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Abstract: Disturbances in sphingolipid metabolism lead to biological function dysregulation in many
diseases, but it has not been described in heart failure (HF). Sphingosine-1-phosphate (S1P) levels
have not ever been measured in the myocardium. Therefore, we analyze the gene dysregulation
of human cardiac tissue by mRNA-seq (n = 36) and ncRNA-seq (n = 50). We observed most major
changes in the expression of genes belonging to de novo and salvage pathways, and the tight gene
regulation by their miRNAs is largely dysregulated in HF. We verified using ELISA (n = 41) that
ceramide and S1P accumulate in HF cardiac tissue, with an increase in the ceramide/S1P ratio of
57% in HF. Additionally, changes in left ventricular mass and diameters are directly related to CERS1
expression and inversely related to S1P levels. Altogether, we define changes in the main components
of the sphingolipid metabolism pathways in HF, mainly de novo and salvage, which lead to an
increase in ceramide and S1P in cardiac tissue, as well as an increase in the ceramide/S1P ratio in
HF patients. Therapeutic gene modulation focused on restoring ceramide levels or reversing the
ceramide/S1P ratio could be a potential therapy to be explored for HF patients.

Keywords: heart failure; sphingolipid metabolism; sphingosine-1-phosphate (S1P); ceramide
synthase 1 (CERS1); ceramide/S1P rheostat

1. Introduction

Our understanding of cardiovascular diseases and their management has changed
dramatically over the last 30 years with the identification of the various pathways that lead
to their development and progression and the successful development of effective therapies
that target them. This has led to a concomitant reduction in mortality and morbidity and
an improvement in the functional capacity and quality of life of patients. However, there
are still major unmet needs in the management of these diseases. They continue to be
the number one cause of death globally, with their social and economic impact remaining
largely unchanged. Therefore, there is a need to identify new therapeutic targets.

Sphingolipids are key signaling molecules that regulate a variety of biological functions
and disturbances in sphingolipid metabolism that lead to aberrant apoptosis, autophagy,
cell differentiation, and mitochondrial metabolism in many diseases, including cardio-
vascular diseases [1]. These defects induce alterations in cardiomyocyte structure and
function [2], suggesting that sphingolipids likely contribute to cardiomyopathy through
these mechanisms.
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In recent years, the role of ceramide and sphingosine-1-phosphate (S1P) in the physiol-
ogy and pathophysiology of the heart has attracted significant attention. The accumulation
of specific ceramides in the ischemic myocardium that is further elevated upon subsequent
reperfusion has been observed, indicating that ceramide may be involved in the induction
of cardiomyocyte apoptosis by ischemia/reperfusion injury [3,4]. Similarly, the accumu-
lation of lipids within the myocardium with non-ischemic heart failure (HF) occurs, and
although the mechanism is unclear, it seems that the accumulation of ceramide plays a key
role in this phenomenon [5,6] via the activation of programmed cell death [7] or its effect
on myocardial glucose and fatty acid metabolism [6].

Meanwhile, evidence suggests that S1P acts as a cardioprotective agent that preserves
the heart against ischemia/reperfusion injury [8]. However, lower S1P plasma concentra-
tions have been observed in patients with acute myocardial infarction when compared with
healthy controls (CNT), with a further reduction over the next few days [9], suggesting a
sustained reduction in the protective effect of plasma S1P after infarction [10]. Nevertheless,
we recently observed an increase in plasma S1P in patients experiencing acute rejection
after heart transplantation, demonstrating a robust capability for detection that improves
gradually with increasing severity [11].

Further studies are needed to define the specific lipid abnormalities that occur in
human hearts at various stages of failure. Despite the relevance of sphingolipid metabolism,
transcriptional changes in their key metabolic genes have not been reported for HF. Only
once we understand the underlying molecular mechanism of sphingolipid metabolism
and its key mediators can we develop a reasonable plan to prevent or treat HF. Given
this, we designed this study to identify the alterations in sphingolipid metabolism at the
mRNA level and their miRNA regulators in human cardiac tissue from patients with HF, as
well as the levels of the main sphingolipids from the de novo, salvage, and sphingomyelin
pathways in this tissue. We highlighted alterations in the de novo and the salvage pathways
that lead to cardiac ceramide and S1P accumulation and to an increase in ceramide/S1P
balance in HF patients, especially CERS1, whose expression is related to cardiac remodeling.

2. Materials and Methods
2.1. Source of Tissue Samples

Myocardial tissue samples were obtained from the left ventricle of 52 subjects: 42 patients
with HF (non-ischemic dilated and ischemic cardiomyopathy patients) undergoing cardiac
transplantation and 10 CNT samples from non-diseased donor hearts. All CNT donors had
no history of heart disease with normal left ventricular (LV) function (>50%) determined by
echocardiography. In all cases, the cause of death was a motor vehicle or cerebrovascular
accident. The CNT hearts were considered unsuitable for cardiac transplantation donation
because of blood type or size incompatibility.

Samples were taken from an area proximal to the left ventricle apex, were stored in
0.9% NaCl at 4 ◦C for a mean time of 4.4 ± 3.0 h after the loss of coronary circulation,
and were then stored at −80 ◦C until RNA extraction. Our hospital has accomplished
more than 700 transplants in the last 25 years and has been ranked as the national heart
transplantation leader several times. In accordance, our samples are high quality with high
RNA integrity number (RIN) values (greater or equal to 9). We have access to operating
rooms during interventions and fully explanted hearts in all cases, so we standardize our
methodology to choosing tissue samples from the same area of the left ventricle.

2.2. Patient Characteristics

Clinical history, electrocardiography, hemodynamic studies, Doppler echocardiog-
raphy, and coronary angiography data were available. Table 1 shows the patient char-
acteristics. Non-ischemic dilated cardiomyopathy was diagnosed when patients had
intact coronary arteries ascertained by coronary angiography and LV systolic dysfunction
(ejection fraction (LVEF) < 40%) with a dilated left ventricle (LV end-diastolic diameter
(LVEDD) > 55 mm) assessed by echocardiography. Furthermore, none of the patients had
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reported a family history of the disease or showed evidence of significant primary valvular
disease. Patients were diagnosed with ischemic cardiomyopathy based on the following
inclusion criteria: (i) there were prior documented episodes of acute myocardial infarction,
(ii) the echocardiography showed normal contractility segments coexisting with other
dyskinetic or akinetic segments, and (iii) the electrocardiography showed signs of ischemia
or myocardial necrosis. All patients have been classified according to the New York Heart
Association (NYHA) functional criteria and were receiving medical treatment according to
the guidelines of the European Society of Cardiology [12]. This study was approved by the
Ethics Committee (Biomedical Investigation Ethics Committee of La Fe University Hospital
of Valencia, Spain; Protocol Code 2016/0320, 15 November, 2016) and was conducted in
accordance with the principles outlined in the Declaration of Helsinki [13], and all subjects
gave written informed consent to participate in the study.

Table 1. Clinical characteristics of heart failure patients.

mRNA-Seq
(n = 26)

ncRNA-Seq
(n = 42)

ELISA
(n = 36)

Age (years) 53 ± 9 52 ± 10 52 ± 10
Gender male (%) 96 93 87

NYHA class III-IV III-IV III-IV
BMI (kg/m2) 27 ± 5 26 ± 4 27 ± 6

Hemoglobin (mg/dL) 14 ± 3 13 ± 2 14 ± 2
Hematocrit (%) 40 ± 7 40 ± 6 41 ± 5

Total cholesterol (mg/dL) 155 ± 39 159 ± 45 164 ± 50
Prior hypertension (%) 25 31 21

Prior smoking (%) 71 71 75
Diabetes mellitus (%) 29 30 35

LVEF (%) 21 ± 8 21 ± 8 22 ± 9
LVESD (mm) 66 ± 12 61 ± 12 63 ± 12
LVEDD (mm) 74 ± 11 69 ± 12 71 ± 11

Left ventricular mass (g) 362 ± 142 316 ± 120 341 ± 109
Left ventricle mass index (g/m2) 194 ± 76 166 ± 60 180 ± 65
Duration of disease (months) # 59 ± 56 44 ± 38 57 ± 52

NYHA, New York Heart Association; BMI, body mass index; LVEF, left ventricular ejection fraction; LVESD, left
ventricular end-systolic diameter; LVEDD, left ventricular end-diastolic diameter. # Duration of disease from
diagnosis of heart failure until heart transplant.

2.3. RNA Extraction and Integrity, mRNA-Seq, and ncRNA-Seq Analysis

RNA extraction, determination of purity and integrity of RNA samples, mRNA-seq,
and ncRNA-seq analysis were performed as previously described by Tarazón et al. [14] and
are extensively described in the Supplementary Materials.

2.4. Enzyme-Linked Immunosorbent Assay (ELISA)

Assessment of ceramide, sphingomyelin, sphingosine, and S1P levels in myocardial tissue
homogenates was determined via specific sandwich enzyme-linked immunosorbent assay
following the manufacturer’s instructions (Human Ceramide (CER) Elisa kit MBS7254089 from
MyBioSource (San Diego, CA, USA) and Human Sphingomyelin (SPH) Elisa kit CEA805Ge,
Human Sphingosine (Sph) Elisa kit CEB821Ge, and Human Sphingosine-1-Phosphate (S1P)
Elisa kit CEG031Ge from Cloud-Clone Corp. (Houston, TX, USA)).

Briefly, twenty-five milligrams of frozen left ventricle was homogenized in an extrac-
tion buffer (2% SDS, 10 mM EDTA, 6 mM Tris–HCl, pH 7.4) in a FastPrep-24 homogenizer
(MP Biomedicals, Santa Ana, CA, USA) with specifically designed Lysing Matrix D tubes.
The homogenates were centrifuged, and the supernatant was aliquoted.

The ceramide test has a limit of detection up to 1.0 ng/mL, sphingomyelin up to
1.85 µg/mL, sphingosine up to 2.67 ng/mL, and S1P up to 4.62 ng/mL. The intra- and
inter-assay coefficients of variation were 10% and 10–12%, respectively. No significant cross-
reactivity or interference between these sphingolipids and analogs was observed. The tests
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were quantified at 450 nm in a dual-wavelength microplate reader (Sunrise; Tecan, Tecan
Ibérica Instrumentación S.L Barcelona, Spain) using Magellan version 2.5 software (Tecan).

2.5. Statistical Methods

Data are presented as mean value ± standard deviation for continuous variables and
as a percentage for discrete variables. The Kolmogorov–Smirnov test was used to analyze
the distribution of the variables. Comparisons of clinical characteristics were achieved
using Student’s t-test for continuous variables and Fisher’s exact test for discrete variables.
Comparisons of mRNAs, miRNAs, and sphingolipids tissue levels were performed using
the Mann–Whitney U test. Finally, Pearson’s correlation coefficients were calculated to
determine the relationships among levels of molecules and clinical characteristics. Signifi-
cance was assumed as p < 0.05. All statistical analyses were performed using SPSS software
v. 20 for Windows (version 20.0; IBM SPSS Inc.; Endicott, NY, USA).

3. Results
3.1. Clinical Characteristics of HF Patients

The study populations for each assay are described in Table 1. They are homogeneous
populations based on the clinical characteristics of the patients. We analyzed a total of
52 myocardial human heart samples from 42 patients undergoing transplantation after
being diagnosed with non-ischemic DCM or ICM cardiomyopathy, while the CNT samples
were obtained from 10 non-diseased donor hearts.

Most of the patients were men (93%), and their mean age was 53 ± 10 years. The
patients all presented with an NYHA functional classification between III and IV and
had previously been diagnosed with significant comorbidities, including hypertension
(31%), hypercholesterolemia (17%), and diabetes mellitus (30%). The CNT group mainly
comprised men (62%) and had a mean age of 49 ± 15 years. Comorbidities and other
echocardiographic data were not available for the CNT group, in accordance with the
Spanish Organic Law on Data Protection 15/1999.

3.2. mRNA Expression of the Sphingolipid Metabolism Genes

We performed a transcriptomic analysis using mRNA-seq on cardiac tissue (HF, n = 26;
CNT, n = 10) to identify differentially expressed genes associated with HF. When we focused
on the genes involved in sphingolipid metabolism (Table S1), we found 12 differentially
expressed genes in HF patients compared to CNTs (p < 0.05) (Figure S1). When focusing on
each of the metabolic pathways that converge upon ceramide, we found differences in the
expression of genes that participate mainly in the de novo and salvage pathways (Figure 1).

In the de novo biosynthesis of sphingolipids, we found that the serine palmitoyl trans-
ferases that catalyze the first step of this process, the condensation of serine and palmitoyl
CoA to produce 3-ketodihydrosfingosine, were downregulated (SPTSSA: −1.46 ± 0.25,
p = 0.022; SPTSSB: −2.46 ± 0.21, p = 0.035; SPTLC1: −1.52 ± 0.37, p = 0.049; SPTLC3:
−1.60 ± 0.36, p = 0.031) and that transcription factor peroxisome proliferator-activated
receptor-alpha, which is a key regulator of lipid metabolism, was also downregulated
(PPARA: −1.19 ± 0.17, p = 0.011) in HF tissues. The levels of this transcription factor were
also different between patients diagnosed with hypercholesterolemia and those without
(1.19 ± 0.03, p = 0.040) and were shown to correlate with blood cholesterol levels (r = −0.449,
p = 0.036) (Figure S2). However, ceramide synthase 1, which acts in both the de novo biosyn-
thesis and the salvage pathway, catalyzing the formation of ceramide from sphinganine or
sphingosine, was increased in patients with HF (CERS1: 1.98 ± 1.05, p = 0.040) (Figure 1).

In the salvage pathway, we found that ceramidase, alkaline ceramidase 1 (ACER1,
−1.70 ± 0.28; p = 0.047), which catalyzes the hydrolysis of ceramide to sphingosine, was
downregulated in HF tissue, while alkaline ceramidase 3 (ACER3: 1.19 ± 0.26, p = 0.029)
was upregulated in these tissues. Furthermore, the enzymes that dephosphorylate S1P,
sphingosine-1-phosphate phosphatase 1 and 2 (SGPP1: −1.49 ± 0.24, p = 0.044; SGPP2:
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−2.83 ± 0.28, p = 0.002), and S1P receptor 3 (S1PR3: −1.78 ± 0.28, p = 0.003) were all
downregulated in HF patients (Figure 1).
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The synthesis of sphingomyelin from ceramide, via the sphingomyelinase or the
hydrolysis pathway, was also shown to be impacted by HF, with a marked decrease in
the expression of the gene encoding sphingomyelin synthase 1 (SGMS1: −1.66 ± 0.25,
p = 0.006). We did not find any differentially expressed mRNAs for the regulatory genes
controlling sphingolipid metabolism.

3.3. Expression of the miRNAs Involved in the Regulation of Sphingolipid Metabolism

We then went on to use non-coding RNA sequencing (ncRNA-seq) to identify the
differentially expressed miRNAs involved in the post-transcriptional regulation of the
sphingolipid metabolism genes (HF, n = 42; CNT, n = 8). To do this, we went on to evaluate
the expression of previously identified miRNAs linked to sphingolipid metabolism in our
data set (Table S2). As we show in the table, we observed that many of the genes involved in
the metabolism of ceramides are subject to close regulation by various miRNAs in both the
de novo and salvage pathways and other regulators involved in the synthesis of ceramide.
Thus, we found that HF is strongly affected by miRNA dysregulation during sphingolipid
metabolism, with alterations in several miRNAs linked to the deregulated mRNA of the de
novo (miR-9-5p, miR-130b-3p, miR-22-3p, and miR-27a-3p) and salvage pathways (miR-
27a-3p) (Figure 2). There were also a handful of miRNAs associated with other regulatory
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genes (miR-127-3p, miR-490-3p). We did not find any differentially expressed miRNAs
targeting the hydrolysis pathway of sphingolipid metabolism.
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3.4. Sphingolipid Levels in Heart Tissue

The concentration of bioactive sphingolipids S1P, ceramide, sphingosine, and sph-
ingomyelin was determined using ELISA (HF, n = 36; CNT, n = 5). S1P and ceramide
were shown to be dysregulated in HF patients (1908 ± 625 vs. 963 ± 489 ng/mL of ho-
mogenate, p = 0.014, Figure 3A, and 307 ± 218 vs. 81 ± 79 ng/mL of homogenate, p = 0.004,
Figure 3B, respectively), and the tissue ceramide/S1P ratio was increased by 57% in this
group of samples.

3.5. Relationships between Molecular Heart Tissue Levels and Ventricular Parameters of HF Patients

We investigated the potential relationships between mRNA expressions of sphin-
golipid metabolism genes, sphingolipid concentrations, and ventricular parameters of HF
patients (Table 2). Interestingly, differential mRNA expression of ceramide synthase 1 was
associated with changes in LV mass (r = 0.797, p < 0.0001) and LV end-systolic (LVESD,
r = 0.561 and p = 0.012) and end-diastolic diameters (LVEDD, r = 0.601 and p = 0.007). S1P
levels were shown to inversely correlated with these parameters (LVESD, r = −0.552 and
p = 0.041; LVEDD, r = −0.541 and p = 0.046), and a reverse trend was observed for LV
mass (r = −0.550, p = 0.052). Both CERS1 and S1P also demonstrated a good relationship
(r = −0.797 and p = 0.006). S1P levels also showed a remarkable relationship with the
ceramide levels in this tissue (r = 0.915 and p < 0.0001).
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Table 2. Relationships between mRNA expressions of sphingolipid metabolism genes, sphingolipid
levels, and ventricular parameters in heart failure patients.

LV Mass LVESD LVEDD

CERS1 r = 0.797
p < 0.0001

r = 0.561
p = 0.012

r = 0.601
p = 0.007

S1P r = −0.550
p = 0.052

r = −0.552
p = 0.041

r = −0.541
p = 0.046

LV mass, left ventricular mass; LVESD, left ventricular end-systolic diameter; LVEDD, left ventricular
end-diastolic diameter.

4. Discussion

Sphingolipid metabolism in the heart is of considerable interest because of its involve-
ment in cardiac pathology. However, most studies have examined the role of individual
bioactive sphingolipids in the pathophysiology of various heart diseases without examin-
ing the metabolic pathways that lead to these abnormalities. Therefore, they remain largely
undefined [10]. Although many of the molecules involved in sphingolipid metabolism
have well-understood physiological and pathophysiological mechanisms, their status in
human HF has not been described. In fact, S1P levels in HF tissue have never been reported
in the literature.

This study defined the expression of various genes involved in the metabolism of
the sphingolipids, revealing the alteration of key components, mainly in the de novo and
salvage pathways, which lead to the accumulation of ceramide and S1P in the cardiac tissue
of patients with advanced-stage chronic HF. These changes help to maintain the increased
ceramide-S1P balance in these patients. S1P accumulation is also associated with cardiac
remodeling in HF patients.
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Intrinsic cardiac metabolism in the adult heart depends primarily on the utilization of
fatty acids for oxidative phosphorylation and ATP production, but during stress, the heart
prefers to switch to glucose for energy generation. As a result, lipids accumulate in the
failing myocardium [15]. Given this, our results demonstrate an accumulation of ceramide
in patients with HF, as has been described in several models of cardiac lipotoxicity [16].
This lipid regulates, through many key intracellular effectors, the apoptotic program [17].
Conversely, numerous studies have revealed that S1P, which participates in cardiovascular
function through many different processes, possesses cardioprotective properties, mainly
protecting cardiomyocytes against apoptosis [18]. Thus, alterations in the plasma levels
of S1P have been observed in several cardiovascular disorders [19]. However, to the best
of our knowledge, this is the first study to analyze the levels of S1P in cardiac tissue. We
observed higher levels of cardiac S1P in HF patients, which could be part of a compensatory
effect designed to combat the increase in ceramide levels and its apoptotic effect [20]. This
premise is supported by the relationship between S1P and cardiac remodeling, where
higher levels of S1P were associated with smaller LV diameters and reduced LV mass. In
fact, it has been suggested that the dynamic balance between the intracellular levels of
ceramide and S1P determines cell fate [20]. Although we observed an increase in both
lipids in HF patients, the ceramide/S1P ratio increased in these patients, suggesting that the
accumulation of S1P may not be sufficient to counteract the effects of ceramide-mediated
apoptosis [21].

The intrinsic metabolism of each tissue type helps to determine the levels of metabolites
present. However, changes in these levels can also be the result of variation in the expression
of the enzymes involved in response to organ damage [22]. Thus, in response to a variety
of stresses such as serum deprivation [23], oxidative stress [24], or photodamage [25,26],
sphingomyelin synthase inhibition, ceramide accumulation, and induced apoptosis occur.
In this sense, we observed a reduction in sphingomyelin synthase, SGMS1, but not SGMS2,
in patients with HF. Li et al. already observed that siRNA treatment targeting SGMS1
significantly increased cellular ceramide contents in cultured cells, while siRNA targeting
SGMS2 did not result in the same outcome [27]. In turn, siRNA-treated HeLa cells showed
a similar increase in ceramide levels (SGMS1 and SGMS2 siRNAs), but SGMS1 represents
the major enzymatic activity, being the main Golgi-associated sphingomyelin synthases,
while SGMS2 is the principal plasma membrane-associated sphingomyelin synthase [28].

On the other hand, peroxisome proliferator-activated receptor is involved in the
control of several pathways of lipid synthesis or catabolism via the regulation of the
gene expression level of several key lipid-metabolizing enzymes. Specifically, PPARA
participates in the regulation of the first step in the de novo biosynthesis of sphingolipid by
modulating serine palmitoyltransferase [29]. We observed a reduction in the expression
of the transcription factor PPARA, along with a reduction in the majority of the serine
palmitoyltransferase enzyme complex (SPTSSA, SPTSSB, SPTLC1, and SPTLC3). Patients
with HF present with a reduction in PPARα protein levels, suggesting the important role of
this transcription factor in the reduction of fatty acid utilization in adult heart tissue during
cardiac injury [30]. In this sense, we observed an increase in plasma cholesterol levels which
are linked to the reduced expression of PPARA, and we observed significant differences
in its expression in patients with hypercholesterolemia compared to those patients who
do not present this comorbidity. Further, it has been observed that functional inhibition
of the serine palmitoyltransferase enzyme complex in the animal model of ischemic LV
dysfunction increases expression of ceramide synthase 1 and is accompanied by an increase
in cardiac-specific ceramide levels [31]. Our study showed a reduction in the expression
of this enzyme complex, which was accompanied by an increase in ceramide levels and
the expression of CERS1. Moreover, we found that the expression levels of CERS1 were
related to cardiac remodeling, with higher levels of expression in patients with increased
ventricular diameters and mass.

We previously observed that alterations in the salvage pathway could lead to the accu-
mulation of S1P. Specifically, we found a reduction in the expression of SGPP1 and SGPP2



Biomedicines 2022, 10, 135 9 of 11

without changes in the expression of SPHKs or SGPL1 [11]. Thus, here we confirm that the
alterations found in these enzymes lead to an increase in the production of S1P that accu-
mulates in the myocardial tissue and is also linked to the increase in the ceramide content
of this tissue. Likewise, we think that the enzymes involved in the ceramide/sphingosine
balance, mainly the alterations found in the levels of ACER1, ACER3, and CERS1, contribute
to the increased levels of ceramide and S1P that we found in HF.

Although there is little information describing the miRNAs regulating sphingolipid
metabolism, several miRNAs that regulate genes involved in both the de novo and salvage
pathways and their regulation have been described. Understanding the mechanisms
regulating sphingolipid biosynthesis in HF may provide novel information that might
be useful when developing therapeutic interventions. In addition to the alteration of
key components of these pathways, our data also indicate that HF is affected by miRNA
dysregulation, which could also contribute to the accumulation of ceramide and S1P, and
most importantly to the rheostat ceramide/S1P associated with this syndrome.

A common limitation of studies that examine cardiac tissues from end-stage human HF
is the extensive variability between individuals and their treatment, some of which might
influence the results. Thus, all individuals evaluated here were receiving medical treatment
according to the guidelines of the European Society of Cardiology [12]. Furthermore, tissue
samples were taken from the transmural left ventricle apex; therefore, our findings cannot
be generalized to all layers and regions of the left ventricle.

5. Conclusions

In this study, we outline the alterations in the key components of sphingolipid
metabolism, mainly in the de novo and the salvage pathways, which leads to cardiac
ceramide and S1P accumulation, as well as an increase in the ceramide/S1P ratio in HF
patients. Therapeutic gene modulation focused on restoring ceramide levels or reversing
the ceramide/S1P ratio could be a potential therapy to explore for HF. Particularly, CERS1
could be an excellent candidate to explore for the treatment of HF patients due to its
relationship with the dimensions of the left ventricle.
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2021). of 12 genes deregulated in heart failure patients Figure S2. Differential expression levels of
PPARA between heart failure patients with hypercholesterolemia and those without (A). Correlation
between PPARA and cholesterol levels in patients with heart failure, (B). Table S1. mRNA expression
of sphingolipid metabolism genes in heart failure. Table S2. miRNA involved in the regulation of the
expression of sphingolipid metabolism genes.
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