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Introduction

Nucleotide excision repair (NER) is the principal pathway for 
repair of UV-induced cyclobutane pyrimidine dimers (CPDs) and 
(6-4) photoproducts in human cells. UV-DDB (UV-damaged 
DNA-binding protein) is a heterodimeric protein complex con-
sisting of 127 kDa DDB1 and 48 kDa DDB2,1-4 which par-
ticipates in damage recognition in global genome (GG)-NER. 
Mutations in DDB2 result in defective NER, as reflected in the 
heritable sun-sensitive skin condition, xeroderma pigmentosum 
group E (XP-E).1,4,5 Cells derived from XP-E patients are defi-
cient in CPD repair and show reduced 6–4PP repair.2,6-9 Deletion 
of the DDB2 gene in mice significantly impairs the repair of UV 
lesions and leads to hypersensitivity to UV-induced skin cancers.10

DDB2 is in complex with the CUL4-RING E3 ubiquitin ligase 
complex (CRL4DDB2), consisting of DDB1, CUL4 and RBX1.11-15 
DDB2 is thought to be the substrate receptor targeting the E3 
ligase complex to DNA damage sites to facilitate GG-NER. Of 
note, DDB1 and CUL4 have been shown to be in complex with 
other proteins, including CSA, a transcription-coupled, NER-
specific protein.11,15 Consistent with its classification as an E3 
ligase, XPC, histone H2A, H3, H4 and DDB2 itself have been 
identified as ubiquitination targets of the CRL4DDB2 E3 ligase 
complex.12,16-22 The E3 ligase CRL4 DDB2 is found in complex 
with the COP9 signalosome (CSN).15,23-25 In the absence of UV 
damage, CSN is associated with CRL4DDB2 and regulates its E3 
ligase activity by deneddylation. After UV irradiation, CSN dis-
associates from CRL4DDB2, allowing DDB2 binding to the dam-
age sites and subsequent DDB2 ubiquitination by CRL4DDB2.24,26

Damage-specific DNA-binding protein 2 (DDB2) was first isolated as a subunit of the UV-DDB heterodimeric complex that 
is involved in DNA damage recognition in the nucleotide excision repair pathway (NER). DDB2 is required for efficient 
repair of CPDs in chromatin and is a component of the CRL4DDB2 E3 ligase that targets XPC, histones and DDB2 itself for 
ubiquitination. In this study, a yeast two-hybrid screening of a human cDNA library was performed to identify potential 
DDB2 cellular partners. We identified a deubiquitinating enzyme, USP24, as a likely DDB2-interacting partner. Interaction 
between DDB2 and USP24 was confirmed by co-precipitation. Importantly, knockdown of USP24 in two human cell 
lines decreased the steady-state levels of DDB2, indicating that USP24-mediated DDB2 deubiquitination prevents DDB2 
degradation. In addition, we demonstrated that USP24 can cleave an ubiquitinated form of DDB2 in vitro. Taken together, 
our results suggest that the ubiquitin-specific protease USP24 is a novel regulator of DDB2 stability.
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Several lines of evidence suggest that DDB2 plays a key role 
in the repair of UV damage only in the context of chromatin. 
Although UV-DDB binds strongly to UV-damaged DNA,27-

31 it stimulates NER of naked DNA only slightly in vitro.32-34 
XP-E cell extracts display proficient NER of naked DNA in 
vitro, suggesting that UV-DDB has a role in the repair of DNA 
in chromatin.35 DDB2 binds the lesion independent of XPC,36 
and XPC recruitment to UV damage is significantly decreased 
in the absence of functional DDB2.10,37,38 DDB2 can co-localize 
with both CPDs and 6-4PPs in vivo, while XPC seems to bind 
6-4PPs efficiently, but not CPDs. This suggests the necessity of 
DDB2 in GG-NER is specific for CPD repair.38 Importantly, 
it has been suggested that the observed high affinity of DDB2 
for 6-4PPs aids in the targeting of XPC to 6-4PPs when low 
levels of damage are present.39 DDB2 autoubiquitination leads 
to the loss of DNA damage binding and rapid DDB2 degrada-
tion.16,19,40-42 XPC ubiquitination, in contrast, retains the com-
plex at the site of UV damage without immediate proteasomal 
degradation. The differential response of XPC and DDB2 upon 
ubiquitination has been linked to an ubiquitin-dependent dam-
age handover from DDB2 to XPC.16,43,44 Recent findings show 
that UV-DDB associates preferentially with lesions in internu-
cleosomal sites. In addition, UV-DDB and DDB2 ubiquitina-
tion are required to retain XPC at the linker regions. However, 
while UV-DDB facilitates XPC binding to nucleosomal DNA 
lesions, this does not appear to require DDB2 ubiquitina-
tion.45 Luijsterburg et al. demonstrated that chromatin regions 
containing UV lesions undergo ATP-dependent chromatin 
decondensation that is strictly dependent on the presence of 
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cell adhesion and motility, cellular component. These data sug-
gest that DDB2 may play previously unknown roles in many cel-
lular processes and provide a framework for the understanding of 
DDB2 functions.

DDB2 interacts with USP24. Among the potential DDB2-
interacting proteins identified by the yeast-two hybrid screen, 
there are two ubiquitin-specific proteases (USPs), USP24 and 
USP53. USPs recognizes and removes the ubiquitin moiety from 
proteins.59 The substrate of USP24 was previously unknown. 
To investigate whether DDB2 is a direct target of USP24, we set 
out to evaluate interactions in vivo by co-immunoprecipitation. 
By using the USP24-specific antibody, we examined the inter-
action between the endogenous DDB2 and USP24 proteins. 
Western blot analysis showed that USP24 was present in the 
anti-DDB2 immunoprecipitates from HeLa cell extracts, but 
not in the control immunoprecipitates (Fig. 2A). Reciprocal 
co-immunoprecipitation experiment showed that DDB2 was 
detected in the anti-USP24 immunoprecipitates (Fig. 2B). To 
avoid detecting the 55 KDa IgG heavy chains during western 
blotting, we expressed a His-tagged DDB2 in HeLa cells and 
precipitated His-DDB2 using Ni-NTA beads. Western blot 
showed again that USP24 was present in the His-DDB2 pre-
cipitates (Fig. 2C). Importantly, USP24 was not present in the 
precipitates from extracts prepared from HeLa cells without 
His-DDB2 expression (Fig. 2C). These observations suggest 
that USP24 interacts with DDB2 in vivo, as suggested by our 
yeast two-hybrid screen.

USP24 regulates the stability of DDB2 in vivo. 
Ubiquitination is crucial in the physiological regulation of many 
cellular processes. DDB2 ubiquitination is mediated by the 
CRL4DDB2 E3 ligase, and its ubiquitination and subsequent deg-
radation are essential for its functions in NER. USP24 belongs to 
the ubiquitin-specific processing protease family of deubiquitina-
tion enzymes (DUBs) and contains the characteristic Cys and 
His motifs at the core enzymatic domain.59 It has the ability to 
remove ubiquitin from an ubiquitinated substrate, thereby regu-
lating the stability and activity of this substrate. Since DDB2 is 
also ubiquitinated in human cells in the absence of exogenous 
DNA damage,60 our identified interaction between DDB2 and 
USP24 immediately suggests a novel mechanism by which the 
ubiquitin moiety attached to DDB2 can be removed to prevent 
DDB2 degradation. To determine the functional relevance of 
DDB2-USP24 interactions, we tested whether USP24 affects the 
state-state levels of DDB2. As indicated in Figure 3A–C, knock-
down of USP24 decreased the steady-state levels of DDB2 in 
both HeLa and 293T cells. Importantly, knockdown of USP24 
using three different USP24-specific siRNAs all led to decreased 
levels of DDB2 in HeLa and 293T cells, when compared with 
the control siRNA-transfected cells (Fig. 3B and C). In contrast, 
USP24 knockdown had no detectable effect on the levels of XPC 
in the two cell lines, another DNA lesion recognition protein 
which is also ubiquitinated by CL4DDB2, suggesting a specific role 
of USP24 in the control of DDB2 stability (Fig. 3B and C). We 
note that, although UV irradiation induces the levels of ubiquiti-
nation of DDB2 and XPC,16,22 both proteins are ubiquitinated in 
human cells in the absence of exogenous DNA damage.60

functional DDB2.46 Incidentally, others and we have reported 
the association of UV-DDB with ATP-dependent chromatin 
remodeling factors.47,48 Furthermore, DDB2 has been shown 
to associate with the histone acetyltransferases CBP/p300.41,49 
Clearly, understanding the role of DDB2 in NER will yield 
important insight into the mechanisms of NER operation in 
the context of chromatin.

Additionally, DDB2 has been implicated in an alternative 
process of the DNA damage response as well, via regulation of 
p21.50-52 DDB2 is involved in SOD2 transcription and stimula-
tion of E2F1-dependent transcription targets.53,54 DDB2 has also 
been implicated in apoptosis due to a complex regulatory circuit 
between DDB2 and p53.2,55,56 The ability of DDB2 to function in 
these processes potentially complicates the elucidation of mecha-
nisms regulating its interaction with chromatin during NER. 
Therefore, identification of DDB2-interacting proteins will help 
elucidate the roles of DDB2 in not only DNA repair, but also 
other cellular processes. In this study, yeast two-hybrid screening 
of a human cDNA library allowed us to show that the ubiqui-
tin-specific protease USP24 interacts with DDB2 and regulates 
DDB2 stability in human cells.

Results

Identify new DDB2-interacting proteins using yeast-two 
hybrid screening. Besides its role in NER, DDB2 is involved in 
proteolysis51 and transcriptional regulation.57,58 In order to gain 
a comprehensive picture of DDB2 functions, we took the yeast 
two-hybrid screen approach to establish a DDB2 protein interac-
tome. We screened a normalized universal human cDNA library 
using the full-length DDB2 as the bait. In silico search of the 
NCBI database allowed the identification and classification of 
potential DDB2-interacting proteins into 11 diverse processes 
(Fig. 1). These processes include transcription and RNA meta-
bolic process, protein degradation, metabolism, cell cycle, cell 
differentiation, apoptosis, DNA repair and signal transduction, 

Figure 1. Identification of DDB2-interacting human proteins by a yeast 
two-hybrid system. Classification of DDB2 interacting proteins into 
diverse cellular processes.
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ubiquitin-like modifications from an ubiquitinated substrate, 
thereby regulating the localization and activity of this substrate. 
Likewise, these proteases remove polyubiquitin from target pro-
teins, rescuing them from degradation by the proteasome. The 
human genome encodes about 95 functional DUSs,62 and only 
a few of those have been assigned functions or substrates. For 
example, USP7 has been shown to deubiquitinate p53, with 
overexpression of USP7 resulting in p53 stabilization.63 In recent 
years, several USPs have been found to participate in the DNA 
damage response, including USP1,64-67 USP7,68-70 USP10,71 
USP13,72 USP2873 and USP29.74 The function and substrate of 

USP53 interacts with DDB2, but knockdown of USP53 
has no effect on DDB2 stability. USP53 is another deubiqui-
tinating enzyme identified in the yeast two-hybrid screening. 
Interestingly, we also confirmed that USP53 interacts with 
DDB2 by co-immunoprecipitation (Fig. 4A). However, knock-
down of USP53 expression in HeLa cells had no detectable effect 
on XPC and DDB2 expression (Fig. 4B). Thus, the physiological 
relevance of USP53-DDB2 interactions is unclear.

USP24 cleaves an ubiquitinated form of DDB2 in vitro. To 
examine if USP24 can target ubiquitinated DDB2 in vitro, we 
treated HeLa cells expressing Hig-tagged DDB2 with MG132, a 
proteosome inhibitor,61 for 1 h and exposed HeLa cells to UVC 
(10 J/m2) to stimulate DDB2 uniquitination for another hour, 
Ni-NTA beads were then used to pulldown modified His-DDB2. 
Using a His-tag-specific antibody, we detected a ~110 KDa band 
by western blot (Fig. 4C). Identical band could be picked up using 
an antibody specific for ubiquitin (data not shown), indicating 
that this is an ubiquitinated form of His-DDB2. Interestingly, 
addition of USP24 precipitated by an anti-USP24 antibody led 
to cleavage of this ubiquitinated form of His-DDB2, with the 
appearance of several bands corresponding to ubiquitin chains 
of different sizes (Fig. 4C). Thus, USP24 can cleave an ubiquiti-
nated form of DDB2 in vitro.

USP24, a nuclear protein, does not bind to UV damage 
sites. Since DDB2 is known to bind to UV damage sites in 
human cells and UV-stimulated DDB2 ubiquitination is 
believed to occur at sites of DNA damage, we next examined 
if USP24 also binds to UV damage sites. Immunofluorescence 
staining showed that both USP24 and DDB2 located primar-
ily in the nucleus, suggesting that both are nuclear proteins 
(Fig. 5A). However, unlike DDB2, which is recruited to CPD 
sites 15 min after UV irradiation (Fig. 5B), USP24 did not 
accumulate at the CPD sites (Fig. 5B). We also performed a 
time-course experiment but failed to detect USP24 accumula-
tion at UV damage sites up to 3 h after UV irradiation (data 
not shown). These results suggest that USP24-mediated deu-
biquitination of modified DDB2 does not occur at the sites of 
DNA damage.

Discussion

In this study, we identified a novel regulator of DDB2 stability 
using a yeast two-hybrid approach. We demonstrated biochemi-
cally that USP24 binds to DDB2 and regulates DDB2 stability 
in human cells. Our data suggest that USP24 stabilizes DDB2 
by removing the ubiquitin moiety from modified DDB2, 
thereby preventing DDB2 degradation. As shown in Figure 
1, identified potential DDB2-interacting proteins largely fall 
into 11 classes, with some overlaps, on the basis of the cellular 
processes in which they are involved. These protein interaction 
data indicate that DDB2 may play other novel roles in human 
cells.

Key players in essential pathways are often subject to ubiquitin 
regulation mediated by one or several ubiquitin ligases or deu-
biquitinating enzymes (DUBs). Ubiquitin-specific proteases are 
a family of DUBs that participate in the removal of ubiquitin and 

Figure 2. DDB2 interacts with USP24 in human cells. (A) Co-immu-
noprecipitation of USP24 and DDB2. IP was performed using an 
anti-DDB2 antibody, followed by western blot (WB) using an USP24 
antibody. (B) Reciprocal co-immunoprecipitation of DDB2 and USP24. 
IP was performed using an anti-USP24 antibody, following by western 
blot (WB) using a DDB2 antibody. (C) His-tag pulldown of DDB2 pre-
cipitates USP24. His-tagged form of DDB2 was expressed in HeLa cells. 
Ni-NTA beads were used to pull down His-DDB2. HeLa cells without 
His-DDB2 expression were used as control to show specific DDB2 
interaction with USP24.
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ubiquitin moiety from ubiquitinated DDB2, thereby preventing 
DDB2 degradation by the proteosomes (Fig. 6).

Interestingly, we identified COPS2/CSN2 from the yeast 
two-hybrid screen that may interact with DDB2 (data not 
shown). CSN2 is a subunit of CSN, an eight-subunit isopepti-
dase complex. CSN, via the proteolytic activity of its CSN5 sub-
unit, removes the ubiquitin-like NEDD8 from cullins. Removal 
of NEDD8 consequently abrogates the stimulating effect of ned-
dylation on cullin-based ubiquitin ligases.75,76 Recruitment of 
CRL4DDB2 to sites of DNA damage in chromatin appears to cor-
relate with CSN release from the E3 ligase.15,24 Consistent with 
our data, CSN was co-immunoprecipitated with the DDB2 E3 
complex from undamaged cells.15 Our data further suggest that 
CSN2 may mediate the interaction between CSN complex and 
DDB2 E3 ligase to inhibit the basal level DDB2 ubiquitination 
(Fig. 6). Therefore, both CSN and USP24 are important for the 

USP24 were previously unknown. DDB2 represents the first 
example of a specific substrate that USP24 can directly deubiqui-
tinate and stabilize in human cells.

Since DDB2 is a component of the CRL4DDB2 E3 ligase and 
one physiological substrate of this E3 ubiquitin ligase complex 
is DDB2 itself, it will be interesting to explore the regulation of 
DDB2 with or without DNA damage. Our results suggest that 
DDB2 modified by ubiquitination can be recycled by USP24 
(Figs. 3 and 4). We are investigating the involvement of USP24 
in the control of DDB2 stability after UV irradiation. We specu-
late that there is a basal level of DDB2 ubiquitination in human 
cells, presumably mediated by the same CRL4DDB2 E3 ligase. 
Indeed, mass spectrometric analysis showed that DDB2 is also 
ubiquitinated in the cells in the absence of exogenous DNA 
damage.60 Thus, USP24 plays an important role in the mainte-
nance of steady-state levels of DDB2 by constantly removing the 

Figure 3. USP24 depletion in human cells destabilizes DDB2. (A) siRNA-mediated USP24 depletion in 293T cells decreases the steady-state levels of 
DDB2. (B) USP24 knockdown in 293T cells by three siRNAs destabilizes DDB2, but not XPC, in 293T cells. (C) Knockdown of USP24 in HeLa cells by three 
siRNAs and its effect on the steady-state levels of DDB2 and XPC.

Figure 4. (A) Co-immunoprecipitation of USP53 and DDB2. IP was performed using an anti-USP53 antibody, following by western blot (WB) using both 
USP53 and DDB2 antibodies. (B) Knockdown of USP53 in HeLa cells has no detectable effect on the steady-state levels of DDB2 and XPC. (C) Cleavage 
of ubiquitinated DDB2 in vitro by USP24. Ubiquitinated DDB2 was purified from UV-treated HeLa cells expressing Hig-tagged DDB2 in the presence 
of MG132. USP24 was partially purified from HeLa cells by immunoprecipitation using an USP24 antibody and protein G beads, followed by extensive 
washing to remove its binding partners. Cleavage reactions were performed at 37°C for 1 h.
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control of the steady-state levels of DDB2: (1) CSN-binding to 
DDB2 E3 ligase presumably inhibits DDB2 ubiquitination by 
silencing the stimulating effect of neddylation on the E3 ligase; 
and (2) ubiquitinated DDB2 can be recycled by USP24 to pre-
vent degradation (Fig. 6).

Materials and Methods

Yeast two-hybrid screen. Matchmaker Gold yeast two-hybrid 
screening was performed according to manufacturer’s instruction. 
Briefly, the full-length of the coding region of DDB2 was inserted 
in frame into the multiple cloning sites of the DNA-BD vector, 
pGBKT7 (Clontech), to generate the bait plasmid pGBKT7-
DDB2, which was subsequently confirmed by sequencing. The 
pGBKT7-DDB2 was transformed into the bait strain Y2HGold. 
DDB2 bait strain Y2HGold was mated with the pre-transformed 
Y187/pACT2 normalized universal human Mate & Plate cDNA 
library according to the Clontech protocol. Diploid yeast cells 
were plated on a nutrient deficiency medium SD plate without 
Trp and Leu (DDO) and analyzed for their ability to grow in 
the presence of highly toxic drug Aureobasidin A (125  ng/ml, 
Clontech) and regulate α-galactosidase expression, which hydro-
lyzes 5-bromo-4-chloro-3-indolyl-a-d-galactopyranoside (X-α-
gal, 40 μg/ml; Clontech) to produce a blue-end product. The 
selected colonies were restreaked on SD plate without Trp, Leu, 
His and Ade (QDO) containing Aureobasidin A and X-α-gal for 
further selection.

Sequencing and sequencing data analysis. Plasmid DNA 
from yeast was isolated and transformed into Escherichia coli 
DH5a for propagation. Plasmid DNA from E. coli was then 
sequenced (www.genewiz.com/). Nucleotide and deduced pro-
tein sequences were identified using BLAST (www.blast.ncbi.
nlm.nih.gov/) and online services of EMBL-EBI (www.ebi.
ac.uk/QuickGO/).

Cell culture. HeLa and 293T cells were obtained from ATCC. 
All cells were maintained in Dulbecco’s modified Eagle’s medium 

Figure 5. USP24, localized primarily in the nucleus, does not bind to UV damage sites. (A) Immunofluorescence staining of USP24 and DDB2. DAPI 
nucleus staining was shown. (B) Micropore UV irradiation followed by immunofluorescence staining using antibodies specific for USP24, UV lesion 
CPDs and DDB2.

Figure 6. A model depicting the involvement of USP24 in DDB2 recy-
cling. A low level of DDB2 is ubiquitinated continuously by the DDB1-
CRL4DDB2 E3 ligase. We propose that USP24 deubiquitinates modified 
DDB2 and prevent its degradation by the proteasome. CSN-binding to 
DDB2 E3 ligase presumably inhibits DDB2 ubiquitination by silenc-
ing the stimulating effect of neddylation on the E3 ligase. Our yeast 
two-hybrid screen data suggest that interaction between the CRL4DDB2 
E3 ligase and the CSN complex is bridged by the CSN2 subunit of CSN 
and DDB2.

(Sigma) supplemented with 10% fetal bovine serum (Sigma) at 
37°C and 5% CO

2
.

Co-immunoprecipitation. Cells from two 10-cm culture 
dishes were obtained and lysed with co-IP buffer (20 mM 
HEPES, 0.2 mM EDTA, 5% glycerol, 150 mM NaCl, 1% NP40, 
Roche complete EDTA-free protease inhibitor cocktail). Lysates 
were cleared by centrifugation (13,000 rpm, 10 min); the super-
natant was incubated with USP24 antibody or DDB2 antibody 
overnight at 4°C and pulled down with protein G agarose beads 
(Millipore). Beads were washed three times with co-IP buffer 
and one time with TE buffer and eluted with one bead volume of 
2X Laemmli SDS sample buffer at 95°C.

RNA interference. USP24 siRNA oligonucleotides and 
nonspecific siRNA were obtained from Sigma in a purified and 
annealed duplex form. The sequences, targeting three different 
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regions of USP24 gene, were as follows: duplex-1, 5'-GAA ACU 
CAG GGU UGA UAC U-3'; duplex-2, 5'-CUU CUA CUG 
UGG CUU GCU U-3'; duplex-3, 5'-GCA CAA UAC UGU GAC 
CGU A-3'. siRNA transfections were performed with RNAiMAX 
(Invitrogen) according to the manufacturer’s instructions.

Antibodies, micropore UV irradiation and immunofluores-
cence staining. Protein concentrations of the cell lysates were 
quantified and separated by SDS-PAGE. Immunoblot analysis 
was performed using chemiluminescent detection. The anti-
bodies were obtained from following sources: USP24 (1:1,000, 
Novus, Cat No: NB100–40830), DDB2 (1:500, Santa Cruz 
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