whole-brain connectomes and tracts

Fiber tracking was performed using MRtrix61. Diffusion-weighted images were motion 

compensated and aligned to the high-resolution T1-weighted anatomical. The total white-

matter volume was identified from the cortical segmentation (see above) and resampled at 

the resolution of the diffusion data. The white-matter volume was used as seed region for 

fiber tracking. We tested three tracking methods implemented within MRtrix: (1) Tensor-

based deterministic tractography61–63, this methods requires fitting a tensor at each voxel 

and tracking using the principal diffusion direction identified from the tensor. (2) 

Constrained-spherical deconvolution (CSD) based deterministic tractography, this method 

requires modelling the fiber orientation distribution function in each voxel using a 

constrained-spherical deconvolution method61 and using the fiber orientation direction 

within voxels as direction of tracking. (3) Finally we used CSD-based probabilistic 

tracking61,64,65. We tested a range of maximum harmonic order (Lmax=6–12), which 

determines the maximum number of deconvolution kernels utilized to estimated the fODF at 

each voxel by the CSD model (step size: 0.2 mm; minimum radius of curvature: 1 mm; 

maximum length: 200 mm; minimum length: 10 mm; fODF amplitude cutoff: 0.1). Results 

were qualitatively similar across the Lmax values. In the text we compare results between 

two tracking methods. The highly used tensor-based deterministic tracking and the more 

recent probabilistic tractography based on CSD (Lmax=10).
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For each tractography method, data set (STN150: b-value 1000, 2000 or 4000 s/mm2 with 

150 directions, STN96 b-value of 2000 s/mm2 with 96 directions and HCP90 b-value 2000 

s/mm2 with 90 directions) and subject we created one whole-brain connectomes with 

500,000 fascicles each. We repeated the analysis independently for each brain in each data 

set. Connectomes for the HCP90 data set were restricted to the posterior portion of each 

brain (occipital, parietal and temporal lobe as well as the cerebellum). For some analysis on 

the STN150 data set (Supplementary Fig. 4 and 7) we used three connectomes restricted to 

the left occipital lobe to build independent LiFE models and repeated our analyses in each 

one of these three connectomes. This allowed us to test the robustness of the results within a 

single brain given by (1) The stochasticity of the placement of the seed within the total 

white-matter volume to initiate fiber tracking. (2) The stochasticity introduced by the 

probabilistic tracking algorithm in generating a connectome. As reported in the main text 

Results and in the Supplementary Figs. 3, 4 and 7 (see error bars), results were 

quantitatively indistinguishable across repeated tracking, and fitting of LiFE models.

Segmenting the connections terminating in specific regions of interest—To 

identify connections between different brain regions (hMT+, superior parietal gyrus, and 

primary visual cortex, Fig. 8 and 9), we: (1) performed a whole-brain automatic parcellation 

using FreeSurfer66. (2) We used the cortical regions for primary visual cortex (V1) and hMT

+ using the cortical regions provided by FreeSurfer67 by transforming them to the space of 

the diffusion data. (2) We expanded these regions to cover portions of the white matter 

adjacent to each cortical area by applying a 3 dimensional Gaussian smoothing with a spatial 

kernel of 3 mm3. (3) We identified the fascicles in the whole-brain connectome with 

termination (endpoints) inside these expanded ROIs. (4) The anterior commissure was 

identified manually in each subject from the high-resolution anatomical image. We selected 

fascicles that intersected a 5 mm-diameter sphere centered at the location of the anterior 

commissure.

Segmenting the major white-matter fascicles—We segmented the major white-

matter fascicles using AFQ68.

Visualization of white-matter fascicles and brain anatomy—Tracts and brain 

images were generated using Matlab Brain Anatomy (MBA) https://github.com/

francopestilli/mba.

Predicting the diffusion signal within a voxel

A complete diffusion MRI experiment measures brain volumes with and without diffusion 

sensitization. Diffusion sensitization (a combination of diffusion gradient strength, duration 

of the diffusion gradient and the interval between the pulses of the diffusion gradient) is 

denoted as b. In a typical experiment one might measure in 100 diffusion directions, θ, and 

10 non-diffusion measurements (b = 0)69. We represent direction, as a three-dimensional, 

unit length, column vector.

Pestilli et al. Page 10

Nat Methods. Author manuscript; available in PMC 2015 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/francopestilli/mba
https://github.com/francopestilli/mba


Suppose the non-diffusion signal at a voxel is S0 and the diffusion signal in the direction θ 

and the presence of a gradient, b, is S(θ, b). The diffusion signal in a particular direction 

using a specific gradient strength (b) is specified using the following equation70

(1)

where A(θ) is the apparent diffusion coefficient in the direction θ. For a simple shape, such 

as an idealized cylinder that represents a short segment of a fascicle, f, the apparent diffusion 

coefficients in different directions can be summarized by the quadratic formula71

(2)

Equation (2) states that for a single small segment of a fascicle the apparent diffusion in any 

direction can be computed using a matrix Q, whose entries depend on the local fascicle 

orientation. The matrix is a 3×3 positive-definite quadratic form, which means that there is 

an invertible matrix M such that Q = Mt M. It follows that Q is symmetric and θt Qθ > 0.

The expected diffusion in a specific voxel, ν, completely filled by one fascicle, f, is

(3)

An important special case is the purely isotropic compartment, A0, (i.e., equal diffusion in 

all directions, θ). This corresponds, say, to the portion of the voxel containing cerebrospinal 

fluids, astrocytes and other tissue. A typical voxel is likely to contain a combination of 

fascicles and these isotropic tissues. We express the predicted diffusion signal from a single 

voxel as the weighted sum of the contributions from the fascicles in the compartment and 

the isotropic term We can rewrite Equation (4), the diffusion in a voxel, as the sum of an 

isotropic term and the sum of orientation dependent functions from each fascicle

(5)

The isotropic term, Iν, is simply the mean diffusion signal in the voxel

(6)

The fascicle-specific function, Of(θ), is anisotropic with zero mean. It describes the 

modulation of the diffusion signal around its mean.

(7)

The fascicle weights in a voxel are estimated by first subtracting Iν from the diffusion signal 

and then solving the linear equation for the values, wf, which minimize
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(8)

The difference between the measured diffusion signal and the mean diffusion signal is

(9)

The predicted signal modulation based on the fascicles in v is

(10)

Estimating fascicle weights from the connectome

Finally, we solve for the fascicle weights by minimizing the error across all the voxels in the 

connectome, C. Specifically, we find wf that minimize the expression

or equivalently

(11)

Supplementary Fig. 2b shows Equation 11 in matrix tableau. We solve for the non-negative 

weights using the algorithm defined in72.

There are many possible variants of this formulation. For example, it is possible to impose 

additional minimization constraints (e.g., sparsity or uniformity on the weights), or even to 

allow the weights to vary along the fascicle path. We are experimenting with several of 

these alternatives, but the formulation introduced here has proved to be a useful starting 

point for further development.

In summary, the connectome model is expressed as a minimization with respect to a large 

set of linear equations (Eq. 11). The matrix representing the connectome model is sparse, 

and for our high-resolution data sets the matrix row size is (Nν × Nθ), about 7,000,000 for 

the STN150 data set and 40,000,000 for the STN96 data set). The matrix begins with a 

column size (Nf) of about 500,000 fascicles in the candidate connectome. The column 

dimension is reduced when the optimized connectome is reached. See Supplementary Fig. 2 

for details on the matrix representation of the linear model for the connectome.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Tract trajectory estimates and cortical projection zones differ markedly between 

tractography algorithms. (a) Deterministic tractography. Sagittal and coronal views of the 

arcuate fasciculus (purple) and cortico-spinal tract (gold) in a candidate connectome 

generated using deterministic tractography. The density with which the fiber projects onto 

the cortical surface are indicated by the color overlay. Yellow indicates highest fiber density. 

(b) Probabilistic tractography. As in part (a) except for a candidate connectome generated 

using probabilistic tractography. Supplementary Fig. 1 shows another example of the same 

problem.
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Figure 2. 
Measured and predicted diffusion and LiFE model prediction accuracy. (a) Maps of 

measured diffusion modulation (Diffusion data 1 and 2, D1 and D2 respectively in the main 

text) in a typical coronal brain slice and for a single diffusion direction. (b) Map of predicted 

diffusion modulation by LiFE (synthetic MRI signal; Eq. 7) in for the same brain slice and 

diffusion direction. Connectome generated with CSD-based probabilistic tractography with 

Lmax=10 STN150 data set (n=1). (c) Distribution of LiFE model RMSE. Representative 

coronal brain slice; the color overlay shows the cross-validated model error (Mrmse) for the 

CSD-based probabilistic tractography with Lmax=10 using the STN150 data set. The Mrmse 

is uniformly distributed across the white-matter tissue. (d) Histograms of the percent of 

white-matter volume with a certain Rrmse for the STN150 (left, n=3) and STN96 (right, n=6) 

directions data sets. The voxel-wise Rrmse model predicts better than data (< 1) in more than 

70% of the total white-matter volume. Error bars indicate ±1 s.e.m. across brains. 

Supplementary Fig. 2 shows a visual representation of LiFE model and extends the results to 

other data sets and connectomes.
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Figure 3. 
Properties of the LiFE solution. (a) Fascicle length distribution. Histogram of fascicles 

length for candidate and optimized connectomes (STN96 data set, Probabilistic CSD 

Lmax=10) averaged across six brains. (b) Distribution of fascicles weights. Top. Weights for 

a single connectome for the STN150 data set. Middle, weights averaged across six 

connectomes for the STN96 dataset. Bottom. Weights averaged across seven connectomes 

for the HCP90 dataset, these connectomes contain two large portions of the left a right 

occipital and temporal lobes (see Methods). Error bars indicate ±1 s.e.m. across brains. (c) 
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Fiber density maps. Maps for the candidate (left) and optimized (right) connectome are 

overlaid on a coronal brain slice (STN150). Fiber density near the gray matter is similar. The 

optimization reduces the density in the core of the white matter by a factor of 10. Optimizing 

the connectome equalizes fascicle density across the white matter. The optimized 

connectome fascicle density is below 100 across the whole-slice and the color appears as a 

uniform blue. (d) Candidate and optimized connectome fascicle density histogram. Fiber 

density histogram for the candidate (light gray) and optimized (dark gray) connectomes 

(STN96). Fascicle density and dynamic range are reduced by the LiFE model. Line width 

indicates ± 1 standard deviations across six brains. Supplementary Fig. 3 extends the results 

to other data sets and reports additional analyses of the number of fascicles as a function of 

number of measured diffusion directions.
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Figure 4. 
Comparison of connectome models and virtual lesion method. (a) Voxel-wise prediction 

error. Error is show for whole-brain probabilistic (CSD, Lmax=10) and tensor-based 

deterministic optimized connectomes. Each white matter voxel has a cross-validated RMSE 

for both the optimal probabilistic and deterministic connectomes. The scatter-density plot 

compares these two values and shows that in a large majority of the white matter voxels the 

deterministic errors exceed the probabilistic errors. (b) Distribution of RMSE for 

probabilistic (CSD, Lmax=10) and tensor-based deterministic optimized connectomes. 

Histogram of RMSE for the two tractography models. The mean of each distribution is 

shown as vertical arrow. The Earth Movers Distance (E) quantifies the lower error for the 

Probabilistic model. (c) Distribution of mean RMSE. Representative bootstrap distribution 

of the mean RMSE. The Mean RMSE is higher for the deterministic than probabilistic 

connectome. There is very strong evidence favoring the probabilistic connectome over the 

deterministic connectome, S=95.9. All plots are for one brain data set STN96. See 

Supplementary Fig. 4 for additional information about S and E. (d) A novel pathway 

connecting hMT+ and the superior parietal gyrus (SPG) identified using a virtual lesion. 

Left. White matter fascicles intersecting hMT+ and SPG in the left hemisphere of one 

individual brain. Right. Path-neighborhood, fascicles sharing voxels with the hMT+ / SPG 

tract. (e) Distribution of RMSE for lesioned and unlesioned models. The RMSE increases 

(orange) as the hMT+ to SPG tract is removed. See Supplementary Fig. 4 for additional 

subjects and data sets.
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Figure 5. 
Major white-matter fascicles are supported by LiFE. (a) Twenty major human white-matter 

tracts the optimized connectome (STN96, CSD probabilistic Lmax=10). (b) Distribution of 

cross-validated RMSE of the optimized connectome (F), and the lesioned optimized 

connectome without the SLF (F’ = F − f). RMSE is larger for F’. (c) Mean strength of the 

evidence (S) across five brains supporting the existence of each of the twenty major tracts 

shown in a. Bar location matches hemisphere (left and right respectively). Error bars 

indicate ±1 s.e.m. across brains. See Supplementary Fig. 5a for the results using the Earth 

Movers distance. Supplementary Fig. 5b reports additional analyses showing that LiFE 

alters the matrix of brain connections.
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