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Abstract: An outstanding question in developmental neurobiology is how RNA processing events
contribute to the regulation of neurogenesis. RNA processing events are increasingly recognized
as playing fundamental roles in regulating multiple developmental events during neurogenesis,
from the asymmetric divisions of neural stem cells, to the generation of complex and diverse neurite
morphologies. Indeed, both asymmetric cell division and neurite morphogenesis are often achieved
by mechanisms that generate asymmetric protein distributions, including post-transcriptional gene
regulatory mechanisms such as the transport of translationally silent messenger RNAs (mRNAs) and
local translation of mRNAs within neurites. Additionally, defects in RNA splicing have emerged as a
common theme in many neurodegenerative disorders, highlighting the importance of RNA processing
in maintaining neuronal circuitry. RNA-binding proteins (RBPs) play an integral role in splicing
and post-transcriptional gene regulation, and mutations in RBPs have been linked with multiple
neurological disorders including autism, dementia, amyotrophic lateral sclerosis (ALS), spinal muscular
atrophy (SMA), Fragile X syndrome (FXS), and X-linked intellectual disability disorder. Despite their
widespread nature and roles in neurological disease, the molecular mechanisms and networks of
regulated target RNAs have been defined for only a small number of specific RBPs. This review aims
to highlight recent studies in Drosophila that have advanced our knowledge of how RBP dysfunction
contributes to neurological disease.
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1. RBP Dysfunction Underlies Myriad Neurological Disorders

Neurological diseases, including neurodevelopmental and neurodegenerative disorders,
represent one of the leading public health challenges of our time. In addition to the loss in quality of life
associated with chronic neurological disorders, they also represent a significant economic burden due
to the cost of medical treatment and the financial pressures incurred by patients and their caregivers.
According to the National Institute of Neurological Disorders and Stroke, hundreds of different
neurological disorders affect more than 50 million individuals within the United States. Yet for many
of these diseases, a paucity of information exists about which basic molecular genetic mechanisms are
affected in the disease. This significant gap in knowledge precludes effective treatments for patients.
Defects in RNA-binding protein (RBP) functions, especially RBPs that are involved in alternative
splicing, have, however, emerged as a common theme in a number of neurodegenerative disorders,
including spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), Frontotemporal lobar
dementia (FTLD), and myotonic dystrophy (DM) [1–7]. This review, though not comprehensive,
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will highlight some of the recent knowledge gained from Drosophila regarding RBP function within
the nervous system, and will discuss some of the unique tools available in Drosophila to study
RBP dysfunction.

2. Drosophila Models of Neurological Disease

2.1. Drosophila Models of Amyotrophic Lateral Sclerosis (ALS)

Amyotrophic lateral sclerosis (ALS) is a common adult onset neurodegenerative disorder that
results in the selective loss of motor neurons and consequently motor function. While the onset
of disease is typically during midlife, most patients die within 3–5 years due to respiratory failure.
The vast majority (~90%) of ALS cases are sporadic, while only a minority of cases are familial.
Nonetheless, since both sporadic and familial ALS share many pathological features, much insight into
disease progression and treatment can be gained from studying genetic models of ALS (reviewed in [8]).
While mutations in genes encoding various types of proteins have been identified as causal for ALS,
a number of the affected genes encode RBPs including TDP-43, FUS/TLS, and Heterogeneous nuclear
ribonucleoprotein A1 and A2B1 (hnRNPA1 and hnRNPA2B1) (reviewed in [9]). Drosophila models have
been established for many ALS-causing alleles and have even been recently generated to investigate
risk factors associated with the development of sporadic ALS.

2.2. Modeling TAR DNA Binding Protein 43 (TDP-43) Mutations in Drosophila

With the advent of genome-wide association studies (GWAS), a large number of disease-associated
alleles have been uncovered for various neurological disorders. Nonetheless, a major challenge for
interpreting such data lies in determining whether such alleles are actually causative of the associated
disease state. Moreover, understanding the molecular mechanism by which such mutations contribute
to disease is paramount to developing effective therapeutics that are specifically tailored to a given
patient’s genotype. Drosophila has proven to be invaluable in deciphering the contribution of various
disease-associated alleles to disease phenotypes. This is especially true for diseases like ALS, which can
be caused by mutations in a number of different loci, and for which many different disease-causing
alleles have been identified for each locus.

For example, the human TAR DNA binding protein 43 (TDP-43) encoded by the TARDBP gene is
an evolutionarily conserved gene that has been implicated in multiple neurodegenerative disorders
including ALS, frontotemporal dementia, and Alzheimer disease [10]. A common theme in these
diseases is that TDP-43 forms inclusions within the cytoplasm, with concomitant loss of TDP-43 from
the nucleus (Figure 1). These observations have led to the formation of multiple hypotheses regarding
the molecular nature of mutant TDP-43 forms, including gain of function toxicity of cytoplasmic
inclusions, or, by contrast, loss of nuclear TDP-43 function. Drosophila has been used to investigate
the molecular dysfunction of multiple ALS-associated TARDBP mutations, including the typical
ALS-associated alleles p.G287S and p.A315T. Taking advantage of existing null alleles in the TARDBP
Drosophila ortholog TBPH, researchers investigated the ability of these disease associated alleles to
rescue various phenotypes associated with loss of TBPH function, including reduced lifespan and death
of adult bursicon neurons. In both assays, each of the ALS-associated alleles failed to rescue the mutant
phenotypes, providing evidence that the disease associated lesions act as partial loss-of-function alleles.
Moreover, each of the two alleles was associated with a redistribution of TDP-43 from the nucleus to
the cytoplasm, suggesting that the loss of function may be due, at least in part, to the depletion of
TDP-43 from the nucleus [11].
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promote the formation of stress granules in the cytoplasm, sequestering RBPs and RNAs, and preventing 

the normal activities of FUS and TDP-43 in the nucleus. (B) Fragile X Syndrome (FXS) and FXTAS are 

caused by genetic lesions in the FMR1 locus. FXTAS is caused by the expansion of CGG repeats in the 5′ 

end of the FMR1 such that individuals have between 55–200 repeats. This results in the upregulation of 

FMR1. Patients with FXS, on the other hand, have more than 200 CGG repeats in the 5′ region of FMR1, 

which results in silencing of the FMR1 locus through hypermethylation. Other cases of FXS are caused by 

point mutations or deletions in the FMR1 locus that render FMRP nonfunctional. (C) Spinal muscular 

atrophy is caused by mutations in the SMN1 locus, which decreases the amount of functional SMN 

protein. (D) However, new antisense oligonucleotide (ASO) technology has been developed to target 

SMN2, a paralog of SMN1. SMN2 cannot normally compensate for loss of SMN1, because splicing of 

SMN2 results in exclusion of exon 7, rendering the SMN protein unstable. ASOs have been developed to 

promote exon 7 inclusion during splicing of SMN2, thus increasing the amount of functional SMN 
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While this study provides evidence for these particular patient mimetic alleles to have decreased 
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Figure 1. RBP dysfunction in neurological disease. (A) A subset of familial Amyotrophic lateral
sclerosis (ALS) cases are caused by mutations in RBPs such as FUS and TDP-43. Aberrant forms of
these proteins promote the formation of stress granules in the cytoplasm, sequestering RBPs and RNAs,
and preventing the normal activities of FUS and TDP-43 in the nucleus; (B) Fragile X Syndrome (FXS)
and FXTAS are caused by genetic lesions in the FMR1 locus. FXTAS is caused by the expansion of CGG
repeats in the 5′ end of the FMR1 such that individuals have between 55 and 200 repeats. This results
in the upregulation of FMR1. Patients with FXS, on the other hand, have more than 200 CGG repeats
in the 5′ region of FMR1, which results in silencing of the FMR1 locus through hypermethylation.
Other cases of FXS are caused by point mutations or deletions in the FMR1 locus that render FMRP
nonfunctional; (C) Spinal muscular atrophy is caused by mutations in the SMN1 locus, which decreases
the amount of functional SMN protein; (D) However, new antisense oligonucleotide (ASO) technology
has been developed to target SMN2, a paralog of SMN1. SMN2 cannot normally compensate for loss of
SMN1, because splicing of SMN2 results in exclusion of exon 7, rendering the SMN protein unstable.
ASOs have been developed to promote exon 7 inclusion during splicing of SMN2, thus increasing the
amount of functional SMN protein.

While this study provides evidence for these particular patient mimetic alleles to have decreased
function, other studies have provided evidence for gain of TDP-43 function as the underlying cause of
neurodegenerative phenotypes [12]. Thus, the level and subcellular distribution of TDP-43 expression
likely requires very strict regulation to prevent neuronal toxicity. Not surprisingly, TDP-43 expression
is regulated through an autoregulatory feedback loop, where TDP-43 binds to a region of its
own mRNA termed TDBPR and thereby regulates alternative isoform usage of TDP-43 mRNA,
as well as, its stability and subcellular localization [13,14]. A Drosophila model that investigates
the regulation of TDP-43 expression through TDBPR was recently developed and it was used to
identify six RBPs, namely Rsf1, B52, x16, SC35, Rbp1, and SF2 as regulators of TDP-43 expression [15].
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Further investigation into how these factors regulate TDP-43 isoform usage, and subcellular
distribution may help provide new targets for therapeutics in multiple neurodegenerative diseases.

In some studies, work in Drosophila has generated new findings that have previously not been
observed in ALS patients, but upon closer examination, show similar pathology in human patients.
For example, work in Drosophila identified futsch/MAP1B as an in vivo TDP-43 RNA target in neurons [16].
Further work showed that TDP-43 regulates both the transport and translation of futsch mRNA,
where TDP-43 specifically represses translation of futsch transcripts and TDP-43-induced toxicity results in
the accumulation of Futsch within the soma of motoneurons. Interestingly, overexpression of Futsch was
able to ameliorate TDP-43 toxicity phenotypes including reduced lifespan and neuromuscular junction
(NMJ) morphology defects. Furthermore, the authors found that Futsch overexpression reduces
the ability of TDP-43 to form aggregates. Finally, using postmortem tissue from the hippocampus
and spinal cord, the authors confirmed that MAP1B also accumulates in motoneuron cell bodies in
ALS patients but not in patients without neurological disease [16]. While more work is needed to
understand whether accumulation of MAP1B in cell bodies causes neuronal toxicity, determining how
TDP-43 dysfunction affects the expression of its target mRNAs is important for understanding why
neurodegeneration occurs in response to aberrant TDP-43 function.

TDP-43 has also been shown to sequester and translationally repress the mRNA encoding Hsc70-4,
a molecular chaperone involved in protein folding and stress response. This is consistent with many
reports that TDP-43 is associated with stress granules and other types of ribonucleoprotein (RNP)
complexes. Stress granules are a type of RNP that form in response to cellular stress, and serve
to sequester and translationally silence RNAs. Importantly, co-overexpression of Hsc70-4 and
TDP-43 in Drosophila ameliorates defects in locomotion and lifespan that are associated with TDP-43
overexpression. Moreover, Hsc70-4 overexpression reduces defects in synaptic vesicle endocytosis that
are induced by TDP-43 overexpression [17], further highlighting the importance of understanding the
consequences of TDP-43 dysfunction on its target RNAs.

In addition to its role in post-transcriptional gene regulation, TDP-43 has recently been implicated
in the regulation of chromatin remodeling in Drosophila. One of the greatest strengths of the
Drosophila system is the ability to perform high throughput genetic screens. The fly eye, in particular,
has been utilized extensively to investigate genetic interactions and to perform modifier screens
(Figure 2). The eye is used, in part, due to the ease of identifying aberrant eye morphology,
and also due to the ability to probe otherwise lethal genetic interactions solely within the eye,
without disrupting the development of other structures. Using a modifier screen in the fly eye,
31 genes with known functions in chromatin remodeling were uncovered as modifiers of TDP-43
induced toxicity. Further investigation showed that TDP-43 prevents recruitment of Chd1, a chromatin
remodeling factor, to stress response genes such as Hsp70. This leaves cells that are unable to effectively
respond to cellular stress, which might contribute to the development of neurological disease [18].

A link between TDP-43 and chromatin remodeling has also recently been uncovered in omega
speckles of Drosophila motoneurons. Omega speckles are a distinct type of RNP complex that are
found within the nucleus, which are characterized by containing the long architectural noncoding
RNA heat shock omega (hsrω arcRNA). TDP-43/TBPH binds hsrω arcRNA in Drosophila neurons.
Interestingly, the chromatin remodeler ISWI is important for maintenance of these omega speckles and
modulates the interaction between TBPH and hsrω arcRNA. Moreover, loss of ISWI function results in
the redistribution of TDP-43 from the nucleus to the cytoplasm. Thus, chromatin remodeling may play
a role in regulating the formation of specific TDP-43-containing RNP complexes and may influence their
subcellular distribution [19], which is critical to normal TDP-43 function. Indeed, aberrant subcellular
localization of various RBPs has emerged as a common theme in many neurodegenerative disorders.
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Figure 2. Phenotypic analyses to Assess RBP function within the nervous system. (A) Dendrite
morphology can be easily assessed using live imaging of the highly complex dendritic trees of Class
IV da neurons in larvae. In this image ppkGal4 drives the expression of UAStdtomato to label the
da neuron; (B) Axon morphology of the larval NMJ can be visualized through the dissection of
larvae and subsequent immunofluorescent detection of horse radish peroxidase (HRP) (B) and the
active zone marker Bruchpilot (Brp) (C) (merge shown in D); (E) Behavior can be investigated using
gravitaxis assays, which measure the amount of time it takes for adult flies to walk up to a certain
height in a cylinder (the start and stop heights are marked by a red line), after being tapped to the
bottom; (F) Grooming assays are also used to assess stereotypic repetitive behavior. Drosophila grooming
behavior involves cleaning the body and wings with their legs, as well as cleaning legs with mouthparts;
(G) The morphology of the Drosophila eye provides a quick readout for genetic interactions during
modifier screens. Researchers look for enhancement or suppression of a rough eye phenotype that
arises through disordered development of the ommatidia, which make up the compound fly eye (G);
(H) In addition to adult locomotor behavior, larval locomotion can be easily assessed by tracing the
path, distance, and speed that a larva travels on a petri dish over a certain period of time.

2.3. Modeling Fused in Sarcoma (FUS) Mutations in Drosophila

Since mutations in the TARDBP locus account for a very small proportion of ALS cases,
many groups have aimed to identify additional mutant loci that contribute to the development
of ALS. Fused in Sarcoma (FUS) is an RNA-binding protein that functions in many aspects of RNA
metabolism including splicing, RNA transport and translation. Mutations in the human FUS locus
cause both frontotemporal dementia (FTD), and are associated with a small percentage of ALS cases.
In both FTD and ALS, like TDP-43, FUS is often redistributed from the nucleus and forms aggregates
within the cytoplasm that are thought to confer toxicity to neurons (Figure 1) [10]. A number of
FUS animal models exist that have contributed immensely to our understanding of FUS-mediated
neurodegeneration [8]. For example, knockdown of the FUS Drosophila ortholog cabeza (caz) results in
locomotion defects in adults, as well as NMJ branch length defects in larvae [20]. Nonetheless, many of
these models, although they recapitulate various aspects of ALS pathophysiology, do not result in
the redistribution of FUS into cytoplasmic inclusions [21]. Recently, Drosophila sensory dendrite
arborization (da) neurons were identified as a useful model for studying cytoplasmic FUS aggregates
and their consequences, since overexpression of mutant forms of FUS or Caz results in the formation
of cytoplasmic FUS/Caz aggregates, as well as neuronal phenotypes within these sensory neurons.
Importantly, Machamer and colleagues found that ALS-associated mutant forms of FUS or Caz are
actively transported within dendrites and axons, while the wild type FUS and Caz are undetectable,
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or barely detectable, in neurites. Overexpression of Fus or Caz forms results in progressive loss of
dendrite and axon projections. Moreover, the ALS-causing forms of FUS/Caz disrupted transport of
synaptic machinery in axons and resulted in neuronal hyperexcitability, which has previously been
reported among ALS patients [21,22]. Thus, da neurons may serve as a particularly useful model for
studying FUS cytoplasmic aggregation and its consequences on neuronal pathophysiology.

2.4. Modeling C9orf72 Aberrations in Drosophila

Supernumerary GGGGCC repeats in the first intron of the C9orf72 locus represent the most
common genetic cause of ALS, representing 40% of ALS familial cases [10]. Recently, the human RBP
Znf106 was shown to bind to GGGGCC repeat-containing RNA [23]. This is of particular interest,
since Znf106 is located within a region of human chromosome 15 that has a strong linkage with a rare
form of familial ALS [24]. Moreover, loss of function of the murine Znf106 ortholog, Zfp106, results in
neurodegeneration in adult mice [25]. Using a combination of experiments in mouse and Drosophila,
Zfp106 was shown to play a conserved role in suppressing GGGGCC repeat-induced neurotoxicity.
In Drosophila, overexpression of GGGGCC repeat-containing RNA within motor neurons using the
Gal4/ upstream activation sequence (UAS) system results in geotaxis behavior deficits and a reduced
number of active zones within the larval NMJ. However, co-expression of Zfp106 with GGGGCC
repeat-containing RNAs ameliorates these phenotypes, suggesting that Zfp106 protects neurons from
hexanucleotide repeat toxicity and may represent a potential therapeutic target for ALS [23].

A modifier screen in the fly eye was recently used to identify modifiers of toxicity resulting from
dipeptide repeat proteins (DPRs) that are generated from transcripts arising from hexanucleotide
repeat expansions within the C9orf72 locus. Overexpression of DPRs results in neurodegeneration
of the Drosophila eye confirming that DPRs are indeed toxic in the Drosophila adult [26].
Interestingly, overexpression of repeat containing RNAs that do not produce DPRs does not result in
neurodegeneration or toxicity, although they are capable of forming cytoplasmic and nuclear foci that
sequester RBPs [27]. This suggests that the repeat-containing RNA produced from the C9orf72 locus
is not toxic to neurons, but rather that DPRs mediate neuronal toxicity [27,28]. This is of particular
note, since some studies in mouse models of C9orf72 hexanucleotide expansions recapitulate cellular
pathological ALS phenotypes, but do not result in neurodegeneration [29,30]. Notably, in these studies,
DPR expression was lower than in other C9orf72 hexanucleotide expansion models, suggesting that
high levels of DPRs are required to produce neurodegenerative phenotypes. Since modulating
gene expression levels is easily accomplished in Drosophila, the fly may be a particularly useful
model for determining whether DPR concentration must pass a particular threshold to result
in neurodegeneration.

Nonetheless, many groups have established that DPR toxicity phenotypes are common in many
model organisms. Boeynaems and colleagues thus searched for genes that could enhance or suppress
the DPR toxicity phenotypes when knocked down in the fly eye. The authors focused their efforts on
55 DPR modifier candidates that had previously been identified in a yeast genetic screen, and found
that 19 of these genes were modifiers of DPR toxicity. A large number of these genes encode factors
involved in regulation of transport across the nuclear membrane, as well as nuclear pore components.
Additionally, knock down of a number of arginine methyltransferases enhanced DPR toxicity within
the eye. Interestingly, the authors also found methylated protein aggregates within the cells of the
dentate gyrus from a C9orf72 frontotemporal dementia patient, suggesting that aberrant methylation
may underlie disease pathology in ALS patients [26]. Future studies are needed to determine whether
DPRs interfere with transport across the nuclear membrane, how DPRs globally modulate protein
methylation, and whether DPRs directly affect arginine methyltransferase function.

While some groups have determined that GGGGCC-repeat-containing RNA is not responsible
for neuronal toxicity, others have found that overexpressing such RNAs results in the formation
of cytoplasmic granules that harbor the repeat containing RNA. Moreover, these granules are
dynamic and they localize to neurites. Overexpression of these GGGGCC-repeat-containing RNAs in
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Drosophila sensory neurons results in degeneration of dendritic branches in late-stage wandering larvae.
Interestingly, proteins that regulate mRNA localization, such as FMRP and Orb2, are modulators
of this repeat toxicity. However, it is unclear whether the RNA itself or DPRs produced from these
repeat-bearing RNAs are the cause of the neurodegeneration in sensory neurons [31].

Other studies have used strategies in the fly eye and wing for identifying modifiers of multiple
ALS-linked mutations. Markmiller and colleagues sought to shed light on how stress granules contribute
to neurodegeneration. Upon identifying conserved stress granule components, the research team
utilized the fly eye and wing to determine whether the identified RBPs can modify Fus, TDP-43 and
C9orf72-mediated toxicity. Using this strategy, the authors identified CBX3, CSDE1, RBMS1/2,
UBAP2(L), and YEATS2 as novel stress granule components that can modify neurodegenerative
phenotypes [32]. Thus, Drosophila is an effective model for studying multiple different types of genetic
lesions that are known to cause ALS.

2.5. Modeling Sporadic ALS in Drosophila

While a small proportion of ALS cases are inherited, the vast majority (~90–92%) of ALS cases
are sporadic [10]. Interestingly, inherited and sporadic ALS cases have strikingly similar cellular and
physiological phenotypes, suggesting that they may share a molecular etiology. One well-established
risk factor for developing ALS is repetitive head trauma. Recent studies have utilized Drosophila to
begin to elucidate how repetitive head trauma contributes to the development of neurodegenerative
disease. Anderson and colleagues established an experimental paradigm for inducing head trauma
at both adult and larval stages, and examined the ability of such traumatic hits to induce stress
granule formation [33]. Using green fluorescent protein (GFP)-tagged Rasputin (Rin) as a marker
for stress granules, the authors found that repetitive head trauma induced stress granule formation.
Moreover, the number and size of stress granules that formed increased proportionally with the
number of traumatic hits. Importantly, TBPH/TDP-43 was associated with the stress granules that
formed after traumatic injury. Additionally, subjecting FUS or C9orf72 fly models of ALS to traumatic
hits resulted in high mortality rates, thus showing that traumatic brain injury exacerbates phenotypes
in genetic ALS models. Moreover, the authors found that pharmacological induction of autophagy was
able to promote clearance of stress granules and increase survival among flies subjected to traumatic
injury, providing a possible preventative measure or therapeutic option for patients with traumatic
brain injury [33]. Taken together, these studies show the versatile tools that are available to probe the
molecular etiology of ALS. Moreover, the studies show that Drosophila is not only an effective model
for understanding how diverse genetic lesions lead to the development of neurodegeneration, but it
can also be utilized to understand how head trauma may underlie sporadic ALS cases.

3. Modeling Fragile X Syndrome in Drosophila

3.1. Genetic Models of FXS

Fragile X syndrome (FXS) is the most common form of heritable intellectual impairment and the
leading genetic cause of autism. FXS patients have myriad behavioral symptoms including cognitive
impairment, altered circadian rhythm and sleep, abnormal social behavior, and repetitive behaviors.
FXS patients also exhibit aberrant neurite morphology, and suffer from symptoms affecting nonneural
tissues. FXS is most typically caused by a CGG repeat expansion within the 5′untranslated region
(UTR) of the Fragile X mental retartdation 1 (FMR1) locus, which results in epigenetic silencing of the
FMR1 gene (reviewed in [34]). FMRP functions predominantly as a translational regulator that binds
over 800 target RNAs that are enriched in gene ontology terms related to neural tissue and synaptic
transmission. Indeed, some of the RNA targets include autism candidate genes, consistent with FXS
patients exhibiting autistic behaviors [35]. For example, FMRP translationally represses Centg1 mRNA,
which encodes PIKE, an enhancer of phosphoinositide-3 kinase signaling. Aberrant PI3K signaling
is associated with various neuronal disorders including schizophrenia and autism. To determine
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whether elevated PIKE expression in Fmr1 mutant animals underlies defects in neuronal development
and behavior, Gross and colleagues examined whether reducing the dosage of CenG1A by half
would rescue various neuronal phenotypes in Fmr1 mutant flies. Indeed, reduction of CenG1A
dosage rescued the fusion of axonal projections of the mushroom body associated with loss of Fmr1
function, as well as short-term memory defects, as assessed through courtship suppression assays.
Thus, enhanced translation of CenG1A encoding mRNA underlies at least some of the defects associated
with loss of FMRP function [36].

Although most genetic tests for FXS only screen for repeat expansions or other larger aberrations
within the locus by using Southern blot analysis, other loss-of-function FMR1 mutations can also lead
to the development of FXS (Figure 1). For example, a novel FXS-causing FMR1 mutant allele was
recently uncovered in a patient exhibiting FXS-like symptoms. The lesion in the FMR1 locus stems
from a frameshift mutation that causes a truncated protein with a novel nuclear localization sequence
to be formed at its C terminus. Using the Gal4/UAS binary system, the authors overexpressed
Fmr1 or a patient mimetic FMR1 construct in the Drosophila nervous system to begin to elucidate
the molecular nature of the mutant allele. This strategy allowed the authors to determine that the
allele has neomorphic properties that give rise to novel phenotypes, including axon guidance defects.
Moreover, the patient mimetic protein is targeted to the nucleolus. Since FMRP is predominantly found
within the cytoplasm, this change in its subcellular distribution may underlie some of the defects
associated with this allele [37]. Similarly, a different patient-derived allele where a missense mutation
leads to a partial loss of FMRP function was investigated using the fruit fly. Interestingly, this particular
allele specifically disrupts FMRP function presynaptically, but does not compromise FMRP’s role
in translational regulation. Thus, this allele provides an opportunity to understand FMRP’s role,
specifically within presynaptic cells, as well as its molecular functions outside of translation [38].

3.2. Assessing Drug Efficacy in Treating Specific FXS Phenotypes

In addition to Drosophila serving as a tractable model for neuronal morphology and biochemical
dissection of protein function, researchers have developed a large number of behavioral assays to probe
the genetic regulation of behavior, enhancing the utility of Drosophila in investigating neurological
disease (Figure 2). For example, a significant proportion of FXS patients exhibit autistic-like behaviors,
which include stereotypic and repetitive behaviors. Drosophila may provide an excellent model for
studying such FXS-associated repetitive behaviors and their potential therapeutics, since Fmr1 mutant
adult flies groom excessively compared to control animals (Figure 2) [39]. Moreover, the phenotype
becomes progressively worse with age. Previous studies have shown that enhanced signaling through
the metabotropic glutamate receptor (mGLuR) underlies some, but not all FXS associated phenotypes.
Interestingly, mGLUR antagonists are unable to rescue the excessive grooming defects associated with
loss of fmr1 function in flies. However, antagonists of monoamine signaling are able to rescue excessive
grooming in Fmr1 mutants adults. Moreover, the expression of the Drosophila vesicular monoamine
transporter, which loads monoamines into synaptic vesicles, is upregulated at both the mRNA and
protein levels in Fmr1 mutant animals. Taken together, these results suggest that monoamine signaling
pathway modulation may provide a therapeutic avenue for treating repetitive behaviors [39]. This is
of particular interest, since clinical trials using mGLuR5-antagonists were shown to be ineffective in
treating FXS patients [40].

Additional studies show promise in targeting multiple different signaling pathways to treat FXS.
For example, inhibition of signaling downstream of the BMP pathway, using various LIMK1 inhibitors,
is able to rescue hyperactivity, aberrant locomotion, and abnormal NMJ morphology seen in Drosophila
FXS models [41]. Similarly, the drug Acamprosate was recently investigated in a Drosophila FXS model
for its efficacy as a therapeutic for molecular and behavioral defects. Acomprosate is thought to
function as an inhibitor of glutamatergic signaling. Indeed, treatment of Fmr1 mutant larvae with
Acomprosate partially ameliorates defects in locomotor behavior, and rescues axonal overbranching
defects within the NMJ. Interestingly, low and high doses of Acomprosate have varying effects on
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different phenotypes, suggesting that Acomprosate may have distinct, dose-dependent mechanisms of
action. Thus, future studies in Drosophila may provide a greater understanding of the Acomprosate
mechanism of action and its efficacy in treating FXS [42].

Recent studies have also postulated that aberrant GABAergic signaling might underlie some
of the defects associated with loss of FMRP. Drosophila Fmr1 mutant adults were shown to have a
reduction in both attraction and aversion to specific odors. This results from dampening of odor coding
and therefore a diminished capacity for odor discrimination. Although glomerular morphology and
size is unaffected in Fmr1 mutant animals, lateral inhibition between glomeruli is compromised in
mutant animals. Downregulation of GABA signaling produces similar olfactory behavior defects, but a
definitive link between GABA signaling and FMRP has not been established in olfactory behavior [43].

3.3. FMRP Function in Neuronal Remodeling

One of the greatest advantages of Drosophila is the diverse suite of tools available for manipulating
gene expression, in both a spatial and temporal manner. This, combined with the ability to
optogenetically manipulate neuronal activity, has allowed researchers to investigate the requirements
of specific genes in an incredibly precise and sophisticated manner. For example, FMRP has been
shown to regulate activity-dependent refinement of dendrites during critical period development.
Using multiple Flylight lines, which allow researchers to visualize and genetically manipulate very
specific subsets of neurons and even single neurons within the brain, Fmr1 was shown to be required
specifically during a critical period (on day one post-occlusion) to regulate refinement of dendrites in
mushroom body neurons. Loss of Fmr1 function leads to overelaborated dendritic arbors in mushroom
body neurons. Using a temperature sensitive Gal80, the authors were able to specifically manipulate
Fmr1 only during the critical period to show that FMRP is required in a short window of time to
facilitate neurite remodeling. Moreover, while optogenetic stimulation of these neurons during the
critical period phenocopies the overelaboration seen in Fmr1 mutant animals, optogenetic stimulation
does not cause additional elaboration in Fmr1 mutants, showing that this refinement process is activity
dependent and it relies on FMRP to regulate neurite remodeling [44]. FMRP regulation of critical
period remodeling occurs through the regulation of calcium signaling [45]. Interestingly, Fmr1 mutant
animals also show defects in immune cell-mediated remodeling of neurons in the mushroom body,
as well as axonal clearance after injury [46]. This suggests that defects within glia, the immune cells of
the nervous system, may also underlie defects in neurite refinement.

3.4. Modeling Fragile X-Associated Tremor Ataxia Syndrome FXTAS

In contrast to Fragile X Syndrome, Fragile X-associated tremor ataxia syndrome (FXTAS) is
a heritable neurodegenerative disorder where patients over the age of 50 develop tremors, ataxia,
and dementia. FXTAS results from intermediate CGG repeat expansions (50–200 repeats) in the FMR1
locus, which causes the upregulation of FMR1, as well as the accumulation of CGG-repeat containing
mRNAs. Multiple groups have postulated that the disorder arises primarily through an RNA toxicity
mechanism, while others have hypothesized that, instead, repeat-associated non-AUG (RAN)-initiated
translation produces toxic FMRP with polyglycine residues (FMRPpolyG) that mediate toxicity. To test
which of these two hypotheses are correct, Yoon Oh and colleagues made use of Drosophila lines that
express the CGG repeat mRNA but failed to make FMRPpolyG, due to a stop codon that precedes
the CGG repeats. In addition, the group utilized a line where FMRPpolyG production is enhanced
by the addition of an AUG start codon just upstream of the CGG repeat sequence. Expressing the
CGG repeat RNA construct that does not produce FMRPpolyG in the eye results in a very mild rough
eye phenotype. By contrast, expressing the FMRPpolyG-producing construct produces a more severe
eye phenotype. Moreover, concomitant disruption of the ubiquitin proteasome system dramatically
enhances the FMRPpolyG eye phenotype, and results in necrosis within the eye. These results
suggest that RAN translation of FMRPpolyG mediates toxicity in neurons, and plays a stronger role in
disease pathology than the CGG repeat-containing mRNAs alone [47]. This is consistent with work in
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C9orf72 models of ALS, which show that DPRs generated from hexanucleotide repeat-containing RNA
cause neuronal toxicity. Thus, the sophisticated tools available in Drosophila to precisely manipulate
gene expression provide an excellent platform for studying various neurological disorders related to
FMRP dysfunction.

4. Spinal Muscular Atrophy

Spinal muscular atrophy (SMA) is the leading heritable cause of infant mortality and is one of
the most common autosomal recessive genetic disorders. It is defined by the degeneration of motor
neurons in the spinal cord, and progressive loss of motor function. Combined with the loss of motor
neurons, SMA patients also suffer from the progressive loss of muscle mass [48]. SMA patients are
classified into four categories, which reflect the age of disease onset and severity of motor dysfunction.
For example, SMA Type I is the most severe form, with a typical onset during infancy and results
in death within the first two years of life. By contrast, SMA IV first develops during the second
or third decade of life, and symptoms mainly include mild muscle weakness. SMA largely results
from homozygous lesions in the Survival Motor Neuron 1 (SMN1) locus. SMN1 encodes the RBP
SMN, which functions in the biogenesis of small nuclear ribonucleoproteins (snRNPs), and has been
implicated in pre-mRNA splicing and axon guidance [49,50]. SMN1 lesions typically result in a
reduced level of SMN protein (Figure 1). Interestingly, the severity of SMA is correlated with the level
of SMN expression, where modest reductions in SMN protein levels typically result in less severe
disease pathology (reviewed in [49]).

4.1. Drosophila Models of Spinal Muscular Atrophy

In Drosophila, animals homozygous for a null allele of Smn have decreased viability,
aberrant locomotion, decreased muscle size, aberrant motor neuron transmission, and reduced small
nuclear RNA (snRNA) levels [50,51]. Having a Drosophila model that recapitulates many of the
symptoms of SMA allows researchers to investigate the molecular nature of diverse patient derived
SMN1 alleles, many of which provide a wealth of information about SMN’s molecular functions.
For example, in an attempt to characterize the patient derived allele, SMNT274I, Praveen and colleagues
found that although this patient mimetic allele is capable of rescuing snRNA levels, it is unable
to rescue pupal lethality, suggesting that SMN’s role in snRNP biogenesis is dispensable for the
development of SMA. Instead, SMN functions outside of snRNP biogenesis may underlie neurological
disease phenotypes [50]. Still, others have shown that overexpression of WDR79, which regulates
snRNAs within Cajal bodies, can rescue neural phenotypes associated with loss of Smn function [52].
Nonetheless, it is not clear if snRNA related functions of WDR79 are relevant to this interaction.

Since over 25 different SMN1 point mutations have been identified among SMA patients,
additional studies have taken a rescue approach to study multiple patient mimetic alleles to determine
their severity and the molecular nature of each disease-associated allele. One study examined 12
different patient mimetic alleles that were found to have different effects on SMN function. For example,
some alleles affect the stability of SMN, while others affect SMN self-oligomerization or compromise
interactions with known binding partners, such as members of the Gemin family. Moreover, while some
SMN patient mimetic alleles are inherited in a recessive manner, others affect SMN binding with itself
or other RBPs during RNP assembly, and thus function in a dominant negative manner. This is of
particular importance, as these dominant negative alleles may be refractory to certain SMA therapeutics.
Investigation of these patient mimetic alleles has also provided insight into the onset of symptoms
and the life expectancy in patients bearing such alleles. Continued work to understand the molecular
nature of newly discovered patient mimetic alleles will have profound implications on generating
genotype-specific therapeutic approaches to treat SMA [53].

Since SMN is ubiquitously expressed, efforts have been made to determine whether SMN function
is required within the nervous system, muscle, or multiple cell types, to develop and maintain
NMJ morphology and function. Drosophila is particularly useful for investigating tissue specific
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gene functions, as there are a wealth of tools, including extensive collections of Gal4 driver stocks,
which allow researchers to manipulate gene expression in a cell type-specific manner. Using tissue
specific expression of SMN rescue constructs, Imlach and colleagues found that SMN function within
muscles is dispensable for regulating muscle size, larval locomotion, motor rhythm, and motoneuron
transmission. Moreover, while pan-neuronal expression of an SMN rescue construct is sufficient to
rescue these phenotypes, expressing SMN in motor neurons alone is unable to rescue these defects.
Instead, SMN function is required in proprioceptive and central cholinergic neurons for NMJ associated
phenotypes [51]. Similarly, RNA interference (RNAi)-mediated knockdown of Smn throughout the
nervous system, but not within muscle, results in adult locomotor phenotypes. In contrast to how
tissue-specific manipulations of Smn function affect larval locomotion, knockdown of Smn specifically
within motor neurons, does result in aberrant locomotion in adults. This suggests that Smn’s
requirements within specific cell types may change throughout development [54]. However, the tissue
specific requirements of Smn remain contentious, since other groups have shown that manipulating
Smn levels using stronger muscle drivers, namely how-Gal4, causes aberrant NMJ morphology and
lethality [55]. Moreover, Smn and Gemin3 genetically interact within muscle to affect viability and
adult locomotion [56]. Taken together, these studies highlight the need to use multiple different tools
to manipulate gene expression to reliably determine the tissue specificity of Smn function.

One advantage of using RNAi to knockdown Smn expression is that it results in only a
partial knockdown, allowing researchers to examine adult phenotypes, whereas Smn null alleles
result in lethality and preclude the ability to investigate adult NMJ and locomotor phenotypes.
Investigating Smn function in adults is of particular interest, since some evidence has suggested
that Smn and FUS may function together. Nonetheless, a genetic interaction between Smn and FUS
was not detected in one study using the fly eye. Thus, future studies are required to determine if FUS
may instead act downstream of Smn [57].

RNAi-mediated knockdown of Smn has also been useful in creating sensitized background for
identifying modifiers of Smn function. Using this approach, an estimated 340 Drosophila genes were
identified as candidate modifiers. Importantly, many of these modifiers are conserved in humans and
correspond to 322 human genes. Further examination of 20 of these conserved candidates revealed
that, in addition to modifying pupal lethality phenotypes, 11 genes are also modifiers of the Smn NMJ
phenotype, and seven affect Smn expression [58]. Thus, such modifier screens, coupled with secondary
screening of evolutionarily conserved candidates, provide a promising pool of potential human SMN
modifiers that may contribute to disease progression and may represent therapeutic targets.

4.2. Determining the Efficacy of SMA Therapeutics Using Model Organisms

In 2016, the first antisense oligonucleotide (ASO) treatment for SMA, nusinersen, became available
to patients [59]. This ASO treatment very cleverly takes advantage of the partially functional human
SMN1 paralog, SMN2. Smn2 is unable to compensate for Smn1 mutations due to a single nucleotide
change in the Smn2 locus that causes a different SMN splice form that lacks exon 7 to be favored.
This particular isoform that lacks exon 7 is degraded, while the full-length SMN isoform is expressed at
extremely low levels (Figure 1) [60]. Nusinersen specifically binds to the Smn2 transcript and promotes
the inclusion of exon 7, thus increasing SMN protein levels. The results of the nusinersen clinical trials
have been impressive, to say the least. Nonetheless, it is not clear if the ASO treatment will be effective
for patients harboring alleles that function in a dominant negative manner. Moreover, while nusinersen
has been incredibly successful in treating SMA patients, its cost is prohibitive for many patients who
would pay $750,000 for the first year of treatment and $375,000 each subsequent year [59,61,62].
Thus, while nusinersen represents an incredible step in the treatment of SMA and more widely in the
use of ASOs as therapeutics, additional studies aimed at identifying other effective treatments are
critical. Moreover, combining nusinersen with additional therapeutics may increase the efficacy of
treatment and quality of life in certain patients.
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Drosophila provides opportunities to test pharmacological treatment of SMA-related neurological
phenotypes. For example, SMA dysfunction results in aberrant ubiquitination of various proteins,
includingβ-catenin. This leads to the accumulation ofβ-catenin in mouse models. However, treatment with
quercetin, an inhibitor of β-catenin signaling, is sufficient to rescue NMJ morphology defects in mouse,
zebrafish, and flies [63]. The ability of quercitin to ameliorate NMJ defects in three different model
systems, including both invertebrate and vertebrate SMA models, provides great promise in its
therapeutic potential to treat SMA in humans. Thus, Drosophila SMA models have the potential
to be useful for relatively quick and simple pharmacological screens that are designed to rescue
Smn-/- lethality and NMJ phenotypes. Promising candidates can then be screened more rigorously in
vertebrate organisms to identify additional bona fide human SMA therapeutics.

5. Additional Roles for RBPs throughout Drosophila Neurogenesis

In addition to work on RBPs that have been specifically implicated in neurological disease,
many studies have uncovered important roles for RBPs and RNA processing events throughout
various stages of neurogenesis [64–70]. Research on RBP function during neurogenesis is integral to
understanding the global roles of RBPs within the nervous system. Moreover, such studies are able to
shed light on how RBP dysfunction underlies various neurological diseases, including neurodegeneration
and brain cancers. For example, it has been well established that asymmetric localization of mRNAs
and proteins is critical to maintaining a normal balance between self-renewal and differentiation in
Drosophila neural stem cells, termed neuroblasts [65,71]. During the process of neuroblast division,
the cell fate determinant Prospero must be preferentially segregated into the ganglion mother cell
(GMC), which will differentiate into neurons or glia. Prospero must, however, be excluded from the
neuroblast, such that it can continue to self-renew [72,73]. This asymmetric segregation of Prospero
is achieved, in part, by the RBP Staufen binding to prospero mRNA. Subsequently, this complex is
asymmetrically localized by the scaffolding protein Miranda, which tethers Staufen, prospero mRNA,
and Prospero protein to the basal cortex of the dividing neuroblast [74–76].

Other RBPs have also been implicated in regulating neuroblast differentiation into distinct
neural subtypes. The RBPs IGF-II mRNA-binding protein (Imp) and Syncrip (Syp) form opposing
temporal gradients, where Imp promotes the formation of early neural cell fates, and Syp
favors late neural cell fates within the Mushroom Body of the central nervous system [77,78].
Concomitantly, Imp and Syp regulate the ‘decommissioning’ of neural stem cells, which facilitates cell
cycle exit of individual neuroblasts, and consequently the termination of those neuronal lineages [79].
Additionally, the splicing factor Barricade (Barc) has also been implicated in regulating neuronal
proliferation and differentiation. Loss of Barc function results in supernumerary neural precursor cells,
at the expense of terminally differentiated neurons, which causes neuroanatomical defects in the adult
brain [80].

Much work has also been dedicated to determining how the dysfunction of the RBP Brain tumor
(Brat) results in overproliferation of neuroblasts and consequently overgrowth of the Drosophila
brain [81]. During neuroblast development, Brat functions to regulate neuroblast proliferation,
in part, by suppressing Notch signaling [82] and through the post-transcriptional repression of
deadpan and zelda mRNAs [83]. Moreover, the dysregulation of the RBPs Imp and Lin-28 contribute
to tumor formation in brat−/− neural tissue [84]. Loss of brat also results in dysregulation of the
long noncoding RNA cherub. cherub is typically asymmetrically segregated into intermediate neural
precursor cells. However, upon brat depletion, cherub accumulates in tumorigenic neuroblasts and
results in aberrant subcellular distribution of the RBPs Staufen and Syp, leading to defects in the
differentiation program [85]. It has subsequently been found that mutations in TRIM3, the human
ortholog of brat, are associated with 25% of glioblastoma cases, highlighting the utility of Drosophila in
studying the regulation of neural stem cell division and differentiation [86].

In addition to the extensive work done on RBP regulation of neural stem cell differentiation,
RBPs have also been implicated in regulating neurite morphogenesis. Understanding how RBPs
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regulate neurite morphogenesis, and particularly maintenance of neurite morphology during
development can help shed light onto why RBP dysfunction can lead to the degeneration of neural
processes in neurological diseases. For example, it is well established that the RBPs Nanos (Nos)
and Pumilio (Pum) function in the development and maintenance of dendritic branching in the
morphologically complex Class IV da neurons [87,88]. Nos and Pum regulate dendrite morphology and
dendritic dynamics by post-transcriptionally repressing the mRNA encoding the proapoptotic factor
Hid, which maintains a balance between neurite outgrowth and retraction [89]. Moreover, nanos mRNA
is localized to dendrites by the RBPs Rumpelstiltskin and Oskar, and this localization is required for
normal dendritic elaboration [90,91].

A screen for RBPs and translation factors that are specifically required for dendrite development
within Class IV da neurons uncovered 88 candidate genes that regulate dendrite morphology in Class
IV da neurons [92]. Subsequent studies have confirmed that a number of these candidate genes,
including brat, shep, caper, 4EHP, oskar and rumpelstiltskin, indeed function in da neuron morphogenesis,
and that 12 of these RBPs play a conserved role in dendrite development in C. elegans [88,93–95].
The fact that almost all of these candidates are conserved across metazoa suggests that RNA regulatory
mechanisms are critical to the development and function of the nervous system. This idea is also
supported by the fact that a large number of RNAs are localized to neurites in many different
species [96–104]. Importantly, the ability to visualize specific RNA transcripts in vivo, using the
MS2/MCP in vivo fluorescent labeling system, makes Drosophila an ideal model for investigating the
regulation and dynamics of mRNA localization within neurons [90,91,96]. Indeed the MS2/MCP
labeling was recently combined with EP transposon insertion to perform a genome-wide screen
to identify novel dendritically localized RNAs (Figure 3). This strategy identified 55 dendritically
localized transcripts. Moreover, knockdown of many of the genes encoding these dendritically
localized transcripts resulted in dendritic defects, underscoring the utility of this unbiased screening
approach to identify new players in dendrite morphogenesis [96].

RNA localization also commonly occurs within axons, and RBPs, which direct the localization
and translation of these localized RNAs, have been shown to regulate axon morphology and function.
For example, the RBPs Nos, Pum, Cup, Orb, and Brat have been implicated in regulating different
aspects of NMJ morphology and physiology in Drosophila larvae [88,105–108]. Interestingly, while Pum
and Nos function coordinately during dendrite development in sensory neurons, they instead have
opposing functions in NMJ morphogenesis.

The RBP Shep was recently shown to regulate axonal morphology during neuronal remodeling by
regulating BMP signaling, as well as, the expression of Brat [86,109,110]. Not surprisingly, Brat has also
been implicated in regulating axon maintenance within the central nervous system. In Mushroom Body
axons, Brat translationally represses src64B mRNA. Src64B has previously been shown to promote
axon retraction. Thus Brat stabilizes axonal morphology by preventing retraction pathways from
being activated. Interestingly, Brat also functions in concert with Pum and Nos to direct dendrite
development, yet its role in axonal maintenance is independent of Nos or Pum [88,111]. These findings
suggest that RBPs may work coordinately in a cell-type specific manner, or that their interactions may
even depend on their subcellular location within a single cell. Future work on the roles of additional
RBPs in regulating neurite outgrowth and retraction will undoubtedly shed light on the extent to which
RBPs are required to maintain neurite morphology, and how this might underlie neurodegeneration in
RBP-associated neurological disease.
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Figure 3. Tools available in Drosophila to facilitate the dissection of RBP function within the nervous
system. (A) The Gal4/UAS binary expression system can be combined with temperature-sensitive
Gal80 to control gene expression in a spatial and temporal manner. Under permissive temperatures
(25 degrees Celsius) Gal80 prevents Gal4 activation of UAS. However, at restrictive temperatures
(29 degrees Celsius), Gal80 is inactivated, allowing Gal4 to activate UAS constructs; (B) UAS-effector
lines can mark cells with Grenn Fluorescent Protein (GFP), can cause overexpression of genes,
RNA interference-mediated knockdown of gene expression, can assess the molecular nature of patient
specific alleles, or express rescue constructs; (C) mRNA dynamics can be visualized within neurons
of live animals using the MS2/MCP labeling system. This requires the insertion of MS2 stem loops
into a gene of interest. The MS2-tagged RNA and the MS2 Coat Protein (MCP) fused to GFP are then
expressed using the Gal4/UAS system. Since MCP:GFP specifically binds to MS2 stem loops, and the
tagged mRNA becomes illuminated; (D) Synaptic partners within a neural circuit can be visualized
using GRASP, which requires adjacent cells to make close contact to reconstitute GFP fluorescence from
two different fragments of GFP that are tethered to the synaptic membrane (Synaptobrevin:GFP1-10
or SyB:GFP1-10 and CD4GFP). Moreover, the presence of GFP fragments within the synaptic cleft
is dependent upon neuronal activity; (E) Functional neurons within a circuit can be assessed using
optogenetic tools to activate a neuron and assess a behavioral readout, such as the ability of a larva
to roll in response to the optogenetic activation of a Class IV da neuron. In this case, ppkGal4 can be
used to drive expression of UASChannel rhodopsin in da neurons. Rearing animals on trans-retinal and
exposing them to blue light would result in activation of these neurons and cause the larva to roll;
(F) “targets of RNA-binding proteins identified by editing” (TRIBE) allows researchers to identify target
RNAs of a specific RBP in a tissue specific manner by leaving A to I edits within the RNA, which can
later be identified through sequencing and bioinformatics. For such experiments, an RBP is fused to
the editing domain of the ADAR protein, allowing the RBP to bind to its endogenous RNA targets but
leave A to I edits near the binding site though the catalytic ADAR domain.

6. A Unique Toolkit for Investigating RBP Function within Neurons

The study of RBP function within the nervous system requires a sophisticated toolkit that allows
for precise spatio-temporal genetic manipulations, a vast array of tools for the visualization of neuronal
morphology, as well as a variety of behavioral assays to probe neurological function. Drosophila offers
an incredible toolkit for performing genetic manipulations within the nervous system and investigating
their consequences on neuronal function and physiology. Below, we will highlight just a few of the
basic tools, as well as some emerging technologies, that make Drosophila an outstanding model
for neurogenetics.
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6.1. Precise Spatiotemporal Manipulation of RBP Function

Among Drosophila’s greatest strengths is the incredible number of transgenic lines that are
available for manipulating gene expression in a spatial and temporal manner. The Gal4-UAS binary
expression system was among the first technologies developed to control gene expression in a precise
temporal and spatial manner [112]. This system comprises both a Gal4 ‘driver’ line and a UAS
effector line that must be combined in order to manipulate gene expression. Thousands of Gal4
driver lines have been generated, in which the open reading frame for the yeast transcription factor
Gal4 is placed downstream of a gene specific enhancer and promoter, which confers a particular
expression pattern. Since each Gal4 driver line is controlled through a different enhancer, thousands of
different expression patterns can be achieved. The UAS effector line, on the other hand, has a
particular DNA sequence downstream of an upstream activation sequence (UAS) to which Gal4 binds to
activate transcription (Figure 3). This sequence could be the open reading frame of a gene to allow
overexpression of a gene, a hairpin sequence to knockdown gene expression, or simply the open
reading frame for GFP, to be used as a cell marker. Once these two components are combined in the
same fly through standard genetic crosses, the effector line will be activated in all cells that express
Gal4 [112–114]. To add another layer of temporal control of gene expression, the Gal4/UAS system can
be combined with a temperature-sensitive Gal80 construct. Gal80 binds to Gal4 and prevents it from
activating the UAS effector line. However, by utilizing a temperature-sensitive Gal80, one can shift
flies to the restrictive temperature (29 ◦C) to inactivate Gal80, and thereby allow Gal4 to activate UAS
expression. Other variants of the Gal4 system, such as GeneSwitch or SplitGal4, have been developed
to provide even more precise control of gene expression [114,115]. Another binary gene expression
system, termed LexA-LexAop, was also developed, which when combined with the Gal4/UAS
system, allows researchers to manipulate the expression of two different genes simultaneously [116].
In addition to such tools for manipulating gene expression, efforts have also been made to generate
collections of fly lines that recapitulate the endogenous expression patterns for thousands of genes in
the Drosophila genome. For example, MiMIC (Minos-mediated Integration cassette) lines utilize a GFP
protein trap to provide information about a gene’s expression pattern, but also provide a platform
for manipulating gene expression since the transposon can be modified after it has inserted into the
genome [117]. With enormous collections of Gal4 and LexA drivers, UAS effector lines and MiMIC
lines, gene manipulation has become remarkably simple for the Drosophila geneticist.

6.2. RNA Editing Tools to Identify Tissue Specific RBP Target RNAs

One of the major priorities in the field is to systematically identify RNA targets for the majority
of RBPs expressed in the nervous system. The newly developed “targets of RNA-binding proteins
identified by editing” (TRIBE) technique [118] enables researchers to identify in vivo target RNAs
for an RBP of interest, in a tissue-specific manner (Figure 3). While multiple techniques that involve
cross-linking followed by RNA immunoprecipitation (CLIP) have been generated in the past decade
to identify direct RBP target RNAs, the low efficiency of crosslinking, especially in deeper cells,
limits its use in embryos or brains [119]. To identify in vivo RNA targets using whole embryos
or tissues, RNA immunoprecipitation (RIP) without crosslinking has generally been used instead.
However, without the stringent washes that are performed after crosslinking, RIP often results
in the identification of both direct and indirect target RNAs, and may also identify non-specific
interactions [120]. The TRIBE technique, however, allows for the identification of target RNAs in a
tissue-specific manner without the need for crosslinking or immunoprecipitation. In TRIBE, Gal4/UAS
is utilized to provide tissue-specific expression of an RBP of interest fused to the catalytic domain
of the RNA editing enzyme ADAR. ADAR edits A bases to I (read as G in a sequencing reaction),
thus leaving permanent marks in bound RNAs that are specific to the RBP of interest. Since the ADAR
RNA-binding domains are not included in this construct, RNA target specificity is determined by the
RBP of interest. These marks can later be identified through sequencing and bioinformatics analysis of
the resulting RNA libraries as compared to controls. Importantly, the TRIBE technique is successful in
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identifying direct in vivo RNA targets within cell types composed of as few as 150 cells per fly upon
fluorescence-activated cell sorting (FACS) sorting [118]. One can easily imagine probing combinatorial
regulation of a single mRNA target by multiple RBPs using multiple TRIBE constructs simultaneously.
Moreover, UAS-TRIBE constructs can be activated in specific tissues to determine whether ubiquitously
expressed RBPs regulate distinct RNA targets depending on tissue type. While TRIBE has only been
used in a small number of studies to date, its potential applications are vast and may very well be
transformative for Drosophila researchers.

6.3. Emerging Tools for Mapping Neural Circuitry

Although probing the function of RBPs in individual neurons is an important first step in
understanding how RNA processing contributes to neuronal morphogenesis and maintenance,
ultimately, investigation of how RBP dysfunction affects entire neural circuits will be necessary
to draw a complete picture of how such perturbations affect brain function and organization at the
organismal level. One major challenge in studying neural circuits is the ability to accurately map
functional synapses. This is due to the incredibly complex morphology of neurons, elaborate wiring
patterns, and the limitations of microscopy techniques. A recent technology developed in C. elegans,
termed “GFP reconstitution across synaptic partners” (GRASP), provides a reliable and robust
way to detect synaptic connections (Figure 3). The GRASP technique requires the expression of
two complementary fragments of the GFP protein fused to a transmembrane domain in adjacent
cells. If the two cells make close contact with one another, GFP fluorescence can be readily
detected in live animals [121]. The GRASP technique has been further optimized and applied to
Drosophila, where GFP fragments are specifically fused to synaptic proteins such as Synaptobrevin
(termed syb:GRASP) [122,123]. Importantly, such changes to the GRASP technique only allow GFP
fragments to be reconstituted upon vesicle fusion at the synaptic cleft, thereby making GFP fluorescence
between synaptic partners activity-dependent. This is an important adjustment to GRASP technology,
as neuronal processes can make many transient contacts that might normally be eliminated during
development, but could be inappropriately stabilized by the reconstitution of GFP. Thus, syb:GRASP
facilitates the visualization of active synapses in a live animal. Further development of multi-colored
GRASP constructs, termed X-RASP and CRASP, has expanded the potential for simultaneously
visualizing multiple synaptic connections [122,123].

The combination of GRASP and optogenetic neural activation provides a robust experimental
paradigm for mapping functional neural circuits. In “optogenetics”, the light-activated cation
channel, Channelrhodopsin (ChR), is expressed in a specific subset of neurons using the Gal4/UAS
system (Figure 3). When animals reared on food containing trans-retinal are exposed to blue light,
ChR-expressing cells become activated [124,125]. Optogenetics was recently used, in combination
with GRASP, to determine the neural circuitry that regulates escape behavior in Drosophila larvae [126].
The authors were able to map contacts among Class IV da neurons, interneurons termed mCSIs and
motor neurons using GRASP. Optogenetic activation of these subsets of neurons further confirmed
that these neural subtypes are part of a neural circuit that induces a stereotypical rolling behavior used
as an escape response by larvae [126]. Future studies that combine these tools will to help shed light
on how neural circuits are affected during different stages of neurodegeneration.

7. Outstanding Questions and Conclusions

While it is well established that RBPs play a fundamental role in neurogenesis, surprisingly,
only 2–6% of RBPs show tissue-specific expression in humans; fewer still are expressed specifically
within neurons. This is despite the fact that the brain shows higher levels of splicing and other forms
of RNA regulation than other tissues [2,127]. Moreover, dysfunction of ubiquitously expressed RBPs
often results in tissue-specific pathologies, which often more severely affect the PNS as compared
to other tissues [127]. Despite the fundamental importance of RNA processing in the development,
function and maintenance of the nervous system, relatively few RBPs have been studied in detail,
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especially with regard to their neural functions. Therefore, a major goal of the field is to understand
the neural-specific roles and neural specific target mRNAs of widely expressed RBPs. Moreover, in the
case of splicing factors, it is critical to identify the specific isoforms of target mRNAs that are relevant
to neurogenesis and neurodegeneration. It will be important to determine whether different isoforms
have distinct functions within neurons, and whether a balance of isoforms is important for neural
development. Moreover, a better understanding of which mRNA isoforms are important within the
nervous system is critical, not only for determining why neural tissue is sensitive to splicing defects,
but also for identifying potential therapeutic targets in neurological disease. A number of therapeutic
strategies that take advantage of ASOs to correct splicing defects have recently been developed for
treating SMA and DM. Importantly however, in both instances, the defective isoforms that contribute
to the development of these specific diseases are already known [128]. Identifying other specific
transcript isoforms that are necessary for development and neuronal maintenance is a critical step for
the treatment of diseases resulting from RBP dysfunction, which potentially affects alternative isoform
regulation of thousands of target RNAs.

In conclusion, multiple neurodegenerative disorders arise from the dysfunction of specific RBPs or
RNA regulatory mechanisms, suggesting that RBPs play a fundamental role in nervous system function
and development. Nonetheless, since many RBPs are widely expressed and their dysfunction can lead
to lethality, it is not trivial to dissect their tissue-specific functions or target RNAs. However, due to
the high level of conservation of RBPs across metazoa, the use of sophisticated genetic techniques
in the highly tractable Drosophila model system provides a unique opportunity to study the roles of
RBPs within the nervous system in vivo. In particular, the large number of publically available stocks,
ease of generating transgenics and of performing tissue-specific molecular genetic manipulations in
Drosophila, makes it an unparalleled system for the study of RBP functions within the nervous system.
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