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Oral cavity cancer (OCC) is associated with high incidence of loco-regional recurrences,
which account for the majority of treatment failures post-surgery and radiotherapy. The
time-course of relapse manifestation and metastasis are unpredictable. Relapsed OCC
represents a major clinical challenge in part due to their aggressive and invasive behaviors.
Chemotherapy remains the only option for advanced OCC whenever salvage surgery or
re-irradiation is not feasible, but its efficacy is limited as a result of the drug resistance
development. Alternatives to use of different permutations of standard cytotoxic drugs
or combinations with modulators of drug resistance have led to incremental therapeutic
benefits. The introduction of targeted agents and biologics against selective targets that
drive cancer progression has opened-up optimism to achieve superior therapeutic activity
and overcome drug resistance because, unlike the non-selective cytotoxic, the target can
be monitored at molecular levels to identify patients who can benefit from the drug. This
review discusses the multifactorial aspects of clinical drug resistance and emerging ther-
apeutic approaches in recurrent OCC, emphasizing recent advances in targeted therapies,
immunotherapy, and potential relevance of new concepts such as epithelial-mesenchymal
transition and cancer stem cell hypothesis to drug resistance.
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ORAL CANCER RECURRENCE AND THERAPEUTIC
MODALITIES
Oral cavity cancer (OCC) is the most common site of malig-
nancy in the head and neck being ranked as the eightieth most
frequent cancer worldwide (Petersen, 2009) with over 145,500
deaths per year1 [International Agency for Research on Cancer
(IARC; 2011)]. The main risk factors are exposure to exogenous
carcinogens such as tobacco smoke and excessive alcohol con-
sumption. The incidence varies among geographical regions, e.g.,
high incidence is reported in India, France, and South/Southeast
Asia (Parkin et al., 2005; Su et al., 2006). OCC has a high occurrence
of clinically occult ipsilateral or bilateral lymph node metastasis
due to the rich lymphatic submucosal plexus that freely commu-
nicates across the midline facilitating the spread of neoplastic cells
to any area of the neck (Fan et al., 2011). Most patients with OCC
are diagnosed with tumors at advanced stage and incur significant
morbidity and mortality due to the disease as well as sequels asso-
ciated with therapeutic management and complications (Kowalski
et al., 1998, 2005). The overall survival rate decreases as the car-
cinoma stage increases, from 75 to 90% for Stage I to 10–22%

1http://www.iarc.fr/study_booklptrivandrum.php

for Stage IV (Kowalski et al., 2005). The prognosis depends on
tumor primary site, nodal involvement, tumor thickness, and the
status of the surgical margins (Garzino-Demo et al., 2006). Con-
ventional treatment for OCC includes surgery, radiotherapy, and
chemotherapy. OCC surgical management often can lead to severe
morbidity due to disfiguring and functional side effects (Furness
et al., 2011). Surgery combined with chemotherapy and radio-
therapy can improve overall survival, particularly in patients with
advanced oral cancers. Induction chemotherapy may prolong sur-
vival by up to 20% and adjuvant concomitant chemoradiotherapy
can improve survival by up to 16% (Furness et al., 2011). However,
approximately one-third of patients treated with surgery and adju-
vant therapy will experience local or regional recurrence and/or
distant metastasis (Greenberg et al., 2003).

Local and regional recurrences account for up to 90% of treat-
ment failures post-surgery and radiotherapy (Leemans et al., 1994;
Carvalho et al., 2005; Agra et al., 2010). The rates of OCC recur-
rence vary from 18 to 76% for patients who underwent standard
treatment, and it is considered the major cause of poor survival
rates. Most studies corroborated that the median time to recur-
rence is 7.5 months after treatment, and 86% of the recurrences
occur within 24 months (Carvalho et al., 2005; Kowalski et al.,
2005; Fan et al., 2011). The presence of cervical lymph nodes
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metastasis is the most important adverse prognostic factor in OCC
patients. Extracapsular spread is a particularly reliable predictive
factor of loco-regional recurrence, distant metastasis, and death
from disease (Greenberg et al., 2003). In this subset of patients,
adjuvant chemoradiation proved to reduce the rates of recurrences
when compared to radiation alone (Bernier et al., 2008). The his-
tological status of surgical margins is another available assessment
for recurrence risk in OCC (Leemans et al., 1994). Woolgar et al.
(1999) reported that ∼10% patients with oral squamous cell car-
cinoma develop recurrence and the relapse appears much earlier
than metachronous disease carrying the worst prognosis. Patients
with recurrent carcinomas pose a clinical challenge with regard
to defining the best therapeutic options. Only a small group of
patients are candidates for salvage surgery and about 30–45% of
these have poor survival rates (Agra et al., 2010). Patients who
are not candidates for salvage surgery or re-irradiation usually
receive chemotherapy, but even with the most recent combina-
tions of drugs the prognosis remains poor and cure is rare (Ver-
morken et al., 2007). Clearly, new therapeutic options for recurrent
OCC are urgently needed. A significant problem in those cases is
postoperative and postradiotherapy fibrosis that precludes achiev-
ing adequate pharmacologic doses of the drug in the recurrent
tumor site.

RESISTANCE TO CHEMOTHERAPY DRUGS IN OCC
The most common chemotherapy drugs used for advanced OCC
include taxanes (paclitaxel and docetaxel), anthracyclines (adri-
amycin, epirubicin, and pirarubicin), platinums (cisplatin and
carboplatin), and antimetabolites (e.g., methotrexate, and 5-
fluorouracil). Anthracyclines act primarily by interfering with
DNA replication via interaction with topoisomerases, intercala-
tion, and induction of DNA strand breaks. Platinum-containing
compounds in particular cisplatin and carboplatin target DNA
forming intra-strand and inter-strand cross-links causing distor-
tion of the DNA helix and apoptotic cell death. Taxanes such as
paclitaxel and taxotere, and vinca alkaloids such as vinorelbine and
vincristine all interfere with microtubule and spindle assembly.
Topoisomerase inhibitors (e.g., etoposide, topotecan, irinotecan)
induce DNA strand breaks, while antimetabolites (e.g., gemc-
itabine, 5-FU, capecitabine, trimetrexate) are potent inhibitors
of RNA synthesis. Exposure of cancer cells to chemotherapeu-
tic agents culminate in the activation of tumor cell apoptosis and
most are preferentially active on proliferating “cycling” cancer cells
compared to “resting” normal cells making malignant cells mar-
ginally susceptible to these agents (Alaoui-Jamali et al., 2004).
However, host toxicity can result in part through affect on normal
bone marrow stem cells and epithelial cells that are mitotically
active and hence susceptible to non-desirable cytotoxic effects of
chemotherapeutic agents.

Empiric clinical trials have defined the standard first-line
chemotherapeutic regimens and dosage that achieve the best ther-
apeutic efficacy and with acceptable host toxicity for each tumor
type. Examples of combinations include cisplatin-containing reg-
imens for non-small cell lung cancer (NSCLC); 5-FU, leucovorin,
and irinotecan for colon cancer; and anthracyclines, carboplatin,
and paclitaxel for breast cancer. In advanced OCC, conven-
tional cytotoxic drugs most commonly used include methotrexate,

cisplatin, carboplatin, 5-FU, paclitaxel, and docetaxel (Specenier
and Vermorken, 2010). Whether given alone or in combination,
these chemotherapy drugs have produced clinical benefits in terms
of substantial improvement of the overall survival in OCC patients
when compared to other cancers notorious to be refractory to
chemotherapy such as colorectal and renal carcinomas (Lebwohl
and Canetta, 1998; Jassem, 1999; Giaccone, 2000). However, even
in the most chemotherapy responsive cases, patients inevitably
experience tumor progression or relapses due to the develop-
ment of cells with acquired drug resistance, or emergence of cell
subpopulations genetically refractory to the drugs (intrinsic drug
resistance; Greenberg et al., 2003). Although there is a relatively
common pattern of genomic abnormalities including DNA allelic
loss during OCC progression from premalignant to malignant
phenotype such as chromosomal losses at 3p, 9p, 17p, and muta-
tions in TP53, supporting a distinct biology for OCC (Mao et al.,
1996; Mydlarz et al., 2010), drug resistance is predictable given
the common presence of genomic instability that can result in the
accumulation of multiple genetic aberrations including those that
impact chemotherapy response signaling (Califano et al., 1996,
2000; Weber et al., 1998; Okafuji et al., 2000).

The limitation of chemotherapy has been ascribed primarily
to mechanisms that mediate drug resistance at the cellular level
or factors innate to tumor microenvironment and the host. For
instance, a variety of intracellular mechanisms have been associ-
ated with decreased drug transport or increased efflux including
overexpression of plasma membrane efflux transport proteins
(e.g., P-glycoprotein-170, Pgp170; MDR-related proteins – MRP;
lung resistance protein – LRP) that prevent drugs from reach-
ing intracellular targets (Trédan et al., 2007). Other mechanisms
involved in drug metabolism and cellular response to DNA dam-
age are equally important in the development of drug resistance;
these include enhanced drug detoxification via upregulation of
phase II detoxifying enzymes (e.g., glutathione S-transferases),
enhanced DNA repair mechanisms that counteract drug-induced
DNA damage, mutations in drug target-encoding genes that
reduce the affinity of a drug to active site (e.g., mutations in tubulin
and topoisomerase-coding genes that reduce taxanes and camp-
tothecin activity, respectively), as well as a plethora of other mech-
anisms that make the cells more resistant to pro-apoptotic signals
ranging from aberrant function of growth factor receptors and
tumor suppressors to deregulated intracellular transduction path-
ways, cell cycle checkpoints, and chromatin and transcriptional
modifications (Rudolf and Cervinka, 2003).

Tumor microenvironment is critical determinant and modifier
of therapeutic response; in particular angiogenesis and hypoxia
have been extensively investigated as alternatives to overcome
drug resistance (Folkman, 2007; Sebens and Schäfer, 2011; Maione
et al., 2012; Semenza, 2012). To reach tumor cell sanctuaries in
primary or distant tissue targets, anticancer drugs must be deliv-
ered efficiently through the tumor vasculature, cross the vessel
wall, and diffuse within tumor tissue. This would argue that pro-
angiogenic drugs would favor superior chemotherapy drug phar-
macodistribution. However, approaches to inhibit angiogenesis
have been investigated as alternatives to overcome drug resistance
(Maione et al., 2012). In this context, the concept of metro-
nomic chemotherapy dosing based on the use of repeated low-dose
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chemotherapy combined with antiangiogenic drugs has provided
exciting results in preclinical models to minimize side effects of
conventional chemotherapy and to improve therapeutic response
in drug-resistant tumors (Browder et al., 2000; Hanahan et al.,
2000; Bocci et al., 2002; Moreno Garcia et al., 2012) although the
efficacy of this approach remains debated. While initial optimism
targeting angiogenesis was based on the notion that endothelial
cells are genetically stable and hence less prone to develop drug
resistance, it is now documented that tumor blood vessels are
instable and differ from their normal counterparts with respect
to morphological characteristics, blood flow, leakiness, as well
as structural abnormalities in the basement membrane and in
pericyte activity (Morikawa et al., 2002; Kawamoto et al., 2012).
This would explain the common occurrence of tumor endothelial
cell resistance to antiangiogenic drugs, including the anti-VEGF
antibody bevacizumab (Ma and Waxman, 2008). As noted above,
inhibition of angiogenesis has a drawback as it may prevent drug
distribution within tumor tissue. Moreover, unexpected observa-
tions from preclinical studies revealed that antiangiogenic drugs
can either improve or worsen prognosis (Rapisarda and Melillo,
2012). The most obvious effect is the induction of cell hypoxia,
a hallmark of tumor aggressiveness and resistant to chemora-
diotherapy. For instance, recent study by Cooke et al. (2012)
revealed that antiangiogenic agents have a beneficial decrease in
the growth of primary tumors, but also can promote distant metas-
tases and hence worsen prognosis. This was attributed to activa-
tion of cell invasion signaling, including epithelial-mesenchymal
transition (EMT) and hypoxia in tumors depleted from tumor
vessel-associated cells such as pericytes within the tumor microen-
vironment (Cooke et al., 2012). Hypoxia is well documented to
promote resistance to chemotherapy and radiation (Braybrooke
et al., 2000; Semenza, 2010, 2012). Hyperbaric oxygen (HBO) has
been proposed to reduce tumor hypoxia by increasing the amount
of dissolved oxygen in the plasma, however HBO is associated
with significant adverse effects including oxygen toxic seizures
and severe radiation tissue injury (Bennett et al., 2008). Tumor
cell heterogeneity is another important aspect for chemotherapy
failure once that chemotherapy targeting more sensitive tumor cell
subpopulations can select rare variants with intrinsic resistance;
this idea has been used to explain the intrinsic resistance of cancer
stem-cells (CSC; Figure 1).

EMT AND CSC CONCEPTS AND THEIR IMPACT ON DRUG
RESISTANCE
Traditional cancer treatments were developed by virtue of their
anticancer activity against a tumor mass cell population (e.g., log
kill-based principle). The tumor mass represents several subpopu-
lations of cells with distinct genotypes and phenotypes, including
response to chemotherapy. It is recognized that tumor heterogene-
ity contributes by several mechanisms, including activation of the
EMT. In this case well-differentiated cancer cells require a higher
plasticity and invasive capacity via a conversion to non-polarized
and poorly differentiated mesenchymal cells (Thiery, 2002). Acti-
vated EMT signaling pathways (e.g., activation of Wnt/β-catenin,
PI3-K/AKT, MAPK, and Notch) is well documented to occur in
advanced OCC (Boyer et al., 2000; Conacci-Sorrell et al., 2002;
Nelson and Nusse, 2004; Larue and Bellacosa, 2005; Nawshad

et al., 2005; Tommasi et al., 2007; Barker, 2008; Agarwal et al.,
2010; Courtney et al., 2010; Falasca, 2010; Ihle and Powis, 2010;
Wong et al., 2010). Preclinical studies also reported a significant
correlation between EMT phenotype, drug resistance, and relapses
(Zeisberg and Neilson, 2009) including in OCC patients (Machiels
and Schmitz, 2011; Raza et al., 2011).

Equally important, the concept of CSC provided alternative
frameworks to explain drug resistance and relapses. CSC is defined
as a small subpopulation of tumor cells having both tumor-
initiating ability and the ability to reconstitute the cellular het-
erogeneity of the original tumor. Several studies have implicated
CSC in cancer progression, invasion process, loco-regional recur-
rence after therapy, and distant metastasis (Prince et al., 2007).
Also, cancer cell variants expressing CSC markers have been
reported to be more resistant to chemotherapy than cells that
do not express CSC markers (Dean et al., 2005). This implies
that chemotherapy drugs, by targeting the most sensitive non-
CSC can contribute to enrichment of the chemotherapy-resistant
CSC and hence promote recurrences (Frame and Maitland, 2011).
This resistance may reflect the preservation of normal stem cell
protective mechanisms, such as an increased expression of drug
efflux pumps or alterations in apoptotic, cell cycle, and DNA
repair mechanisms (Kvinlaug and Huntly, 2007). Interestingly,
EMT which also promotes drug resistance is found to contribute
to selection/enrichment of cell subpopulations with stem cell char-
acteristics from well-differentiated epithelial cells (Mani et al.,
2008; Polyak and Weinberg, 2009). Therefore several emerging
approaches targeting key signaling molecules critical to CSC, and
cancer epigenetics and metabolism are under extensive investiga-
tion (Grskovic et al., 2011; Vander Heiden, 2011; Arrowsmith et al.,
2012).

EMERGING THERAPEUTIC OPTIONS FOR ADVANCED OCC
Conventional chemotherapy is widely used for refractory OCC
despite only incremental improvement in disease-free survival.
The broad diversity of drug resistance mechanisms led to alterna-
tive approaches incorporating drug resistance modulators in the
chemotherapy regimens. Possible mechanisms of acquired resis-
tance include altered cellular drug transport (e.g., inhibitors of
P-glycoprotein 170 encoded by the MDR1), enhanced intracellu-
lar detoxification, increased DNA repair, and enhanced tolerance
to DNA damage (Persons et al., 1999; Garraway and Jänne, 2012).
However, this approach has limited success given the large num-
ber of genetic changes affecting multiple cell regulatory pathways
that regulate drug response. Moreover, recurrent OCC treated
by chemotherapy often expresses an aggressive progression and
develop cross-resistance to a wide range of structurally and mech-
anistically unrelated drugs (Garraway and Jänne, 2012). This is a
limitation in the use of alternative therapeutic combinations since
the process of selecting treatment has been based on the avail-
ability of chemotherapy agents, as well as different drug modes of
action.

The great progress in the understanding of cancer biology has
led to the development and validation of several target-selective
agents referred as targeted therapies with improved efficacy against
chemotherapy refractory cancers. These classes of drugs have
selectivity toward targets proven to play a rate-limiting step in
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FIGURE 1 | Representative important factors and concepts implicated in
drug resistance and relapses. Various intracellular factors can account for
impaired OCC cell response to chemotherapy drugs, including changes in the
bioavailability of a drug or its active metabolites at the target site (decreased
uptake or increased efflux), inability of cells to repair DNA damage which can
lead to increase tolerance, and defects in cell ability to signal DNA damage
response to downstream effectors targets to trigger cell death. Altered drug
pharmacodistribution and pharmacodynamics in the host also impact on drug
response. The selective pressure exerted by drugs combined with tumor cell
heterogeneity (often a result of tumor genomic instability) is also a driving

force for drug resistance. Tumors can develop resistance via regulation of their
microenvironment, e.g., by remodeling the extracellular matrix, deregulating
cancer cell-endothelial cell/immune infiltrating cell interactions, leading to
enhanced angiogenesis, hypoxia, and resistance to cell death. In this context,
epithelial-mesenchymal transition (EMT) and the reverse process
mesenchymal-epithelial transition (MET), both are critical process for cancer
progression to metastasis and homing in distant site contribute to drug
resistance via various mechanisms, including induction of cell heterogeneity
and selection of rare cancer stem cell (CSC) variants with intrinsic resistance
to chemotherapy.

the process of cancer progression and many are in the clinical use
for specific cancers, e.g., EGFR-tyrosine kinase inhibitor Tarceva
(Erlotinib for invasive NSCLC and pancreatic cancer (Rosell et al.,
2012; Troiani et al., 2012); anti-EGFR monoclonal antibody Cetux-
imab (Erbitux) for colorectal carcinoma (Debucquoy et al., 2010);
the monoclonal antibody Trastuzumab (Herceptin) for HER-
2/neu+ breast cancer (Chang, 2010); several B-Raf inhibitors for
melanoma (Lott, 2011); antiangiogenesis agents such as the anti-
VEGF monoclonal antibody Bevacizumab (Avastin) for metastatic
cancers of the lung, colon, and kidney (Kerr, 2004); the proteasome
inhibitor Bortezomib (Velcade) for multiple myeloma (Mahindra
et al., 2012); the histone deacetylase inhibitor Vorinostat (Zolinza)
for cutaneous lymphoma (Lansigan and Foss, 2010); and the Bcr-
Abl inhibitors including Gleevec for chronic myeloid leukemia
(CML). In the case of OCC, the clinical use of targeted agents is
still lagging behind but ongoing multi-institutional clinical trials
are being conducted to investigate their utility compared to con-
ventional cytotoxic chemotherapy (Table 1). Given that most of
the targeted agents cited above, including those targeting EGFR
and HER-2 receptors, VEGF and VEGFR, Raf, and proteasome,
are also deregulated in OCC, they may provide potential therapeu-
tic benefits for patients with advanced OCC. Moreover, a current
alternative in oncology research is to improve the therapeutic

efficacy of existing chemotherapy agents focusing on combination
of targeted agents with cytotoxics drugs, or their use as long-term
maintenance therapy (either low dose/high frequency of stan-
dard cytotoxic drugs or molecularly targeted agents like Avastin,
Herceptin, Erlotinib) following high-dose induction therapy, the
initial treatment used to reduce tumor size2 [National Cancer
Institute at National Institutes of Health (NCI; 2012)]. In this
way, OCC could certainly benefit from advanced funding from
other cancer types particularly because the suitability of OCC
for multiple biopsies that can aid target profiling and patients
selection.

CONCLUSION AND PERSPECTIVES
The efficacy of conventional cytotoxic chemotherapy for OCC has
been hampered by lack of selectivity, narrow therapeutic margin,
and the common development of drug resistance mechanisms.
Due to the broad multifactorial aspect of drug resistance pheno-
type, it is not surprising that the initial optimism surrounding
modulation of a single drug resistance marker to overcome resis-
tance in several other cancers has waned. Likewise, advances in

2http://www.cancer.gov/dictionary?cdrid=45736NCI
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Table 1 | Recent drugs, targets, and clinical trials in head and neck cancers.

Class of drugs Commercial name Target Head and neck clinical trials

E7080 VEGFR2 Phase II

Erlotinib Tarceva EGFR Phase III

Gefitinib Iressa EGFR Phase II

Imatinib Gleevac PDGFR, BCR-ABL, KIT Phase II

Lapatinib Tykerb EGFR Phase III

Pazopanib Votrient VEGFR, PDGFR, KIT Phase II

Sorafenib Nexavar VEGFR, PDGFR, KIT, FLT-3 RAF Phase II

Sunitinib Sutin VEGFR, PDGFR, KIT, FLT-3 RET Phase II

Vandetanib Zactima VEGFR, RET,EGFR Phase II/III

XL-184 MET, VEGFR, RET Phase III

Bexarotene Targretin RXR Pilot study

Irofulven + capecitabine MGI-114 + Xeloda p53, MDR1 Phase III

Bevacizumab Avastin VEGF Phase III

Cetuximab Erbitux EGFR Phase III

Nimotuzumab BIOMAb EGFR EGFR Phase III

Panitumumab Vetibix EGFR Phase II

Trastuzumab Herceptin ErbB2 Phase II

Zalutumumab HuMax-EGFr EGFR Phase III

Temsirolimus Torisel mTOR (PI3k) Phase II

Bortezomib Velcade 26s Proteasome inhibitor Phase II

Valproic Acid epigenetic alterations Phase II

Oxaliplatin Eloxatin Induction of Bax/Bak Phase II

Docetaxel Taxotere Microtubules Phase III

(NCI www.cancer.gov/clinicaltrials website).

molecular biology and drug discovery technologies have led to
the development of pharmacologic agents and therapeutic anti-
bodies that selectively target crucial signaling molecules with
preferential expression on malignant cells, or their surrounding
tissue microenvironment. Clinical experience with several tar-
geted drugs, including small molecules and therapeutic antibodies,
revealed agents that can be better tolerated and it offers advantage
in the identification of subsets of patients who can be benefit dur-
ing the treatment. Furthermore, the shift toward targeted agents
has potential to establish a novel framework, which can be used
to develop alternative strategies to identify druggable tumor tar-
get. These targets can be adapted to individual cases with greater
potential to counter critical drug resistance mechanisms (Gar-
raway and Jänne, 2012), e.g., specific mutations in EGFR in NSCLC
or B-Raf in melanoma can predict either sensitivity or resistance.
Equally important and as described above, unexpected obser-
vations from preclinical studies clearly support the necessity to
evaluate carefully the endpoints used to analyze the therapeutic
utility of targeted agents. Targeted agents such as antiangiogenic
drugs may lead to double edged effects by either improving or
worsening prognosis (Cooke et al., 2012; Rapisarda and Melillo,
2012).

It is clear that a better understanding of the molecular and
biological profile of OCC should facilitate the development of
more efficient targeted therapies. Current clinical trials with tar-
geted agents in OCC are likely to bring promising directions
decreasing the risk of tumor recurrence and improving survival
of patients with advanced OCC. Equally important, OCC repre-
sent an interesting clinical model to address translational aspects of
drug relapses and new agents. Unlike cell lines and transplantation
models, which revealed limited predictive clinical value possibly
due to genetic and physiological differences between animal and
human (Gillet et al., 2011), OCC is generally an accessible disease
since multiple biopsies are feasible compared to other tumors loca-
tion. This would allow for monitoring predictive molecular targets
of utmost importance to clinical drug response versus relapses.
These are critical issues for the development of efficient person-
alized therapy and in identification of novel therapeutic targets as
well as monitoring the course and status of the disease.
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