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Intracochlear distortion products
are broadly generated by outer
hair cells but their contributions
to otoacoustic emissions are
spatially restricted

Thomas Bowling?, Haiqi Wen?, Sebastiaan W. F. Meenderink?3, Wei Dong?>"** &
Julien Meaud¥**

Detection of low-level sounds by the mammalian cochlea requires electromechanical feedback from
outer hair cells (OHCs). This feedback arises due to the electromotile response of OHCs, which is
driven by the modulation of their receptor potential caused by the stimulation of mechano-sensitive
ion channels. Nonlinearity in these channels distorts impinging sounds, creating distortion-products
that are detectable in the ear canal as distortion-product otoacoustic emissions (DPOAESs). Ongoing
efforts aim to develop DPOAEs, which reflects the ear’s health, into diagnostic tools for sensory
hearing loss. These efforts are hampered by limited knowledge on the cochlear extent contributing to
DPOAEs. Here, we report on intracochlear distortion products (IDPs) in OHC electrical responses and
intracochlear fluid pressures. Experiments and simulations with a physiologically motivated cochlear
model show that widely generated electrical IDPs lead to mechanical vibrations in a frequency-
dependent manner. The local cochlear impedance restricts the region from which IDPs contribute to
DPOAEs at low to moderate intensity, which suggests that DPOAEs may be used clinically to provide
location-specific information about cochlear damage.

The mammalian cochlea can detect sounds that cause vibrations of less than 1 nm, distinguish frequencies less
than 0.4% apart, and operate over a wide dynamic range than spans a trillion-fold range of acoustic energy’.
These amazing characteristics are commonly attributed to an active feedback mechanism linked to the nonlinear
electromechanics of outer hair cells (OHCs)?. That is, sound-evoked vibrations in the cochlea stimulate mechano-
electrical transduction channels located near the tips of OHC hair bundles (HBs), resulting in a modulation of
the cell’s receptor potential. Due to these changes in OHC transmembrane potential, the abundantly present
transmembrane protein prestin undergoes a conformational change, which exerts a force on the cochlear parti-
tion: a process called somatic electromotility. The prevailing hypothesis, supported by experimental data®?, is
that the somatic electromotile force delivers mechanical power to the traveling wave that propagates along the
basilar membrane (BM), amplifying sound-evoked vibrations and improving frequency-selectivity and sensitiv-
ity in the healthy cochlea.

Because of the electromechanical feedback from OHCs, the cochlea generates sounds, called otoacoustic
emissions (OAEs), that can be measured in the ear canal (EC). This article focuses on a specific type of OAEs,
called distortion product OAEs (DPOAESs), which are measured at intermodulation frequencies when the ear is
stimulated by two tones. DPOAEs are the summation of intracochlear distortion product (IDPs) generated due
the nonlinearity of OHCs over a certain cochlear region. Once generated by OHCs, IDP traveling waves that
result from the interaction of the cochlear partition with the intracochlear fluid in the scala tympani and scala
vestibuli propagate within the cochlea. The IDPs in the scala vestibuli pressure at the base cause vibrations of
the stapes and are transmitted to the EC by the middle ear, such that a distortion product is measured in the EC
pressure as a DPOAE?®. The IDPs have been measured and studied at different levels along the auditory pathway:
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perceptual (i.e.*”), neural (i.e.®), and at the basilar membrane (BM) (i.e.>!%). DPOAEs are used clinically to screen
for sensory hearing loss'!, in addition to providing useful information about cochlear mechanics in research
laboratories. However, where IDPs are generated within the cochlea and how these generated IDPs contribute
to the ear-canal DPOAE:s is not well understood.

While IDPs arise from the nonlinearity of OHC mechano-electrical transduction channels, in vivo recordings
of IDPs in the electrical responses of OHCs are limited, i.e., forward propagation IDPs in cochlear microphonic
were evidenced in scala media at the apical 2nd and 3rd turn of chinchilla cochleae (Gibian and Kim 1981). In
addition, measurements of IDPs have been obtained from the mechanical response of the cochlea, i.e., in the BM
vibrations®!1%'2, intracochlear fluid pressure!*-!* and more recently reticular lamina (RL) vibrations'®. Charac-
teristics of IDPs in the BM vibrations and fluid pressure, as well as theories of DPOAE generation'’~", suggest
that only a relatively narrow region of the cochlea that is associated with the peak locations of the response to
the primary tones contribute to the DPOAE. However, the recent measurements of the IDP response of the RL
imply a potentially broad DPOAE generation region. This deviates from the current prevailing theories and
would have important implications for the development of DPOAEs into an objective, noninvasive tool in the
clinical diagnosis of location-specific hearing loss.

This paper aims to determine the cochlear location(s) and extent of IDP generation by OHCs and to clarify
how the regions of IDP generation contribute to the DPOAE measured in the EC. We report, for the first time,
simultaneous measurements of IDPs in the electrical potential due to local OHC activity (electrical IDPs, eIDPs)
and in the fluid pressure (fluid IDPs, fIDPs), both measured in the scala tympani (ST) near the BM using a dual
sensor that consists of a microelectrode attached to a micro-pressure sensor* (Fig. 1A). These in vivo intracoch-
lear measurements are further interpreted by simulations using a computational model that provides a three-
dimensional representation of the cochlear fluid mechanics with bidirectional mechanical and electrical coupling
between the elements (Fig. 1B, also see “Methods” section, Supporting Material**?!). We show that eIDPs have
a dual origin (distortion and linear components), which broadens the extent over which DPOAEs potentially
originate. However, the ability of eIDPs, once generated, to give rise to fIDPs and to “escape” from their region
of generation is limited by the mechanical properties (impedance) of the cochlear partition that supports OHCs.
Only at relatively high stimulus intensities are fIDPs from a broad cochlear region able to propagate to the EC
and contribute to the measured DPOAE; for low to moderate stimulus intensities our results indicate that the
DPOAE is indeed generated within a narrow region associated with the frequencies of stimulus tones.

Results

Frequency dependent coupling between electrical and mechanical responses to single-tone
stimulation. The generation of IDPs requires cochlear nonlinearity, which can be directly measured in the
level-dependency of sound-induced mechanical and electrical responses of the cochlear partition.

The left column of Fig. 2 illustrates such level-dependency of the ST pressure, P, and the electrical potential
in ST measured at a location close to the BM in response to pure tones. The latter will be referred to as local
cochlear microphonics, LCM, throughout the manuscript (e.g.'®). As previously reported®, at low sound pressure
levels (SPLs), P, (Fig. 2A) and LCM (Fig. 2E) are tuned to the best frequency (BF) of the measurement location,
23.5 kHz at 20 dB SPL. Both increase with SPL in a compressive nonlinear manner such that their iso-intensity
sensitivity curves (response magnitude normalized to EC pressure) fan out at frequencies around the BE, similar
to what has been observed in the sound-evoked vibrations of the BM?2. The phase responses of both P,; (Fig. 2C)
and LCM (Fig. 2G) are consistent with a traveling wave that slows down as it approaches the BE. Differences
between P,; and LCM are more pronounced at high SPL, where the LCM exhibits a low-pass response while P,
is broadly tuned, and the nonlinearity of the LCM extends to lower frequencies. The gain (defined here as the
sensitivity difference between low SPL at the BF and at the frequency of maximum P, sensitivity at 90 dB SPL)
of the LCM is about 20 dB larger than that of P,,.

The model (Fig. 1B) captures the key features seen in the experiments. While P, is tuned at all SPLs (Fig. 2B),
the LCM transitions from a tuned response at low SPL to a low-pass response at high SPL (Fig. 2F). Nonlinearity
extends to the lowest frequencies at high SPL for the LCM, while it is limited to the BF region for Py, The gain
of LCM is greater than that of P, and both measures show traveling wave phase accumulation (Fig. 2D,H).

In our model, the nonlinear electromotile OHC force potentially acts on the BM over a broad extent. However,
we found that the OHC force has limited effects on the BM vibrations, and thus Py, at low frequencies, the sub-BF
region, because the force is negligible at these frequencies given the large BM impedance and mechanical load
applied by the fluid pressure on the BM (Fig. S2). It therefore only delivers significant mechanical power to the
BM in the frequency range highlighted by the shaded area in the simulations of Fig. 2 (see Supplementary Infor-
mation for the calculation of the power). It is this limited range, of power amplification, from about 0.5 octave
below to the BE, that is responsible for the sensitive and sharply tuned P, responses around the BF at low SPL. The
compressive nonlinearity observed in both P, and LCM as SPL increases is due to the saturation of the mechano-
electrical transduction channels and of the active feedback mechanism related to cochlear amplification.

In our model predictions, the LCM is a summation of OHC potentials that are generated over a broad spatial
extent (Fig. S1 in Supplementary Information) due to the presence of a longitudinal electrical cable in ST (see
Fig. 1B). However, contributions to the LCM from OHCs in the BF region tend to cancel out at the observa-
tion location because the wavelength of the traveling wave is small compared to the space constant of the ST
electrical model. At all SPLs, this cancellation tends to broaden the tuning and decrease the magnitude of the
LCM response around the BF (see Fig. S1B); this broadening makes the LCM low-pass only at high levels, when
the tuning of the transduction current is very broad. At these high levels, the LCM responses would be broadly
tuned if the ST cable were neglected (Fig. S1), which does not match the experiments, showing the importance
of longitudinal electrical coupling to describe the low-pass response that is experimentally observed.
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Figure 1. The electrical and mechanical responses of the cochlea to sound are studied using in vivo
experiments and a computational model. (A) Schematics of the dual sensor probe used to measure fluctuations
in the extracellular scala tympani (ST) potential, Vi (referred to as the local cochlear microphonics, LCM,
throughout the main text), and the acoustic pressure in the ST,Py, at a location close to the basilar membrane
(BM). (B) Schematics of the physiologically motivated computational model of the cochlea. The model includes
a three-dimensional representation of fluid mechanics in the cochlear ducts with bidirectional coupling between
the intracochlear fluid and the BM vibrations: the fluid in the ST and scala vestibuli (SV) applies mechanical
loads on the BM; the BM vibrations are coupled to the ST and SV pressures via the linearized Euler equation.
The BM is part of a micromechanical model of the organ of Corti (OoC) complex that also includes degrees

of freedom for the tectorial membrane (TM), and active feedback from OHCs due to electromotility. This
micromechanical model of the OoC is coupled to an electrical model that represents the electrical potentials in
the SV, scala media (SM), OHC and ST. Vibrations of the OHC hair bundles due to the relative motions of the
TM and reticular lamina (RL) result in a mechano-electrical transduction current, Iser (see Eq. (1)), which
depolarizes the OHCs. In response to this change in the transmembrane potential,A V., OHCs generate an
electromotile force, fop (see Eq. (2) in “Methods” section), which acts on the BM and RL. Due to the nonlinear
relation between hair bundle deflection and transduction current, an IDP is generated when OHCs are
stimulated by a two-tone stimulus. Longitudinal (x-direction) cables, of resistance per unit length ry, 75, and rgy,
are included in the electrical model to represent the spreading of electrical current in the cochlear ducts; these
cables are essential for the predictions of the key characteristics of the LCM in the experiments. Tables S1 and
S2 in in Supplementary Information list the parameters seen in the Figure and provide the numerical values of
these parameters.
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Figure 2. Comparison of animal experiments (left column, animal wg182) and model simulations (right
column) for the mechanical (ST pressure) and electrical (local cochlear microphonics, LCM) responses of

the cochlea to pure tone stimuli. In all panels, the vertical dashed line is the BF of 23.5 kHz. (A-D) Sensitivity
(A,B) and phase (C,D) of ST pressure relative to EC pressure. (E-H) Sensitivity (E,F) and phase (G,H) of the
LCM relative to EC pressure. The blue-shaded area in (A,D,FH) corresponds to the frequency range where
OHC:s deliver significant power to the BM in response to 20 dB SPL tones. The vertical arrows identify the gain,
defined as the ratio of the sensitivity at the BF at 20 dB SPL and the sensitivity at the frequency of maximum P,
sensitivity at 90 dB SPL.

Characteristics of eIDP and fIDP.  Figure 3 extends these observations and shows the frequency-depend-
ent coupling between mechanical and electrical responses to the IDP. P, and LCM were obtained in response to
two-tone stimuli with equal intensity primaries at frequencies f; and f, with a fixed f,/f, ratio at 1.25. While IDPs
and DPOAEs are generated at a family of different intermodulation frequencies, this manuscript focuses on the
frequency component 2f, —f,, which has the largest magnitude and is the most-studied DPOAE.

The top row of Fig. 3 shows the magnitudes of the P,; primaries plotted as a function of the f, frequency. The
P, primaries correspond approximately to the input to the nonlinearity (direct in vivo measurements of HB
deflection are not available from the experiments). The ST pressure responses at f; and f, (panel A-D) peak at
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Figure 3. Mechanical and electrical two-tone responses of the cochlea: experiments (wgl182) and model
simulations in response to stimuli with equal primary levels of 50 dB SPL (A,B,E,ELJ) and 80 dB SPL
(C,D,G,H,K-L). The frequency ratio f,/f; was constant (f,/f, = 1.25). The figure includes both the response at the
primary tone frequencies (A-D) and the IDP frequencies (E-L). All these components are plotted as a function
of f, rather than versus their own frequency so that key features of the IDP response can be easily related to
where the primaries peak. (A-D) Shows the magnitude of the response of the primaries in the ST pressure (f;:
thin red line; f;: thin green line). (E-L) Show the magnitude (E-H) and phase (I-L) IDP response in ST pressure
and ST voltage. The phase in (I-L) is relative to 2®ec; — Peca, Where Pec; and Pecy denote the phase of the
primaries in the EC pressure. The green, red and blue vertical dotted lines correspond to the cases f, =BE, f; =
BE and fpp = BE respectively. The thin lines in model simulations correspond to frequency range where no
experimental data was collected. The yellow dashed lines in panels ] and L correspond to 2®p,; — Pppp, Where
®p,p1 and dpp; denote the phase of HB deflection for the f; and f, primaries, respectively.

frequencies lower than the BF of the measurement location because the traveling wave peaks at a lower frequency
or more basal location for higher SPL (see Fig. 2 and also??). The relative smaller response at fj results from two-
tone suppression effects. The experimentally observed notches in the Py amplitude are due to the interaction
between compression and traveling waves and are duplicated in the model predictions.

The middle and bottom rows of Fig. 3 show the magnitude and phase of the IDPs in P, (fIDP) and LCM
(eIDP). At primary intensities of 50 dB SPL, the IDPs observed in both experiment and model simulation have
two peaks corresponding to f, either below or above the BF (Fig. 3E,F). A small peak (identified by triangles
in panels E,F) is observed in the fIDP and eIDP within the so-called primary overlap region, where IDPs are
expected to be locally generated by OHCs due to nonlinear distortion. After generation within this overlap
region, the fIDP propagates in the forward direction. When the IDP frequency is close to the BF (fpp=23.5 kHz
when f, = 39.2 kHz), this forward propagating component (identified by a negative phase slope, see responses
for f, > 30kHz in panels I,]) will stimulate OHCs, causing the second peak in the response (star symbol). This
peak is only partially visible in panel E because the experimental data were not recorded beyond f, =40 kHz.
With f, < BE, the model predicts that the fIDP is dominated by wave propagating in the reverse direction from
the overlap region towards the stapes (positive phase slope, see Fig. 3]) together with a drop in the magnitude
of fIDP and eIDP. The experimental data of Fig. 3I does not seem to agree with the model predictions, as the
eIDP phase seems to be dominated by forward wave propagation when f, < BE However, the frequency range
over which the experimental data remains over the noise floor is quite limited in panel I, making it difficult to
evaluate how IDPs propagate when f, < BE
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The IDP responses to 80 dB SPL primaries share several similarities with the IDP responses to 50 dB SPL
primaries. The key difference with the 50 dB SPL results is that the eIDP response is now low-pass, while the fIDP
magnitude remains tuned with a global maximum when fpp is slightly below the BF (panel G). When fpp ~ BF,
both fIDP and eIDP have an amplitude peak (stars in panels G,H) with a negative slope in the phase responses
(panels K,L), suggesting they are dominated by forward-propagating components. At f, < BE, eIDP is low-pass and
fIDP is band-pass, different from the quick drop off in Py; at the primary frequencies. Although the interpreta-
tion of the phase can be somewhat tricky as a positive slope can appear in the absence of any reverse traveling
components, the shallow positive phase slope for fIDP suggests dominance by reverse traveling components.
However, the phase of the eIDP deviates from the phase of the fIDP (panels K,L).

The model was used to interpret the difference between the fIDP and eIDP phases at low f, frequencies in
response to 80 dB SPL primaries. The input to the nonlinearity, i.e. the stimulus to the transduction channels
of the OHCs, is the HB deflection in the model. Figure 3L shows that the eIDP phase follows 2®y},; — $pp; for
f,<20 kHz (where ®pp; and ®pyp, denote the phase of HB deflection relative to the EC pressure for the f; and f,
primaries, respectively). Because the 2f; — f, eIDP arise from a cubic nonlinearity, this result implies that it is
locally generated due to nonlinear distortion at low f, frequencies in response to 80 dB SPL primaries.

Opverall, the experimental observations and theoretical predictions suggest that the fIDP and eIDP are not as
simple as the forward traveling primary responses. The measured IDPs include three different components: (1) a
locally generated component that results from nonlinear distortion (2) a component traveling forward to its own
BF place, and (3) a component that travels to the stapes in the reverse direction. Which component dominates
can be recognized from the phase characteristics of the IDPs and corresponding f, frequency. Also, how local
DP generation depends on the local magnitude of the f; and f, components of the HB deflection contributes
to the details of the observed/predicted IDP. For example, the deep notch in the eIDP at f, ~ 19 kHz (panel H)
arises because the f, component of the HB deflection has a much larger magnitude than the f; component (see
the analysis in Fig. S5, and the experimental observations in wgl65 in Fig. S4 in Supplementary Information,
which exhibit a similar notch)”.

elDP arises from two different generation mechanisms. To understand how DPOAE:s arise from
IDPs consider the cascade of generation events illustrated in Fig. 4A. In response to a two-tone stimulus, the
OHCs generate an eIDP due to local nonlinear distortion, which is the primary mechanism for eIDP generation.
The eIDPs cause the OHC force to drive BM vibrations only over a spatially limited extent that is determined
by the local impedance of the BM to create fIDP waves that propagate both in forward and reverse directions.
These propagating fIDP waves stimulate OHC HBs and cause the generation of a mechano-electrical transduc-
tion current at the DP frequency. This second eIDP component will be called the eIDP resulting from propagating
fIDPs. In contrast to the distortion component, which is generated due to the nonlinearity of the transduction
channel, the eIDP resulting from propagating fIDPs relies on a quasilinear generation mechanism (because the
magnitude of the IDP response is relatively small, even for 80 dB SPL primaries, nonlinear compression is nearly
negligible in the generation of this secondary eIDP source). In similar vein, these secondary eIDPs may also cre-
ate fIDPs that propagate towards the base of the cochlea. The primary and secondary fIDPs that propagate to the
stapes combine to form the DPOAEs recorded in the ear canal.

Figure 4D shows model simulations for the total eIDP for primary levels between 40 and 80 dB SPL. In a man-
ner consistent with the experimental observations of Fig. 3, the total eIDP increases with the primary level and
shows multiple peaks. Induced by low intensity two-tone stimulus (<60 dB SPL), the eIDP exhibits two peaks,
one at f, &~ BF (in the overlap region), and one at fpp ~ BE. At higher stimulus levels, the total eIDP response
is maximum over a wide frequency range below BF (which is consistent with the low-pass nature of the eIDP
response at high SPL), and has a local peak when fpp ~ BE.

We used the computational model to further explain the complex features of eIDPs and to decompose them
into the nonlinear distortion contribution (Fig. 4B) and the eIDP resulting from propagating fIDPs (Fig. 4C) (see
Supplementary Information for details on the calculations). With increase of primary levels, the local, nonlinear
distortion eIDP not only peaks at f, ~ BF, but extends toward the sub-BF region, especially at high primary
levels above 60 dB SPL (Fig. 4B). This is because of the transition of the primary responses from a band-pass to
a low-pass filter shape (see Fig. 1E,F). When f;>BE the eIDP is dominated by the component resulting from
propagating fIDPs at all primary levels (Fig. 4C). In this region, this component comes from the forward propa-
gating fIDP wave (see Fig. S6 in Supplementary Information) which is amplified by OHCs as it approaches its
BE, causing a peak in both the component resulting from propagating fIDPs and the total eIDP. When f, ~ BE
the generation of the local, nonlinear distortion component is strongest and dominates the total eIDP response.
In the sub-BF region, which component has the highest magnitude depends on the level of the primary tones.
Below 65 dB SPL, the component resulting from propagating fIDPs that arises from the fIDP waves propagat-
ing in the reverse direction is the largest component (see also Fig. S4). Only at high primary levels is the local,
nonlinear eIDP generation in response to the stimulus tones sufficient to dominate the total eIDP response.

Correlation between DPOAE and IDP confirmed with local cochlear damage. The observation
of significant eIDPs in the sub-BF region suggests that basal OHCs may contribute to the DPOAE measured
in the EC, provided that the resulting OHC force is able to drive BM vibrations to create a (reversely propagat-
ing) fIDP wave. However, the ability of the OHC force to drive BM vibrations may be spatially restricted due
to the BM impedance and load of the intracochlear fluids on the BM. To determine how different longitudinal
locations give rise to fIDP waves and DPOAEs, we mimicked the effect of OHC damage by locally eliminating
OHC mechano-electrical transduction in the physiologically motivated model (see details and Fig. S7 in Sect. 7
of the Supplementary Information). While the experimental data are measured at a fixed position and plotted
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Figure 4. Generation mechanisms of eIDP and ear-canal DPOAEs. (A) Cartoon to illustrate the steps in
generating an ear-canal DPOAE. A two-tone stimulus (with frequencies f; and f,, f,>f,) causes two traveling
waves along the BM. At each location in the cochlea where these two tones cause vibrations, OHCs generate
an electrical IDP due to local nonlinear distortion. The amplitude and phase of this local nonlinear distortion
component is measured in the LCM (eIDP; magenta), and depends on the local stimulus properties. This
electrical signal results in an OHC-generated force that can augment the BM vibrations and cause fluid
pressure intracochlear DPs (fIDPs; blue), but only over a range where the BM impedance and mechanical load
of the ST fluid are amenable. While propagating along the BM, these fIDPs also act as a stimulus for OHCs,
forming a second, non-local source for eIDPs (the component resulting for propagating fIDPs) and fIDPs. The
combination of all fIDPs that propagate back to the ear canal create the DPOAE that can be measured with a
microphone. (B-D) show the decomposition of eIDP predicted by the model into local nonlinear distortion
voltage and the voltage resulting from propagating fIDPs. The magnitude of eIDP is plotted as a function of
f>and of the SPL of the primaries. (B) Shows the nonlinear distortion component, calculated using Eq. (S13).
(C) Shows the eIDP resulting from propagating fIDPs, calculated using Eq. (S14). (D) Shows the total eIDP.
The dotted lines indicate the value of the frequency f, when f,, f; or fDP is equal to the BF of the measurement
location (23.5 kHz).

versus f,, description of IDP generation versus longitudinal distance from the stapes is perhaps more intuitive.
Figure 5 illustrates the modeled effects of local OHC damage on the IDPs and DPOAE induced by f,=20 kHz
with f,/f;=1.25. Local damage effects on IDPs are shown for three different damage locations: a basal region
(Fig. 5A,B), the primary overlap region (Fig. 5C,D), and the fpp region (Fig. 5E,F). The pre- and post-damage
fIDP and eIDP responses are plotted for primary tones of levels 50 dB SPL (left column) and 80 dB SPL (right
column). The change in the magnitude (in dB scale) of the DPOAE from its baseline value is plotted in Fig. 5G as
the damage location is swept from base to apex for two-tone stimuli of levels between 50 and 80 dB SPL.

In response to 50 dB SPL primaries, OHC damage in a region basal to the f, tonotopic place causes a~20 dB
local decrease in the eIDP within the damage region, but little change in the fIDP (Fig. 5A), and no change in
the DPOAE (Fig. 5G). These observations can be explained by the facts that, at the base, the fIDP originates
from more apical locations while the eIDP is locally generated. Because the fIDP is not strongly coupled to the
basally generated eIDP, the OHC-generated eIDP contributes little to the DPOAE. For the case of 80 dB SPL
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Figure 5. Effect of local OHC damage on the generation of IDPs and DPOAEs. (A-F) show the spatial
responses of the eIDP (magenta lines) and fIDP (blue lines) for 50 dB SPL primaries (left panels) and 80 dB

SPL primaries (right panels). The solid lines correspond to the baseline case; the dashed lines to the response
when local damage is applied. The region of the damage shown in gray shaded area, includes approximately 20
sections of OHCs, and varies from a basal location (A,B), the overlap region (C,D) and the IDP tonotopic place
(E,F). (G) Change of the DPOAE from its baseline value when the damage location is swept from the base to the
apex for equal-level primaries of sound pressure levels between 50 and 80 dB. For all panels, f,=20 kHz. In all
panels, the vertical dashed lines correspond to the f;, f; and fpp tonotopic places.

primaries, the basal OHC damage causes local reductions of about 20 dB in eIDP and 5 dB in fIDP (Fig. 5B).
The basal nonlinear distortion component, which, as demonstrated earlier, is the main source of basal eIDPs in
response to high primary levels (Fig. 4), appears to have a small effect on basal fIDPs and DPOAE:s (Fig. 5G).
Applying local damage in the primary overlap region has level-dependent effects on the IDP response (pan-
els C,D). For 50 dB SPL primaries (Fig. 5C), the damage reduces eIDP and fIDP throughout the cochlea by a
significant amount (>30 dB) and the DPOAE by up to 38 dB SPL (Fig. 5G). These results strongly suggest that
the DPOAE is primarily generated within the primary overlap region. At the higher primary level of 80 dB SPL
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(Fig. 5D), the reduction in the eIDP and fIDP at locations that are either close or apical to the damage region is
smaller than for 50 dB SPL primaries. However, the basal eIDP, which is also generated due to local nonlinear
distortion, is unaffected since the base is not within the damaged region, while both the basal fIDP and the
DPOAE are reduced by around 10 dB.

Finally, the main effect of applying OHC damage around the fpp tonotopic place (Fig. 5E,F) is a pronounced
reduction in the fIDP and eIDP in the peak region, which is caused by the elimination of the eIDP resulting from
propagating fIDPs that propagates forwardly to its own BF place.

Overall, the damage has a progressively smaller effect on the DPOAE as the center of the damaged region
moves away from the overlap region towards either the base or apex of the cochlea (Fig. 5G). As the SPL of the
primaries is increased, the maximum reduction in the DPOAE level becomes smaller and the damage location
that causes the maximum DPOAE reduction shifts slightly towards the base, because of the effect of stimulus
levels on the peak locations of the response to the primaries. Damage causes a small but measurable reduction
in the DPOAE evoked by high level stimuli (80 dB SPL) even when applied at locations significantly basal to
the f, tonotopic place (see the green area around X440 =0.1 cm in panel G), which is consistent with the small
reduction in the fIDP response observed in panel D. For low level primaries, two reddish regions, corresponding
to an enhancement of the DPOAE, are observed about 0.1 cm basal to the f, tonotopic place (Xgamage = 0.2 cm)
and near the fpp tonotopic place (X4amage ~ 0.5 cm). The enhancement observed when damage is applied basal
to the f, BF place is presumably because the damage eliminates cancellation from reverse propagating fIDP waves
originating from a wide region. However, the enhancement observed when damage applied near the fpp tono-
topic place (as well as small enhancement of the basal fIDP in Fig. 5E) is due to the introduction of a reflection
mechanism for forward traveling waves when damage is applied around the BF region, as shown in an analysis
included in the Supplementary Information (Fig. S8). Overall, the similarities between Figs. 4B, 5G (especially
if we ignore the enhancement caused by the reflection introduced by the damage in Fig. 5G) are striking and
show that OHC damage has a significant effect on the DPOAE only when applied in a region where the eIDP is
dominated by local nonlinear distortion.

Discussion

The experimental and modeling results of this paper clarify the regions and mechanisms of IDP generation by
OHCs. We demonstrate for the first time that eIDPs measured in the LCM originate from a broader and more
basally extended cochlear region than fIDPs measured in P;; or mechanical IDPs measured in the BM veloc-
ity. eIDPs are electrical potentials which arises from the nonlinearity of transduction channels in response to
a two-tone stimulus, while the IDPs measured in the mechanical or fluid response require electromechanical
conversion of the eIDPs into a mechanical response due to electromotility. Hence, the LCM can be considered
to more directly reflect IDP generation by OHCs than P;; or the BM velocity. The low frequency eIDP response
is related to the recent discovery of nonlinearity of the OHC, RL and TM responses at frequencies significantly
below BF***-%5, While both P, and BM velocity respond linearly at sub-BF frequencies, the LCM exhibits a non-
linear response even at the lowest frequencies. The nonlinearity of the low frequency response of OHC and RL is
not limited to the pure tone response but extends to the generation of IDPs in response to a two-tone stimulus.

The observation of eIDPs at sub-BF frequencies implies that OHCs generate an electromotile force at these
low frequencies. In that frequency range, the force does not affect significantly BM vibrations at moderate SPLs
but causes vibrations of the RL, according to recent data'® and to model simulations (see Fig. S1C in Supplemen-
tary Information). In the current model, these observations are due to the different impedance of the structures
attached to the basolateral and apical ends of OHCs: the RL and TM are less stiff than the BM, which is as hypoth-
esized in the literature!'®? (see also Figs. S2, $3 in Supplementary Information) and consistent with experimental
estimates of the BM and TM?*"8, Other recent cochlear models*** have also relied on the use of a stiff BM and a
compliant RL to explain the different effects of OHCs on the vibrations of these structures. Because of the high
stiffness of the BM, OHCs amplify BM vibrations only in a narrowband around BE, when the magnitude of the
BM impedance drops due to the interplay between the BM stiftness and fluid inertia.

As in the case of the pure tone response?, the IDP responses predicted for the RL and LCM are very similar
to each other but quite different from the IDPs observed in P, or BM velocity. Noninvasive measurements of
stimulus frequency OAEs in cochleae with perfused salicylate are also consistent with the notion that the RL is
not directly coupled to the BM traveling waves®'. The fact that eIDPs are reduced by basal OHC damage even
though fIDPs are unaffected (for low-level primaries) is reminiscent of the recent observations of two-tone sup-
pression of the RL response for probe tones below the BF*2. Here, suppression has a similar effect as local damage
because it causes saturation of the mechano-electrical transduction channels.

Both experimental observations and model predictions are consistent with two different mechanisms of eIDP
generation by OHCs. The primary mechanism is local nonlinear distortion, which occurs predominantly in the
overlap region where the mechanical responses to both primaries have a large magnitude. This region, which
is narrow in response to low level primaries, broadens and extends toward the base as the level of the primary
tones is increased because of the effect of stimulus level on the responses to the primary tones. Because of this,
eIDPs are observed over an extended spatial region (when measured for a fixed f, frequency) or a wide frequency
range (when measured at a fixed location) in response to high level primaries. Because of electromotility, the
local generation of an eIDP due to nonlinear distortion causes vibrations of the BM, which interacts with the
intracochlear fluid, such that a fIDP is observed. However, the eIDP to fIDP conversion is spatially limited by
the BM properties, such that the fIDP is present over a narrower frequency range than the eIDP. The second-
ary mechanism of eIDP generation is what we label the component resulting from propagating fIDPs, as it arises
from the stimulation of the OHC HBs by the forward and reverse propagating fIDP waves that originate from
the overlap region. At all SPLs, this component is the main source of eIDP in the DP BF region, where a peak is
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observed due to the amplification of the forward propagating fIDP wave. In response to low to moderate level
(<65 dB SPL) primaries, eIDPs at locations significantly basal to the peaks of the primaries are dominated by
this secondary component.

OAE:s are thought to arise from two different mechanisms: nonlinear distortion and coherent reflection?’.
These mechanisms relate to the origin of IDP wavelets that travel towards the cochlear base. The local nonlin-
ear distortion mechanism we describe here is fundamentally the same as in that OAE-taxonomy. The coher-
ent reflection mechanism is, however, different from our component resulting from propagating fIDPs. In the
coherent reflection theory, it is hypothesized that forward propagating fIDP waves are reflected due to random
perturbations in the impedance along the cochlear duct. These reverse fIDP wavelets interfere coherently when
adjacent “reflectors” have the appropriate phase relation between them, which only occurs near the DP peak
region, thus restricting the extent over which they contribute to DPOAEs. The secondary eIDPs (which happens
throughout the cochlea) yields the subsequent spatially limited generation of the secondary fIDP components as
we describe here. Previous literature’*** has shown that the nonlinear distortion component tends to dominate
in the EC at the relatively wide frequency ratio (f,/f, =1.25) used in the current study. Because the physiologi-
cally based model used in this study does not include cochlear roughness, forward propagating fIDP waves are
not reflected, such that the eIDP resulting from propagating fIDPs does not generate reverse propagating waves
in the BF region. However, if cochlear roughness was introduced such that forward propagating fIDP waves are
reflected, the contributions from the eIDP resulting from fIDP propagating waves might be enhanced at the base
of the cochlea and in the EC, particularly at lower frequency ratios. For the wide ratio used in this study, our
simultaneous measurements of eIDPs and fIDPs and simulations without a reflection component demonstrate
that eIDPs originating from the nonlinear distortion region are the primary intracochlear source of DPOAEs.

Simulating the effect of local OHC damage (Fig. 5) allowed us to probe the relations between the two mecha-
nisms of eIDP generation and their influence on DPOAEs measured in the EC. Simulation results are consistent
with experimental observations from Dong and Olson*!, who characterized the effect of local damage on fIDPs
and DPOAE:s evoked by high intensity primary tones. As in the current study, for f,/f, =1.25, Dong and Olson
observed a correlation in the reductions of DPOAEs and fIDPs when damage occurred at a region of f, frequency
close to the BE, but not when f;,, was close to the BE. The near complete elimination of the eIDPs when damage
is applied in the overlap region implies that the observation of eIDPs or fIDPs at any cochlear location requires
local nonlinear distortion generated by healthy OHCs in this overlap region. At low to moderate SPL, a reverse
propagating fIDP wave that originates from the overlap region is measured at the base of the model representa-
tive of the undamaged cochlea. However, applying damage in a basal region causes a significant reduction in
the eIDP, because the eIDP measured at the base is dominated by the component resulting from propagating
fIDPs, which requires mechano-electrical transduction at the measurement location. These results imply that
the basally generated eIDP component resulting from propagating fIDPs has limited influence on the fIDPs.
Applying local damage in the DP BF region eliminates the OHC electromechanical feedback necessary of the
amplification of the IDP response, which significantly reduces the magnitude of both the fIDP and eIDP. Hence,
anormal IDP response in the BF region and normal perception of IDP vibrations require healthy OHCs in both
the overlap and DP BF regions.

Whether DPOAE:s include contributions from regions located significantly basal to the f, tonotopic place is
an important debate in OAE literature, with both scientific and clinical implications. Precise understanding of
which cochlear regions contribute to DPOAE:s is essential for the diagnosis of frequency-dependent sensorineural
hearing loss. We have shown that IDPs are generated by OHCs primarily at the peak locations of the responses
to the primary tones, and also at locations significantly closer to the cochlear base (see also'*). This is especially
true in response to high-level primaries (which are often required to measure DPOAE:;s for clinical diagnosis,
especially for subjects with some level of sensorineural hearing loss). Model simulations with local OHC damage
show that DPOAE:s primarily originate from locations close to the f, tonotopic place in the healthy cochlea at low
to moderate stimulus levels (up to 65 dB SPL). However, DPOAEs generated in response to high-level primaries
(above 65 dB SPL) are found to include small contributions from basal IDP generators, which is consistent with
some experiments which have used a high level suppressor tone to conclude that some of the DPOAEs originates
from cochlear locations basal to the primary overlap region in humans®® and rabbits®*. A recent cochlear model
with a wide region of RL nonlinearity also found that the low frequency RL response has a limited influence
on DPOAEs?. However, only the BM is directly coupled to the intracochlear fluid in the current model, as in
most classical models of the cochlea. Basal IDP generators might contribute more significantly to DPOAEs in
potentially more realistic cochlear models with direct coupling of the SM fluid to the RL and/or TM (such as*"*).
Micromechanical measurements of the IDP response combined with simulations with high fidelity computational
models will be needed to further understand the complex link between IDPs and DPOAE:s.

Methods

Experimental methods. Animal preparation. All procedures involving experimental animals were ap-
proved by the Institutional Animal Care and Use Committees (IACUCs) of Columbia University and the VA
Loma Linda Healthcare System that in accordance with relevant guidelines and regulations of Association for
the Assessment and Accreditation of Laboratory Animal Care International (AAALAC). The study was carried
out in compliance with the ARRIVE guidelines. Animal preparation and acoustic stimulation was as described
in (Dong and Olson**). Experiments were performed in anesthetized young adult gerbils. Gerbils were anesthe-
tized with ketamine (80 mg/kg) and xylazine (10 mg/kg), with maintenance doses (1/3 to ¥ of initial dose) given
as needed throughout the experiment, and the analgesic buprenorphine was administered every 6 h. At the end
of the experiment the animal was euthanized with Pentobarbital. While anesthetized, animal body temperature
was maintained at ~ 37° using a rectal probe attached to a Harvard Apparatus heating pad. The dorsal surface of
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the skull was fixed to a head-holder with dental cement. A tracheotomy was performed to maintain a patent air-
way. The left pinna was surgically removed and the bulla was widely opened. A small hole (diameter ~200 pum)
was hand-drilled through the bony wall of scala tympani (ST) at the turn one location with best frequency (BF)
around 20 kHz. A total of eleven animals were used in the study and five animals provided a complete dataset
with consistent results. Main findings were illustrated by data from two representative cochleae under healthy
conditions, shown in the main article and in Supplementary Information (Fig. S4).

Cochlear condition was assessed at key time points using compound action potential (CAP) thresholds
measured at the round window using a silver-ball electrode, with the reference electrode connected to neck
muscle having a threshold criterion of ~5 uV (p-p)'**. In addition, DPOAEs and single-tone responses at the
level of the BM were used to estimate the degree of nonlinearity of cochlear responses, which become linear if
the preparation deteriorates.

Dual-sensor. The dual-sensor, described in detail in our previous publication (*), combined a custom-built
pressure sensor (ID/OD: 75/125 um) and an isonel-insulated platinum wire electrode (OD: 28 um AM Systems,
Sequim WA) side by side. The latter was cut to be approximately flush with the pressure sensor tip. Both the pres-
sure sensor and electrode (with their associated amplifiers) are broadband with mild low-pass filtering over the
frequency range of interest. The pressure sensor was calibrated in air at both room- and body-temperature and
in water after construction, and before and after the experiment. Only when calibration results between air and
water were within 3 dB was the sensor used in the experiment. The impedance of the electrode is ~ 1 M2 meas-
ured at 1 kHz. The wire electrode’s frequency response was characterized as described in Baden-Kristensen and
Weiss*!. At 40 kHz, the test electrode showed ~ 2 dB amplitude attenuation and phase roll off of ~ 30°. The dual-
sensor was introduced into the cochlea through the ST hole, and was aimed at the sensory tissue (Fig. 1A). A
silver reference electrode was placed in the neck. The dual-sensor was slowly advanced in micrometer steps with
a motorized micromanipulator until contacting the BM, then retracted ~ 10 pm where responses were measured.

Sound stimulation and data acquisition. ~ Single- or two-tone stimuli were generated by a Tucker Davis Technol-
ogy (TDT) (Alachua, FL) system III (sampling frequency of 200 kHz) and delivered to the ear canal (EC) via a
closed acoustical system that consisted of one or two electrically shielded Radioshack (Fort Worth, TX) tweet-
ers. Synchronization of the three data acquisition channels (ear canal pressure, and the dual sensor output) was
checked and the third channel’s relative delay (< 5 ps) was accounted for in the analysis. Stimulus and acquisition
programs were written in MATLAB (The MathWorks, Natick, MA) and the TDT visual design studio. Responses
waveforms were measured for ~ 1 s and time locked averaging was performed; the averaged data were stored in
segments of 4096 points. The waveforms were later analyzed by Fourier transform with MATLAB. Sound pres-
sure levels are reported as dB SPL (decibels relative to 20 pPa peak). The SPL was calibrated within 3 mm of the
eardrum using an ultrasound Sokolich probe tube microphone, which has flat frequency responses up to 50 kHz.

Physiologically motivated model of the cochlea. The computational model of the gerbil cochlea
(Fig. 1B) used in this work has been described in a series of papers?®?»*. The model is based on the finite
element method and includes acoustic (fluid), mechanical, and electrical physics. The model parameters were
selected so that the model responses to a pure-tone stimulus are representative of measurements taken in the
mammalian species used in the experiments, the gerbil. To tune the mechanical and electrical response to a pure
tone, some changes were made to the electrical model and in the parameters values from the values listed for our
most recent gerbil model?!. The parameter values of the current model can be found in the Supporting Mate-
rial. DPOAEs are commonly assumed to be generated due to nonlinear distortion from the overlap region and
reflection by inhomogeneities on the cochlear partition close to the DP tonotopic place*?. However, experimen-
tal data in the gerbil data suggest that, for the relatively wide primary frequency ratio of 1.25 used in this study,
the DPOAEs are dominated by contributions from the distortion source'*. Hence, the model used here does not
include any cochlear roughness.

Fluid model. The cochlea is modeled as a rectangular box with two ducts (the ST and SV) filled with a fluid
which is modeled as incompressible and inviscid (Fig. 1B). A three-dimensional (3D) model is used to represent
the highly 3D response of the fluid response, particularly in the BF region®®>*,

Organ of Corti complex model. A key component of the cochlear model is a model of the organ of Corti geom-
etry and micromechanics, which includes one degree of freedom for the transverse displacement of the BM and
degrees of freedom for the displacement of the TM in bending (transverse) and shear (radial) directions of the
HB (Fig. 1B). The displacement of the BM is coupled to the intracochlear fluid in the ST and SV while the TM
and RL are not directly interacting with the intracochlear fluid. As in*®, longitudinal coupling is included for
both the BM and TM mechanics.

Model of OHC mechano-electrical transduction and somatic electromotility. Deflection of the OHC HBs stimu-
lates the mechano-electrical transduction channels. The mechano-electrical transduction current, iygr, is the
following nonlinear function of the HB deflection relative to the RL, upp:
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where G%* is the saturating conductance, AV}, is the resting value of the difference between the SM potential
and intracellular OHC potential, P§ is the resting open probability of the MET channel and Xy and AX are con-
stant displacements. The transduction current depolarizes the OHC main body. Electromotility is modeled using
reciprocal linearized equations that relate the OHC electromotile force, f,p., the current, is,,,, the OHC change

of length (compression), ”ZZTP , and the OHC transmembrane potential, A Vi
isom = —€3 1'42(;,’;1‘0> (2)
fohc = 53AVohc: (3)

where €3 is the electromechanical coupling coefficient of the OHC.

Electrical model of the scalae and OHCs.  The electrical model includes degrees of freedom at each cross-section
for the electrical potentials in the SV, SM, OHC and ST. As in*, the model includes longitudinal electrical cables
to account for the longitudinal spreading of electrical currents in the cochlear ducts (see Fig. 1B). Due to the
high computational cost of running simulations with the cables, these cables were not included in previous time-
domain implementations of the model*>*"*”. We found in this that electrical longitudinal cables (particularly
in the ST) are essential for matching with a single set of model parameters the relatively high magnitude of the
ST voltage at low frequency and in the BF region measured in response to a pure tone. The value of the space
constant due to ST cable (134 um) is in line with recent reports (80 pum in the data from*) and much lower than
older estimates (0.5 to 4 mm in Ref.*®).

Coupling of the cochlear model to the middle ear. 'The cochlear model is coupled to a 1 DOF middle ear model
with parameters were chosen so that the middle ear has a relatively constant stapes reflectance when coupled to
the cochlear model (see Fig. S9 in Supplementary Information). Based on experimental data in the gerbil*, the
middle ear pressure transfer functions are assumed to have frequency-independent values (a gain of 30 dB and
a constant delay of 32 ps in the forward direction; a gain of —35 dB and a delay of 38 us in the reverse direction).

Numerical methods. The partial differential equations that govern the nonlinear dynamics of the cochlear
model are discretized using the finite element method. The resulting set of equation is formulated as a system
of nonlinear ordinary differential equations (ODEs) using a state-state formulation***, which is solved in the
time-domain using a Runge-Kutta ODE solver (ode45 function in MATLAB). The frequency components of
the response of the model are extracted from the time-domain response by applying a Fast Fourier Transform
algorithm to the steady-state portion of the response.

Data availability

Experimental and simulation data are available from the corresponding authors.
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