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Abstract

Background: cological immunology requires techniques to reliably measure immunocompetence in wild vertebrates. The
PHA-skin test, involving subcutaneous injection of a mitogen (phytohemagglutinin, PHA) and measurement of subsequent
swelling as a surrogate of T-cell mediated immunocompetence, has been the test of choice due to its practicality and ease
of use in the field. However, mechanisms involved in local immunological and inflammatory processes provoked by PHA are
poorly known, and its use and interpretation as an acquired immune response is currently debated.

Methodology: Here, we present experimental work using a variety of parrot species, to ascertain whether PHA exposure
produces larger secondary than primary responses as expected if the test reflects acquired immunocompetence. Moreover,
we simultaneously quantified T-lymphocyte subsets (CD4+, CD5+ and CD8+) and plasma proteins circulating in the
bloodstream, potentially involved in the immunological and inflammatory processes, through flow cytometry and
electrophoresis.

Principal Findings: Our results showed stronger responses after a second PHA injection, independent of species, time
elapsed and changes in body mass of birds between first and second injections, thus supporting the adaptive nature of this
immune response. Furthermore, the concomitant changes in the plasma concentrations of T-lymphocyte subsets and
globulins indicate a causal link between the activation of the T-cell mediated immune system and local tissue swelling.

Conclusions/Significance: These findings justify the widespread use of the PHA-skin test as a reliable evaluator of acquired
T-cell mediated immunocompetence in diverse biological disciplines. Further experimental research should be aimed at
evaluating the relative role of innate immunocompetence in wild conditions, where the access to dietary proteins varies
more than in captivity, and to ascertain how PHA responses relate to particular host-parasite interactions.
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Introduction

Immunocompetence has reached a central focus in evolutionary

and behavioural ecology after the general upsurge of interest in

host-parasite interactions, to the point of the emergence of

immunoecology as a new scientific discipline [1]. Birds have been

used as the main models for testing a variety of hypotheses and

life-history trade-offs, for which researchers have been prompted

to learn and apply immune techniques suitable for both laboratory

and field experiments. The PHA-induced skin swelling test has

been intensively used, and is now considered a classical

immunological technique [2]. Adapted from the poultry science

methods used in the seventies [3], the technique consists of

subcutaneous injection of the mitogen phytohemagglutinin (PHA)

dissolved in phosphate-buffered saline (PBS), usually in the wing

patagium, and quantifying concomitant swelling at the site of

injection over time. The resulting swelling, usually measured 24 h

post-injection, is interpreted as an index of cell-mediated

immunocompetence [2,4]. The extreme popularity of this immune

test seems to arise from its simplicity, requiring little training and

no laboratory facilities, and its feasibility in vivo under field

conditions [2]. Reflecting its wide use, the simplified protocol

proposed by Smits et al [4], which involves avoiding the injection

of PBS in the opposite patagium as an unneeded control [2], has

been cited ca. 200 times since its publication in 1999 (ISI web of

Science, acceded on August 2008). The test has broadened its

applicability not only in birds but also in fishes, amphibians,

reptiles and mammals [5–8] to address a variety of questions in

recent years, covering a range of topics from classical host-parasite

interactions [7,9] to the evolution of coloration [5,10], behaviour

[11,12], mating systems [13], physiological trade-offs [10,14],

immunocompetence [15,16], foraging strategies [17], ecotoxico-

logy [18,19], veterinary sciences [20] and conservation biology

[6,21].

The PHA test has been used as a measure of T-cell mediated

immunocompetence after the pioneering work by Goto et al [22],

who showed a reduction of the skin response in thymectomized

chickens (thus being unable to produce circulating T-cells). Doubts
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have arisen in recent years, however, among evolutionary

ecologists about the true nature of the immune reaction provoked

by PHA and its interpretation. Recent histological work has shown

the intensive infiltration of many immune cell types in the PHA-

injected patagium of birds over the course of the swelling response,

involving both innate and adaptive components of the immune

system, and cautions against interpreting larger swellings as greater

cell-mediated immunocompetence [2]. Since B and T lympho-

cytes were not distinguishable in that histological study, there is

still a need to differentiate between innate, nonspecific inflamma-

tory reactions and the acquired, or specific cell mediated immune

responses supposedly tested through PHA injection. Moreover,

there is no conclusive evidence supporting secondary responses as

greater after a previous exposure to PHA, as expected from a true

acquired immune response [23]. Overall, the use of the PHA test

as a surrogate of T-cell mediated immunocompetence has been

recently questioned, posing serious doubts about the interpretation

of a huge amount of previous work based on this technique [23].

Here, we present experimental results showing that secondary

responses to PHA injection are consistently larger than primary

ones in a number of bird species. Moreover, the simultaneous

quantification of several T-lymphocyte subsets and proteins

circulating in the bloodstream (see below) shows that PHA-

induced skin swellings are related to the proliferation of T-cell

subsets responsible for the acquired immune response, thus

supporting this test as a reliable technique to measure in vivo T-

cell mediated immune responses.

Components of the immune response
We measured blood-circulating T lymphocytes and proteins

associated with the cellular and innate immune responses

supposedly elicited by the PHA-immune challenge. Circulating

T lymphocytes produced in the thymus, which are characterised

by their expression of special T cell receptors (TCR), are

responsible for the cell-mediated immune response in vertebrates.

Briefly, T-cells are a group of very distinct subsets among which

the most abundant are CD4+ (active lineages), CD5+ (adyuvant

lineages), and CD8+ cells (memory or antigen presenting cells).

The first two subsets are implicated in cellular based defence,

while CD8+ constitute the most common memory subset. The

CD4+ subset is implicated in the production of several active

substances, such as cytokines, interferon and several types of

interleukin, such as interleukin -6 (IL-6). The CD4+ subset

participates in the first phase of the skin swelling response (i.e.,

6–12 h after injection), where there is exudation of plasma from

surrounding vascular tissues and edema at the injected site, by

activating local innate cell populations (mainly basophils and

macrophages) [24]. The CD5+ subset is far less common and more

specialised, being implicated in intracellular kinase activity

(activator and substrate) and cell mediated signalling as well the

maturation of other T-cell subsets [25]. The CD8+ subset, on the

other hand, is responsible for specific antigen expression, although

it also presents discrete cytolytic activity [26].

Albumin is the largest single fraction of circulating protein in

healthy birds. It serves as the major protein reservoir, the main

contributor of colloidal osmotic pressure, a participant in acid-base

homeostasis, and transport carrier for small molecules such as

minerals, hormones, vitamins and fatty acids. Albumin is

transformed by the organism into globulins when facing an

infection process [27]. Alpha globulins (a-globulins) are a very

heterogeneous group of proteins manufactured almost entirely by

the liver, including many transport proteins such as lipoproteins

(a-1), haptoglobin, ceruloplasmin, and macroglobulins (a-2)

[28,29]. Because many of these a-globulins function as acute

phase proteins which are elevated in inflammatory processes, they

serve as a useful index in the diagnosis and monitoring of many

infectious diseases and other causes of acute or chronic

inflammation [28]. Briefly, a-1 globulins (lipoproteins) transport

lipids throughout circulation, while among a-2 globulins, hapto-

globin protects kidneys from tissue destruction by binding free

hemoglobin after hemolysis. Ceruloplasmin, an antioxidant

glycoprotein, transports copper to cells while macroglobulin is

unique as an antiproteinase both in terms of the broad spectrum of

enzymes that it can inhibit and the nature of its inhibitory activity.

One or two of these subfractions can be identified by

electrophoresis [30]. Betaglobulins (b–globulins) are also hetero-

geneous, including C-reactive protein, complement, and fibrino-

gen (b-1), or carrier proteins such as lipoproteins and transferrine-

(b-2). Many of the b-globulins are also acute phase proteins.

Among b-1 globulins, complement is the primary mediator of the

antigen-antibody reaction. The C reactive protein plays an

important role in initiating and modulating inflammatory and

immune responses while fibrinogen plays an important role in

homeostasis, but is also the main contributor to inflammatory and

tissue repair processes. b-2 globulins, on the other hand, transport

lipids throughout circulation (high molecular weight lipoproteins)

and carry iron from the cells involved with the absorption or

storage of iron (transferrin). Contrary to mammals, no immuno-

globulins are present in this fraction in birds [27]. As in the a-

globulins, one or two subfractions can be identified [30]. Finally,

the gamma (c-globulins) fraction contains most of the immuno-

globulins in birds, which are involved in the humoral immune

response.

Results and Discussion

The PHA-induced tissue swelling was on average 86% larger in

the second than in the first immune challenge (time range between

PHA challenges: 5–250 days), with only four out of 125

individuals showing small increases (,10%). Changes in body

mass, however, were unappreciable (0.43% on average) between

the first and second immune tests (Fig. 1). The second PHA-

induced tissue swelling was significantly larger than the first

(F1,123 = 482.67, P,0.0001), while controlling for the species body

mass (F1,123 = 26.94, P,0.0001) and the significant differences in

PHA responses among the variety of species tested (Z = 7.22,

P,0.0001). The swelling increase of individuals (i.e., the absolute

difference between the second and the first response) was

unrelated to their changes in body mass (F1,83 = 0.02, P = 0.89)

or time elapsed between the two immune tests (F1,83 = 2.6,

P = 0.11), while controlling again for body mass (F1,83 = 1.02,

P = 0.31) and species (Z = 0.67, P = 0.25). To our knowledge, this is

the first experimental work designed to test larger secondary than

primary responses to PHA injection. Nonetheless, the literature

shows anecdotal and inconsistent evidence obtained from

unrelated experiments and small sample sizes: four captive birds

used as experimental controls showed larger secondary responses

[31], while four wild birds recaptured and tested for immunity

about one year later [32] and ten captive birds resampled after

four months [33] did not show appreciable differences between the

first and the second immune challenge. A better sample consisting

of 86 broods of nestling passerines showed larger secondary

swellings when challenged two days after a first injection, results

which were not interpreted as evidence of acquired immunity but

rather as a matter of methodology to be considered in statistical

analyses [34]. These larger secondary responses, however, could

be confounded by ontogeny and thus reflect to some extent the

development of immunocompetence during the growth period of
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chicks in the nest [35]. Our results, however, clearly demonstrate

that the PHA-test provokes a greater swelling on the second

compared with the first PHA response, a critical requirement if the

test is to be considered indicative of a true cell-mediated acquired

immunity [23]. Moreover, greater secondary responses appear as

soon as five days after the first PHA injection as well as long time

after injection (at least 250 days), and thus could provide lifelong

immunity upon subsequent exposure as expected from the

acquired T-cell mediated immune system [23].

A concomitant prediction is that if the swelling is produced by

the proliferation of T lymphocytes typically involved in the

acquired immune response, then there is likely to be a much lower

level of these lymphocytes at first exposure compared to

subsequent exposures to PHA [23]. Our flow cytometry results

fully support this. The increases in circulating T-lymphocyte

subsets from basal levels to profiles resulting after the first and

second PHA-tests (Fig. 2) were significant for both CD4+ active

subset (F2,28 = 290.57, P,0.0001), CD5+ coadyuvant subset

(F2,28 = 82.74, P,0.0001) and CD8+ memory subset

(F2,28 = 182.33, P,0.0001), while controlling for significant

differences among the species tested (all P,0.006). There were

always significant differences between the three instances of blood

sampling (Helmert transformation, all P,0.0001). As expected,

Figure 1. Local tissue swelling (black dots) and body mass
(white dots) of 125 birds subjected to two successive PHA-skin
tests.
doi:10.1371/journal.pone.0003295.g001

Figure 2. Changes in counts of lymphocyte subsets and protein concentrations (mg/L) in the bloodstream from basal levels to those
resulting 24 h after a first and a second PHA injection. Black dots represent experimental birds (injected with PHA) and white dots represent
control birds (injected with PBS).
doi:10.1371/journal.pone.0003295.g002
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control birds (injected only with PBS) did not show changes in

lymphocyte profiles (P-range: 0.38–0.85, Fig. 2). Therefore, PHA

exposure is clearly responsible for the proliferation of lymphocytes

associated with an acquired T-cell mediated immune response.

Plasma protein concentrations of experimental birds also

changed as a response to both first and second PHA injections

(Fig. 2). There was a significant decrease in albumin (F2,28 = 71.75,

P,0.0001) at the same time that a-globulin 2 (F2,28 = 201.88,

P,0.0001) and b-globulin 1 (F2,28 = 76.22, P,0.0001) increased

as a consequence of their contribution to the inflammatory process

(Fig. 2), while controlling for significant differences among species

(all P,0.05). In turn, production of a-globulin 1 and b-globulin 2

were increasingly inhibited during the experiment, as indicated by

their decreasing concentrations (F2,28 = 311.53, P,0.0001 and

F2,28 = 156.54, P,0.0001, respectively; not shown in Figure).

There were always significant differences between the three

temporal series of blood samples (Helmert transformation, all

P,0.004). However, there was minimal change in the protein

profiles of control birds (P-range: 0.05–0.67 for a= 0.01 after

Bonferroni correction; Fig. 2). As expected, c-globulins, which are

involved in the humoral but not in the cellular immune response,

did not change after PHA injections (F2,28 = 2.45, P = 0.10, species

effect: F4,14 = 1.51, P = 0.25).

Finally, the swelling of tissue at the point of injection was

proportional to the proliferation of lymphocytes circulating in

blood, the contribution of different types varying between

successive exposures (Fig. 3). In the first PHA test, the tissue

swelling of experimental birds was positively related to the increase

in numbers (from basal levels to 24-h after injection) of the three

subsets of circulating lymphocyte types, being significantly

correlated for CD5+ lymphocytes, as well as those lymphocytes

responsible for acquiring a memory response to a novel antigen,

CD8+ lymphocytes. After a second PHA test the contribution of

CD4+ and CD5+ subsets was moderated, once the organism

recognised the antigen from a previous exposure, while maintain-

ing a major role for memory lymphocytes (CD8+). Conversely,

none of the plasma proteins were significantly correlated to local

tissue swelling (r ranges: 20.05–0.37, P-range: 0.12–0.83 for

a= 0.01 after Bonferroni correction; see Fig. 4). In multiple

regression models, only b-globulins 1 significantly explained

variability in tissue swelling (P = 0.007) along with a major

contribution from circulating CD8+ (P,0.001) as a response to

Figure 3. Relationships between local tissue swelling induced by first and second PHA injections and the concomitant changes in
circulating lymphocyte subsets. Regression coefficients and statistical significance are shown for each case.
doi:10.1371/journal.pone.0003295.g003
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the second PHA injection (model adjusted R2 = 0.76,

F2,18 = 30.19, P,0.001).

The above experiments demonstrate the T-cell mediated nature

of the response being measured by the PHA test, through a

stronger secondary tissue swelling explained by an increase of

circulating lymphocytes which are responsible for acquiring

memory from previous antigen exposures. Previous work con-

firmed an innate component but was unable to identify the

contribution of T-lymphocytes to the PHA-induced skin swelling

by histology [2], or did not find clear associations between in vivo

tissue swelling and in vitro mitogenic responses to PHA [36]. Here

we show that the magnitude of local tissue swelling, while

indicating innate immunity to some extent [2], is also reliably

reflecting the activation of the T-cell mediated immune system as

shown by changes in the bloodstream of T-lymphocyte subsets.

The second experiment also suggested that albumin, which can

only be obtained through food, may be diverted towards

production of acute phase proteins (a- and b-globulins) involved

in the non-specific inflammatory process [27]. This could explain

why protein-supplemented diets enhance PHA-induced tissue

swellings [31], and why the classic positive relationship between

these responses and nutritional condition of birds often disappears

in captivity conditions [see review also in 31], where standard food

is provided ad libitum, and thus variability in the access to proteins

among individuals is greatly reduced. Therefore, a larger relative

contribution of non-specific inflammation is expected in wild

populations than we have found in captive birds for explaining

variability in local skin swellings. This prediction merits further

Figure 4. Relationships between local tissue swelling induced by first and second PHA injections and the concomitant changes in
circulating protein concentrations (mg/L). Regression coefficient and statistical significance are shown for each case.
doi:10.1371/journal.pone.0003295.g004
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research, and could be tested both in field conditions and in

captivity by manipulating the access to dietary proteins.

In conclusion, the PHA-test can be considered a good measure

of T-cell mediated immunity in birds and possibly in vertebrates in

general, given that they share the main components of the cell-

mediated immune system [37]. Our work solves major concerns

about the meaning and interpretation of the test [23], and allows

its continued widespread use in diverse research disciplines.

However, it is important to note that cellular immunity is just

one component of the complex immune system in vertebrates

[37], and thus the role of acquired T-cell mediated immunity in

combating particular parasites and pathogens is, alone, not

enough to explain many immunological patterns and processes

[38]. Finally, we expect that the use of flow cytometry and protein

electrophoresis will help researchers to elucidate the relative

contribution of T-cell mediated and non-specific inflammatory

components of the PHA-response when food accessibility varies in

quality and quantity, as occurs in field conditions. These methods

thus far have been overlooked as analytical tools in immunoeco-

logy studies and may add insight, for example, to properly

Table 1. Species and number of individuals used for assessing two consecutive responses to PHA injection.

Species Body mass (g) First PHA response (mm) Second PHA response (mm) n

Agapornis canus 27.75 1.26 1.86 6

Agapornis fischeri 43.83 0.35 0.88 4

Agapornis personatus 44.98 0.58 0.88 2

Agapornis taranta 49.25 0.73 0.99 1

Ara (Primolius) maracana 244 1.5 2.97 1

Aratinga aurea 80.19 1.26 1.76 5

Aratinga jendaya 123.5 1.97 2.49 2

Aratinga leucophthalmus 183 1.61 2.59 2

Aratinga pertinax 86.02 1.64 1.9 3

Barnadius zonarius 133.75 0.45 0.9 2

Bolborhynchus (Psilopsiagon) aymara 28.65 0.92 1.34 1

Cyanoramphus auriceps 57.8 0.51 1.06 1

Cyanoramphus novaezelandiae 64.45 0.45 1.3 3

Forpus coelestis 28.88 0.71 1.22 2

Forpus passerinus 24.2 0.41 0.99 2

Melopsittacus undulatus 45.3 0.24 0.79 4

Myiopsitta monachus 107.71 1.52 2 5

Nandayus nenday 137.06 1.61 2.23 6

Neophema elegans 46.13 0.34 1.02 2

Neophema pulchella 40.85 0.22 0.68 1

Neopsephotus bourkii 42.65 0.49 1.16 2

Pionites leucogaster 137.25 1.89 2.21 2

Pionites melanocephala 148.25 2.07 2.63 2

Platycercus adscitus 98.38 0.68 1.03 4

Platycercus caledonicus 114 0.59 1.08 1

Platycercus elegans 128.67 0.45 0.9 3

Platycercus eximius 100 0.54 0.77 4

Poicephalus senegalus 126.17 1.54 2.11 3

Polytelis anthopeplus 165.14 0.92 1.39 7

Polytelis swainsonii 132.75 0.47 0.84 2

Psephotus haematonotus 64.94 0.41 0.87 4

Psittacula krameri 130.67 1.42 2.08 9

Pyrrhura cruentata 101.04 1.08 1.65 4

Pyrrhura lepida 71.18 0.93 1.81 2

Pyrrhura melanura 75.7 1.1 1.86 3

Pyrrhura molinae 66.54 1.26 1.73 7

Pyrrhura perlata 78.08 0.78 1.31 4

Pyrrhura picta 72.75 1.02 1.67 5

Pyrrhura rodocephala 103.98 1.64 2.29 2

doi:10.1371/journal.pone.0003295.t001
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ascertain the environmental and genetic components of the

response to PHA [16,39], which is influenced by nutritional

condition early in life [40].

Materials and Methods

Experiment 1: Assessment of the secondary immune
response

We used 125 birds from 39 parrot species (Order Psittaciformes,

see Table 1) varying in body size (range: 20–250 g), ecological, and

life history traits [41]. Birds were purchased in the pet market,

comprising both wild-caught and captive-bred species [42], and

were housed indoor in standard cages and provided with

commercial parrot food and water ad libitum. After a period of

two weeks for acclimatisation, birds were injected in the left

patagium with 20ml of 5:1 PHA-P (L8754 Sigma-Aldrich) in PBS,

following Smits et al. [4]. Patagium width was measured at the

point of injection (to the nearest 0.01 mm) three times just prior to

and 24 h after injection, using a pressure sensitive micrometer

(Baxlo Precission). Average measurements were then used given

their high repeatability (r.0.99 in all the four measurement

instances). The primary response was estimated as the difference

between the second and the first patagium width. After a

randomly selected time elapsed from the first injection (range:

5–250 days), the same protocol was repeated to estimate the

secondary response. The right patagium was used this time, to

avoid the potential effects of tissue damage in the previously used

patagium. Body mass (to the nearest g) was recorded in both cases

to control for its positive effect on the PHA-induced skin swelling

in both intra- [31] and interspecific studies [35].

Experiment 2: Circulating lymphocyte and globulin
components of the primary and secondary immune
responses

A subsample of 20 birds was used for assessing changes in

lymphocyte and globulin profiles circulating in blood which are

related to T-cell mediated and innate immune responses,

respectively. These birds corresponded to five species, which

showed very different primary responses (range: 0.54–1.30, see

Table 2). After the two-weeks acclimatisation period, birds were

bled (0.9 ml taken from the jugular vein) for cytometry and

electrophoretic analyses. This sample showed the basal profiles.

The first PHA response was elicited ten days later, following the

above described protocol, and a second blood sample was

obtained when measuring skin swelling 24 h after the injection.

The third blood sample was obtained in the same way after

provoking a secondary immune response ten days later, using the

opposite patagium. A sample of six birds from the same species

were used as controls; these birds were injected with just 20ml of

PBS (thus do not eliciting an immune response; 2) and

manipulated in the same way to obtain blood samples at the

same time intervals. Body mass was recorded from all birds in the

three sampling instances. Blood was kept cool until centrifugation

within the following 12 h to separate plasma for protein

electrophoresis.

Peripheral lymphocyte isolation, flow cytometry and cell
sorting

Lymphocytes of peripheral blood were isolated as described

previously [43,44]. Lymphocytes were isolated with the mononu-

clear cell layer from an aliquot of the blood layered on top of 3ml

of Histopaque 1119 (Sigma) and 3ml of Histopaque 1077 (Sigma)

and centrifuged at 700g for 30 min. The mononuclear cell layer

(above 1077) was collected and cells washed twice with 10ml of C-

RPMI [43]. For cell sorting, T-cell characterisation, and analysis

of the dynamics of cd T-cell subsets, fluorescing isothiocyanate-

labeled mouse anti-avian CD4+ and CD5+ antibodies, an R-

phycoerythrin-labeled mouse anti-avian CD8+a monoclonal

antibody (all from Abd-Serotec, Oxford, UK), were used. All

antibody concentrations and dilutions were tested prior to starting

the animal experiment. For every test, 0.5ml of whole blood were

incubated in parallel with the appropriate monoclonal antibodies

(30 min in the dark). Aliquots of 10ml were directly analysed using

a Guava EasyCyte Plus (Guava Technologies, Hayward, Califor-

nia, USA), to measure absolute numbers of each of the marked

subsets. Flow cytometry is nowadays widely recognised as the most

accurate method to measure cellular components of immunocom-

petence in vertebrates, including humans [45–49].

Plasma protein electrophoresis
Total plasma proteins were quantified by the Biuret method

[50]. Then, plasma protein fractions were determined on

commercial agarose gels (Hydragel Protein (E), Sebia Hispania

S.A., Barcelona, Spain) using a semi-automated Hydrasys System

(Sebia Hispania S.A., Barcelona, Spain) with manufacturer’s

reagents to determine the concentration of albumin and globulins

(a, b and c-globulins).

Statistical analyses
Generalized linear mixed models (GLMM) were used to test

for individual changes between successive immune challenges.

Table 2. Species and number of individuals used to quantify changes in lymphocyte subsets and plasma proteins associated with
the primary and secondary responses to PHA injection.

Species First response (mm) Second response (mm) n

Experimental individuals (injected with PHA) Platycercus adscitus 0.68 1.03 4

Platycercus caledonicus 0.59 1.08 2

Platycercus eximius 0.54 0.77 4

Polytelis anthopeplus 1.06 1.60 4

Psittacula krameri 1.30 1.89 6

Control individuals (injected with PBS) Platycercus adscitus 0 0.04 1

Platycercus eximius 0 0 2

Polytelis anthopeplus 0.01 0.01 3

doi:10.1371/journal.pone.0003295.t002
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Contrary to simple matched-pairs tests, a GLMM (with normal

error distribution and identity link function) allowed the testing of

the effect of the second PHA injection (fixed factor) on skin-

swelling responses while simultaneously controlling for initial body

mass (continuous variable) and individual identity nested on

species (random factor). A second GLMM was used to assess

whether the magnitude of individual changes between the two

successive PHA-induced swellings was related to individual

changes in body mass and time elapsed between injections (as

covariates) while controlling for species effects (random factor).

Repeated measurement tests were used to examine individual

changes in lymphocyte subsets and protein concentrations

between the three sampling instances of experiment 2. Sphericity

tests indicated the use of the F statistic for our data set.

Bonferroni’s adjustment to a= 0.01 was applied for analyses of

proteins since they were expressed as interrelated concentrations.

Simple and multivariate regression models were built to assess the

single and combined contribution of changes in lymphocyte levels

and protein concentrations on local skin swellings. All tests were

performed with SAS v. 8.2 (SAS Institute Inc. 2004).

The first author (JLT) obtained the Spanish certificates that

legally allow us to design (Certificate A) and conduct experimental
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