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Abstract
Understanding non-motor symptoms of Parkinson’s disease is important in order to unravel the underlying molecular mecha-
nisms of the disease. Olfactory dysfunction is an early stage, non-motor symptom which occurs in 95% of Parkinson’s disease
patients. Mitochondrial dysfunction is a key feature in Parkinson’s disease and importantly contributes to the selective loss of
dopaminergic neurons the substantia nigra pars compacta. The olfactory bulb, the first olfactory processing station, also contains
dopaminergic neurons, which modulate odor information and thereby enable odor detection as well as odor discrimination.
MitoPark mice are a genetic model for Parkinson’s disease with severe mitochondrial dysfunction, reproducing the differential
vulnerability of dopaminergic neurons in the midbrain. These animals were used to investigate the impact of mitochondrial
dysfunction on olfactory-related behavior and olfactory bulb dopaminergic neuron survival. Odor detection was severely im-
paired in MitoPark mice. Interestingly, only the small anaxonic dopaminergic subpopulation, which is continuously replenished
by neurogenesis, was moderately reduced in number, much less compared with dopaminergic neurons in the midbrain. As a
potential compensatory response, an enhanced mobilization of progenitor cells was found in the subventricular zone. These
results reveal a high robustness of dopaminergic neurons located in the olfactory bulb towards mitochondrial impairment, in
striking contrast to their midbrain counterparts.
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Introduction

Parkinson’s disease (PD) is the most common movement dis-
order affecting 1% of the population above 60 years [1] char-
acterized by the initial loss of midbrain dopaminergic neurons
(DaNs) in the substantia nigra pars compacta (SNc). The

depletion of striatal dopamine leads to progressive and irre-
versible motor impairment [2]. Besides the cardinal symptoms
of PD, non-motor dysfunctions including depression, sleep
disturbance, and hyposmia have been described. Olfactory
dysfunction is found in more than 95% of PD patients and
can precede motor symptoms by up to 10 years [3–5].
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The olfactory bulb (OB) is the first station of sensory pro-
cessing in the olfactory system. Besides the midbrain, DaNs
are also present in the OB and make up 5% of the neuronal
population [6]. They function as interneurons and are neces-
sary for odor discrimination rather than for odor detection [7,
8]. They are primarily located in the glomerular layer (GL),
where they modulate the activity of both olfactory sensory
fibers [9, 10] and mitral cells by D2 receptor-mediated inhibi-
tion [11, 12] as well as via contacts with external tufted cells
[13]. Despite of multiple as well as contradictory statements
regarding their categorization, OB DaNs can be clearly divid-
ed into small (5–10μm), anaxonic (SCs) and large (10–15μm
diameter), axonic cells (LACs) [14]. In contrast to LACs, SCs
can be continuously generated throughout life by
neurogenesis in mice as well as in humans [15–19].
Progenitor cells are formed in the dorsolateral region of the
subventricular zone (SVZ) [20] and are characterized by the
expression of the transcription factor PAX6, required for de-
velopment into the DaN phenotype [21–23]. The majority of
progenitor cells in the OB differentiate into interneurons in the
granule cell layer, while only 5% of the 20,000–30,000 new-
born cells generated daily migrate to the GL [24, 25].

In PD, there are contradictory results according to the fate
of DaNs in the OB. Luquin and colleagues reported elevated
numbers of periglomerular DaNs, potentially displaying a
compensatory mechanism induced by the early degeneration
of other neurotransmitter systems and resulting in the olfacto-
ry dysfunction of patients [26]. In contrast, no difference in
OB DaN numbers were found between PD patients and
healthy individuals, implying that PD-related hyposmia is
not due to alterations in the quantity of OB DaNs [27, 28].

Mitochondrial dysfunction is a central feature of PD, both
in the common idiopathic as well as in the rare familiar forms
caused bymutations, e.g. in the Parkin, Pink1, LRRK2, or DJ-
1 genes. During normal aging, SNc DaNs accumulate high
loads of deletions in mitochondrial DNA (mtDNA), present
in thousands of copies in neurons. Interestingly, this is accom-
panied by an upregulation of mtDNA copy numbers in
healthy humans, while this compensatory mechanism is
disrupted in PD patients [29]. This indicates that a defective
mtDNA maintenance system and subsequent severe mito-
chondrial impairment is an important factor for the degenera-
tion of SNc DaNs in PD.

The mitochondrial transcription factor A (TFAM) is crucial
for mtDNA transcription and maintenance [30, 31]. Depletion
of TFAM consequently leads to the loss of mtDNA encoded
transcripts followed by a respiratory chain defect. MitoPark
mice are lacking TFAM exclusively in DaNs, which culmi-
nates in progressive neuronal death and corresponding motor
impairment starting from 14 weeks of age [32, 33]. The pro-
gression of PD is recapitulated in terms of both anatomical and
behavioral malfunctions. However, the impact of mitochon-
drial dysfunction on OB DaNs has not been investigated so

far. Therefore, olfactory-related behavior was explored in
MitoPark mice. Furthermore, mice were used to study the
impact of mitochondrial defects on OB DaN survival as well
as adult neurogenesis.

Materials and Methods

Experimental Model

All experiments were conducted in agreement with European
and German guidelines and approved by local authorities
(LANUV NRW; 81–02.04.2018-A210) (for breeding details,
see supplementary methods). Experiments were carried out
with male or female mice of the strain C57/BL6N. For the
generation of MitoPark mice, DAT-cre mice (Cre-gene
inserted upstream of the translation start codon in exon 2 of
the DAT gene) and animals with a loxP-flanked Tfam allele
were crossed as described in detail previously [32]. MitoPark
mice (genotype TfamloxP/loxP, +/DAT-cre) show homozygous
disruption of Tfam in dopaminergic neurons. TfamloxP/loxP and
Dat-cre mice were provided by Nils-Göran Larsson (Max-
Planck-Institute for Biology of Ageing, Köln, Germany).
TfamloxP/WT or TfamloxP/loxP mice were used as controls.

COX-SDH Histochemistry

Visualization of cytochrome c cxidase (COX) deficiency was
performed by COX-SDH enzymatic activity staining [34].
COX is a respiratory chain (RC) complex, which is partially
encoded by mtDNA, while succinate dehydrogenase (SDH),
another respiratory chain enzyme, is entirely encoded by nu-
clear DNA. Impaired integrity of mtDNA results in COX-
deficiency, but sustained SDH activity. Cells with decreased
COX activity will stain blue, while cells with normal COX
activity will appear brown (for details, see supplementary
methods). Quantification of COX-deficient cells was per-
formed at Bregma + 4.30 mm and + 3.00 mm. Four images
(33 × 50 μm) were taken from dorsal, ventral, and lateral OB
regions per slice each. Number of COX-deficient cells was
defined per slice.

Immunohistochemistry

Brain sections were stained for tyrosine hydroxylase (TH) to
visualize DaNs and their projections (for details, see supple-
mentary methods).

Soma size quantification of OB DaN subpopulations Soma
sizes of DaNs stained for TH were analyzed by using FIJI-
software (https://imagej.net/Fiji/Downloads). Cells were
selected and automatically measured by the Wand-Auto-
Tool based on the black-white contrast of the cells compared
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with background. The outline of the cell soma was detected,
and the area within the shape was automatically calculated.
Two subpopulations of DaNs with distinct morphological
characteristics have been described [35]. DaN somata in the
GL were differentiated into areas of 20–80 μm2 for SCs and
80–180 μm2 for LACs. Two consecutive brain sections per
mouse were analyzed at Bregma +4.3, +3.75, and +3.21.
Images were taken from both dorsal and ventral OB regions
(for details, see supplementary methods).

Analysis of Immunohistochemical Stainings

Automated bright-field microscopy was done with a slide
scanner (SCN400, Leica) equipped with a 40× objective.
High-resolution images from the OB and striatum were
generated by the Leica SlidePath Gateway and the
Microsoft Image Composite Editor software. TH-positive
striatal fiber density was determined by optical density
(OD) analysis using FIJI-software (area fraction, https://
imagej.net/Fiji/Downloads) with two consecutive sections
per mouse at Bregma +0.74 mm. Nonspecific background
signal of the corpus callosum was subtracted from the
striatal OD values. Fluorescence images were obtained by
utilizing an inverse confocal microscope (TCS SP8
gSTED, Leica) with a 40× oil objective and the Leica
Application Suite (LAS) 3 software. OB fluorescence mi-
croscopy was performed at Bregma +4.30 mm, +3.30 mm,
and +2.30 mm. TH- as well as PAX6-expressing cells were
detected independently before merging the channels and
quantifying the number of colocalizing cells, respectively.
PAX6 expression in the SVZ was performed at Bregma +1.
10 mm, +0.70 mm, and +0.30 mm. Sections immuno-
stained for EYFP/TH were imaged using with an inverted
Zeiss AxioObserver Z1 microscope equipped with an
ApoTome. Fluorescence images were acquired with Zeiss
AxioCam MRm 1388 × 1040 pixels (Carl Zeiss). At 10×
(EC PlnN 10x/0.3, Carl Zeiss), tile images were acquired
with conventional epifluorescence. At 20× (EC PlnN 20x/
0.5, Carl Zeiss), tile images were acquired using the
ApoTome function.

Odor Discrimination Test

Odor discrimination ability was examined to analyze DaN
functionality in the OB. In addition, the odor discrimination
test provides an opportunity to investigate odor detection rath-
er independently from motor activity (for details of the test,
see supplementary methods).

Statistics

Statistical analysis was done with GraphPad Prism 4 for
Windows. Quantified data in the figures and in the text is

presented as mean + SEM. Relative data is shown as percentage
of control experiments. Values of sample size (n) refer to mouse
numbers. Unpaired t tests, one-way or two-way ANOVA with
post hoc comparisons (Bonferroni post hoc test) were used to
determine differences between groups. A significance level of
0.05 was accepted for all statistical tests. Asterisks mark P
values of 0.05 (*), 0.01 (**), 0.001 (***), or 0.0001 (****).

Results

Time Course of TFAM Loss in Different DaN
Populations

To determine the onset of Cre-mediated recombination,
and thus TFAM knockout, in DaNs in the DatCre mouse
line, we crossed DatCre/+ mice with a reporter mouse line
expressing enhanced yellow fluorescent protein (EYFP)
(Rosa26loxP-stop-loxP-EYFP) [36]. In the midbrain, YFP-
expression starts in laterally located TH-positive DaNs at
E13.5 and spreads to medial DaN populations by E15.5
(Fig. 1) [37]. In the OB, we could not detect any YFP-
expression in TH-positive DaNs at E15.5 (Fig. 1) or P0
(not shown), although some TH-positive neurons were
present. Only at 4 weeks of age, TH-positive DaNs
expressed YFP, indicating that recombination in OB
DaNs only occurs postnatally in DatCre mice. Consistent
with this, RNA in situ hybridization data from the Allen
Brain Atlas show that Dat is not expressed in the OB at P4
[38], while by P14, weak expression of DAT is detected in
the OB and this is maintained into adulthood. These data
suggest that inactivation of TFAM in the MitoPark model
occurs at least 2 weeks later in OB DaNs than in midbrain
DaNs.

MitoPark Mice Show Dopaminergic Nigro-Striatal
Degeneration

TFAM depletion causes progressive motor impairment
evoked by the loss of midbrain SNc DaNs and corresponding
striatal fibers in the caudate putamen (CPu) starting from
14 weeks of age [32, 33]. Since Tfam inactivation in OB
DaNs occurs later, 20- and 30-week-old MitoPark mice were
used in this study. The severe degeneration of the nigro-
striatal and the mesolimbic pathway was confirmed in 30-
week-old MitoPark mice. In particular, the reduction of TH-
positive cells in the SNc and ventral tegmental area (VTA)
(Fig. 2a, b) as well as TH-staining in the corresponding striatal
projection areas is dramatic (Fig. 2c, d). In addition, the olfac-
tory tubercle (OT), located in the ventral striatum and inner-
vated by VTA DaNs, shows lowered TH-staining.
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Respiratory Chain Defects in OB DaNs of MitoPark
Mice

Loss of TFAM is accompanied by loss of mtDNA-encoded
transcripts [32]. Consequently, respiratory chain defects be-
come apparent in midbrain DaNs of 12-week-old MitoPark
mice even before the onset of neurodegeneration [39]. In order
to verify mitochondrial impairment in OBDaNs, a histochem-
ical staining procedure for COX/SDH activity was performed
(Fig. 2e). Sporadically, COX-deficient cells were found in the
GL of the OB in MitoPark mice; however, no COX-deficient
cells were observed in any of the control animals. These data
reveal that COX-deficiency also occurs in OB DaNs of
MitoPark mice after inactivating the Tfam gene driven by
Dat-Cre recombination.

MitoPark Mice Exhibit Impaired Odor Detection

To assess OB functionality in MitoPark mice, the olfac-
tory behavior of control and MitoPark mice was

investigated at different stages. In the buried pellet test,
the latency to locate a food pellet, either hidden under-
neath the bedding or visible on the surface, respectively,
was tested (for details of this widely used test, see sup-
plementary methods). There was no significant differ-
ence in the latency time to detect the buried food pellet
between MitoPark and control mice in any of the inves-
tigated ages (Fig. S1a). However, at the age of
30 weeks, MitoPark mice took significantly longer to
find the visible pellet (Fig. S1b, control 15.14 ± 5.21 s,
MitoPark 134.65 ± 48.14 s, two-way ANOVA, P < 0.05),
indicating that the severe motor impairment of 30-week-
old MitoPark mice may influence the result rather than
showing exclusively an affected ability for odor
detection.

In order to analyze odor discrimination as well as odor
detection more independent from motor performance, the
odor discrimination test was carried out in 20- and 30-
week-old MitoPark and control mice. Both non-social
and social odors were presented consecutively three times
each. Control animals revealed typical olfactory memory

Fig. 1 Colocalization of TH and
YFP is delayed in OB DaNs. In
the midbrain, TH-positive cells
are co-expressing YFP at both
E15.5 and 4 weeks of age (yellow
in merged panel). In contrast,
colocalization of TH and YFP in
the OB becomes apparent only at
the age of 4 weeks. Scale bars:
100 μm
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and discrimination. They presented habituation behavior to
identical odors characterized by decreasing sniffing times
as well as dishabituation to new odors with increasing
sniffing times (Fig. 3a–d). For MitoPark mice, the time
spent at the odors was dramatically reduced and they were
not able to detect any of the presented odors. The time
spent sniffing at the odor was significantly decreased in
20-week-old MitoPark mice for all odor types (Fig. 3c, d,
water-1: two-way ANOVA, P < 0.001, almond-1: P < 0.01,
banana-1: P < 0.01, social 1–1: P < 0.001). Furthermore,
30-week-old MitoPark mice spent no time at any of the
presented odors (Fig. 3c, d). These results indicate that
odor detection is fundamentally impaired in MitoPark
mice.

Reduction of Dopaminergic SCs in the OB of MitoPark
Mice

Soma size–based quantification was performed to examine the
number of DaNs in the two main subpopulations (Fig. 4a, b).
The number of SCs was higher compared with LACs in this
area, in line with previously reported observations in wt mice
[40]. The number of LACs and SCs did not differ between both
groups at the age of 20 weeks, however, comparison of control
and MitoPark mice showed a decreased number of SCs in 30-
week-old MitoPark (Fig. 4c, control: 351.25 ± 26.06,
MitoPark: 228.67 ± 22.50, unpaired t test, P < 0.01). These re-
sults suggest that TFAM depletion in OB DaNs preferentially
affects SC survival and that this may lead to the observed odor

Fig. 2 Degeneration of midbrain DaNs and striatal projections in 30-
week-old MitoPark mice. a, b Tyrosine hydroxylase (TH) immunohisto-
chemistry in the midbrain of MitoPark and age-matched control mice
showing severe neuronal loss in the ventral tegmental area (VTA) and
the substantia nigra pars compacta (SNc). c, d Striatal staining present-
ing the reduction in TH-positive projection area in the nucleus accumbens
(NAc), caudate putamen (CPu), and the olfactory tubercle (OT). Three
control and four MitoPark mice were analyzed. e COX-deficient DaNs in
the OB of 30-week-old MitoPark mice. Neurons with reduced activity of

cytochrome c oxidase (COX; brown) were unmasked by COX-SDH
double staining (blue). In the midbrain, first COX-deficient cells become
apparent at 12 weeks of age. Conversely, COX-deficient cells were found
in the OB only after 30 weeks. f COX-deficient cells in the OB of 30-
week-old MitoPark mice. Quantitative analysis revealed a significantly
higher number of blue cells in the OB of MitoPark mice when compared
with control animals. Control mice: black bar n = 5; MitoPark mice: red
bar n = 4. Scale bars: 500 μm (a, b), 1 mm (c, d), midbrain 500 μm,
enlarged 50 μm; olfactory bulb 100 μm, enlarged 50 μm (e)
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detection impairment. Alternatively, the continuous generation
of progenitor cells could be affected and be the reason for the
decreased SC number in MitoPark mice.

Number of PAX6+ DaNs Is Not Altered in the OB of
MitoPark Mice

In contrast to LACs, SCs can be newly generated even post-
natally. To investigate if the reduced number of SCs in

MitoPark mice is caused by an alteration in progenitor cell
differentiation, PAX6 immunohistochemistry was performed
in the OB (Fig. 5a). The transcription factor PAX6 is postna-
tally expressed in progenitor cells of the subventricular zone to
mediate their dopaminergic fate [21–23, 41–43] and remains
expressed in DaN progenitors after arriving in the OB
[44–46]. In addition, PAX6 has recently been used by
Höglinger and colleagues as a marker for neurogenic progen-
itors within the rostral migratory stream, which gives rise to

a b

c d

Fig. 3 Impaired odor detection in
MitoPark mice. a–d Time spent
sniffing at the odor by 20 (a, b)
and 30-week-old (c, d) MitoPark
(red squares) and control mice
(black squares). 20 weeks: (n = 9–
10 mice); 30 weeks: (n = 5–6
mice)

Fig. 4 Reduced number of SCs in the OB of MitoPark mice. a TH
immunohistochemistry of the OB and the enlarged glomerular layer. b
TH staining in MitoPark and age-matched control mice. c Quantification
of DaN subpopulations showed a reduction in SCs in the OB of 30-week-
old MitoPark mice. In addition, the amount of SCs was higher compared
with LACs (20 weeks, control 506.25 ± 54.54 SCs vs. 43.25 ± 9.32

LACs, one-way ANOVA, P < 0.0001; MitoPark 422.20 ± 61.70 SCs
vs. 49.00 ± 5.81 LACs, P < 0.0001; 30 weeks, control 351.25 ± 26.06
SCs vs. 24.75 ± 11.25 LACs, P < 0.0001; MitoPark 228.67 ± 22.50 SCs
vs. 57.17 ± 12.24 LACs, P > 0.01). Control mice: black bars, 20 weeks
n = 4, 30 weeks n = 4;MitoPark mice: red bars, 20 weeks n = 5, 30 weeks
n = 6. Scale bars: 200 μm and 50 μm (a), 10 μm (b)
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DaNs in the OB [47]. In contrast, PAX6 expression in cells
already established during development decreased over time
with no colocalization in neurons [48]. This makes PAX6 an
ideal marker for adult-born DaNs in the mouse OB. The
amount of TH-positive neurons also expressing PAX6 did
not differ between MitoPark and control mice (Fig. 5b,
20 weeks: control 65.66 ± 1.79%, MitoPark 66.55 ± 3.76%;
30 weeks; control 75.30 ± 1.17%, MitoPark 72.54 ± 1.59%,
one-way ANOVA, n.s.). These data reveal that DaN progen-
itor cell differentiation in the OB is not impaired in MitoPark
mice.

MitoPark Mice Show Increased Progenitor Cell
Mobilization in the SVZ

To further assess whether OB progenitor cell proliferation is
affected earlier in the lineage of these neurons, PAX6 expression

in the dorsal SVZ was studied (Fig. 5c). At 20 weeks of age,
there was no difference between MitoPark and control animals
(Fig. 5d, control 37.69 ± 10.00%, MitoPark 38.48 ± 3.71%).
However, 30-week-old MitoPark mice revealed a significantly
increased number of PAX6-expressing cells when compared
with 20-week-old MitoPark mice and age-matched control ani-
mals (MitoPark: 20 weeks 38.48 ± 3.71%, 30 weeks 80.80 ±
16.63%, one-way ANOVA, P < 0.05; 30 weeks: control
24.02 ± 3.65%, one-way ANOVA, P < 0.01). These results in-
dicate an enhanced mobilization of progenitor cells in the dorsal
SVZ, probably induced by the decline of SCs in the OB.

Discussion

In contrast to the midbrain, OB DaNs reveal no Dat-Cre ex-
pression during embryonic development (Fig. 1). Moreover,

Fig. 5 No change in the amount of PAX6-expressing DaNs in the OB but
in the amount of progenitor cells in the SVZ ofMitoPark mice. aMerged
TH and PAX6 immunofluorescent staining presents newborn OB DaNs
in 20- and 30-week-old MitoPark and age-matched control mice. b
Quantitative analysis of PAX6-expressing DaN number revealed no dif-
ference between MitoPark and control animals. Control mice: black bars,
20 weeks n = 5, 30 weeks n = 5; MitoPark mice: red bars, 20 weeks n = 5,
30 weeks n = 5. Increase of PAX6-expressing progenitor cells in the SVZ

of MitoPark mice. c Combined nuclear (DAPI) and immunofluorescent
PAX6 staining depicts the distribution of progenitor cells inMitoPark and
age-matched control mice in the SVZ. d Quantitative analysis showed an
enhanced number of progenitor cells in 30-week-old MitoPark mice.
Control mice: black bars, 20weeks n = 4, 30weeks n = 5;MitoParkmice:
red bars, 20 weeks n = 5, 30 weeks n = 5. Scale bars: 50 μm (a), 25 μm
(b)
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RNA in situ hybridization data [38] suggest that the Dat gene
only starts to be expressed in OBDaNs in the second postnatal
week. Subsequently, cells with respiratory chain deficits be-
come apparent in OB DaNs only in 30-week-old MitoPark
mice (Fig. 2e), i.e. 28 weeks after TFAM inactivation at
around P14, whereas midbrain DaNs uniformly present
COX-deficiency already after 12 weeks of age [39], i.e.
13 weeks after TFAM inactivation at around E15.5. This re-
veals a surprisingly different response of different DaN pop-
ulations to inactivation of mitochondrial gene expression.

To inspect MitoPark mice for OB functionality, olfactory
behavior was investigated. The widely used buried pellet test
did not reveal olfactory dysfunction in MitoPark mice (Fig.
S1A-B), but this may rather be a consequence of the motor
impairment at 30 weeks of age. It further has to be noted that
the outcome of the buried food pellet test does not exclusively
depend on the detection of odors. As a consequence of the
bradykinesia, MitoPark mice have to be supplied with moist-
ened food pellets on the surface of the bedding from an age of
15 weeks onward. MitoPark mice are thereby trained to seek
for food at the surface by housing conditions. Furthermore, the
animals were not food deprived since this would be ethically
not permitted withMitoPark mice. In fact, these animals could
even suffer from an enhanced desire for food since they start
losing weight at 20 weeks of age [49]. Thereby, the buried
food pellet test might not be an appropriate test to analyze
odor detection impairment in MitoPark mice.

It has further been shown that OB DaNs are involved in
olfactory discrimination [7, 50, 51]. In order to analyze dis-
crimination as wells as detection more independently from
motor performance and food seeking, the odor discrimination
test was performed (Fig. 3a–d). Already 20-week-old
MitoPark mice show sharply reduced times spent at all pre-
sented odors. After 30 weeks of age, no sniffing time is ob-
served at all, indicating a severe impairment in fundamental
odor detection. Noteworthy, the ability of MitoPark mice to
move was still sufficient to localize the presented odors (see
video sequences in Videos 1 and 2).

In order to investigate the number of DaNs in the GL, soma
size–based quantification was performed. Intriguingly, only a
reduced number of SCs is found in 30-week-old MitoPark
mice, whereas LACs were unaffected (Fig. 4c). In the mid-
brain of MitoPark mice, both SNc and VTA DaNs present
mitochondrial dysfunction at 12 weeks of age, followed by
progressive neurodegeneration, with SNc neurons being more
affected [32]. This selective vulnerability is one hallmark for
PD in patients [52] and raises the question which cell type-
specific factors render SNc DaNs vulnerable to mitochondrial
dysfunction. Much research has been conducted characteriz-
ing neuroanatomical as well as electrophysiological properties
of midbrain and OB DaNs. On the one hand, complex axonal
morphology might play an essential role regarding the time
course of degeneration. SNc DaNs show an extremely large

arborization with an estimated number of 100.000–250.000
synapses per neuron [53] compared with both VTA and OB
DaNs, with the SCs even being anaxonic [14]. The extended
branching results in an extreme bioenergetic demand, leaving
SNc DaNs working on a tight energy budget [54], especially
when facing additional stressors, such as mitochondrial dys-
function. On the other hand, all three DaN populations are
characterized as autonomous pacemakers [40, 55, 56]. The
pacemaking machinery of VTA and OB DaNs is mainly driv-
en by a persistent sodium current [40, 57, 58]. Conversely,
SNc pacemaker activity is associated with Ca2+ influx through
plasma membrane Cav1.3 channels, postulated to cause oxi-
dant stress in the mitochondrial compartment [59, 60].
Combined with a low intrinsic calcium buffering capacity,
mitochondrial dysfunction leads to an oxidized RedOx-
system and hyperpolarized membrane potential in mitochon-
dria of SNc DaNs, which thereby causes neuron death [39].

SCs and LACs differ in various aspects, including mor-
phology, functionality, and neurogenic potential. SCs are
anaxonic and thereby generate somatic action potentials with
a low firing rate. In contrast, the wide-branching LACs do
have an axon and a high firing frequency [19]. SCs are typi-
cally type 1 periglomerular cells [61–65]. They receive olfac-
tory nerve and dendrodendritic synapses, which, in turn, lead
to the inhibition of mitral cells [66], the principal output neu-
rons of the OB. A reduced number or functional changes of
SCs in MitoPark mice could thereby cause temporal shifts in
mitral cell activity, previously shown to impair olfactory-
related behaviors [67].

In addition, anaxonic SCs are even continuously formed
via adult neurogenesis, whereas LACs are exclusively
established during embryonic development [15–19].
Consequently, affected neuronal replenishment of SCs
could be the explanation for the reduced number of SCs.
OB progenitor cells are created in the SVZ of the lateral
ventricles and tangentially migrate along the rostral migra-
tory stream before they enter the OB [68]. Those progenitor
cells are characterized by the expression of PAX6.
Interestingly, MitoPark mice reveal an increased mobiliza-
tion of PAX6-expressing cells in the SVZ at 30 weeks of
age (Fig. 5c, d), indicating a potential compensatory upreg-
ulation of progenitor cells. However, the amount of PAX6-
expressing DaNs in the OB is stable (Fig. 5a, b). This gives
reason to suppose that either the death rate of SCs is so high
that the number of replenished neurons in the OB cannot
compensate for this or that the upregulation of progenitor
cells in the SVZ is not a direct cause of the reduced SC
number. In addition, even though the time line of RMS
migration is very well established, there is no evidence to
when DAT expression is initiated in OB progenitor cells.
Potentially, new but not fully matured neurons are more
vulnerable to the TFAM knockout due to early DAT ex-
pression and die even before reaching the OB.
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Besides the reduced number of SCs, it is likely that the
severe olfactory dysfunction is caused by other factors. So
far no direct link between the midbrain and the OB could
be demonstrated [69, 70]. However, a recent study discov-
ered the existence of axonal projections from SNc DaNs to
the OB and the ablation of this connectivity resulted in
impaired olfactory perception [71]. At 30 weeks of age,
MitoPark mice reveal a severe degeneration of SNc DaNs
(Fig. 2b). Therefore, the absence of these nigro-bulbar con-
nections could contribute to the olfactory dysfunction in
MitoPark mice. More precisely, the loss of SNc-OB pro-
jections might lead to Ca2+-induced hyperactivity of mitral
cells caused by the missing dopaminergic inhibition, as
recently demonstrated in a 6-OHDA induced PD mouse
model [72]. However, Zhang et al. did not show any data
concerning the dopaminergic projection area in the striatum
after partial depletion of SNc DaNs, though striatal dener-
vation is likewise affecting olfactory behavior [73]. Since
MitoPark mice reveal the degeneration of SNc DaNs as
well as corresponding striatal fibers, we postulate that, be-
side the decreased number of SCs, olfactory dysfunction
might be caused by the degeneration of the complete
nigro-striatal system. Moreover, the loss of the nigro-
striatal system might be the reason for the increased mobi-
lization of progenitor cells in the SVZ observed in 30-
week-old MitoPark mice, as shown likewise after 6-
OHDA lesioning [74]. Noteworthy, DaNs from the VTA
innervate the SVZ and are involved in proliferation of pro-
genitor cells [75]. Increased progenitor cell mobilization
may thereby also have its reason in a compensatory upreg-
ulation due to the loss of VTA DaNs. More importantly,
the SNc and the VTA as well as the striatum further pos-
sess dopaminergic projections to higher olfactory brain re-
gions, such as the piriform cortex and the olfactory tubercle
[76–78]. Therefore, a prospective disconnection between
the nigro-striatal system as well as the VTA and higher
olfactory centers might importantly contribute to the im-
paired olfactory-related behavior in MitoPark mice.

Apart from the dopaminergic system, serotonin could also
play a role in the olfactory dysfunction of MitoPark mice.
Serotonergic neurons from the raphe nuclei are innervating
all layers of the OB [79–81] and deafferentiation of corre-
sponding fibers causes anosmia and OB atrophy [82].
Furthermore, mice that are deficient for PTEN-induced kinase
1 (PINK1), mutations of which make up 1–2% of the familiar
forms of PD, possess a decreased serotonergic innervation in
the GL, leading to an impaired olfactory behavior [83].
Besides the SNc, the raphe nuclei are also affected in PD
patients, with a loss of serotonergic neurons and its projections
[84, 85]. However, altered serotonin transporter activities in
PD patients failed to correlate with olfactory dysfunction [86],
leaving the role of serotonergic neurons in PD-related anosmia
unclear.

Our data provide new insights into olfactory dysfunction
and adaptations of adult neurogenesis in response to genetic
depletion of the dopaminergic system. Furthermore, we show
that dopaminergic neurons located in the olfactory bulb reveal
a high robustness towards mitochondrial impairment, in strik-
ing contrast to their midbrain counterparts.
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