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Abstract: Zika virus (ZIKV) has been reported by several groups as an important virus causing
pathological damage in the male reproductive tract. ZIKV can infect and persist in testicular somatic
and germ cells, as well as spermatozoa, leading to cell death and testicular atrophy. ZIKV has also
been detected in semen samples from ZIKV-infected patients. This has huge implications for human
reproduction. Global scientific efforts are being applied to understand the mechanisms related to
arboviruses persistency, pathogenesis, and host cellular response to suggest a potential target to
develop robust antiviral therapeutics and vaccines. Here, we discuss the cellular modulation of
the immunologic and physiologic properties of the male reproductive tract environment caused by
arboviruses infection, focusing on ZIKV. We also present an overview of the current vaccine effects
and therapeutic targets against ZIKV infection that may impact the testis and male fertility.
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1. Introduction

The testis is a reproductive gland that is part of the internal structures of the male reproductive
tract (MRT) and is involved in spermatogenesis and steroidogenesis. Each testis is composed of a
tangle of tubes, the seminiferous ducts. These ducts are formed by Sertoli cells (SCs) and the germinal
epithelium, which is responsible for ensuring protection and nutrition to accurate spermatogenesis.
Leydig cells (LCs) are found in the testis interstitium, adjacent to the seminiferous tubules. LCs promote
steroidogenesis through the secretion of male sex hormones, especially testosterone, responsible for
the development of male genital organs and secondary sexual characters [1,2].

The testis is considered an immune-privileged organ [3]. This is essential to ensure the
immunogenic germ cell protection against immune system activation during spermatogenesis. This is
mainly provided by the combination of a local immunosuppressive environment and systemic immune
tolerance [4–6]. It has long been assumed that the blood–testis barrier (BTB) constitutes the main
mechanism of the immune-privileged status of the testis [7]. In addition to BTB and anatomical
impairment of external cells’ and molecules’ entrance to testis, SCs also provide anti-inflammatory
mediator secretion aiming to maintain the tolerogenic microenvironment [8]. However, many local
immune modulators, including macrophages, dendritic cells (DCs), natural killer cells (NKs), mast cells
and T-lymphocytes, contribute to the intercommunication among testicular components [9–12].
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The testis is commonly exposed to pathogens derived from blood, trauma, or through the
genitourinary tract. To protect itself against all these pathogens, the testis also needs the ability
to overpower immune privilege. This is achieved by inducing local innate immune responses [3].
Even counting this frontline protection, some pathogens have an immune scape mechanism that leads
to infection and persistence in the MRT. Reproductive tract infections (RTI) can be caused by bacterial,
parasitic, and viral pathogens [13]. RTI promoted by viral infections are notorious, as shown by the
World Health Organization (WHO) in 2006, which estimated that 500 million people live with genital
herpes, 300 million women have human papillomavirus (HPV), and approximately 240 million people
suffer from chronic hepatitis B [14]. In 2016, the WHO also estimated that over 17 million people are
living with HIV on antiretroviral therapy. However, the number of HIV-positive cases is increasing
worldwide [15].

Some diseases can persist a long time in human semen. Ebola [16], Zika virus (ZIKV) [17],
HIV [18], and 27 other types of viruses that contaminate humans have been found in semen and testis
for differing periods [19]. Despite the knowledge that various types of viruses can be found in semen,
their sexual transmission capacity is still poorly understood. Some of these are not considered sexually
transmitted diseases because this route is not the main form of contagion. However, ZIKV has already
been confirmed by the WHO to have sexual transmission (World Health Organization, 2016) and
considered to be the first arbovirus reported to be associated with sexual transmission [20,21]. Due to
this fact, attention is being turned to the possibility that other arboviruses may be present in the MRT.
Compared to ZIKV, the literature regarding this effect is scarce, and the available data suggests that
arbovirus sexual transmission is a relevant point of concern. The presence of ZIKV in the male genital
tract and its ability of sexual transmission leads to unanswered questions such as (1) has the ZIKV a
tropism for any specific cell in the male reproductive system?, (2) what features may favor the ZIKV
persistence in testicles when compared to other arboviruses?, (3) can the spermatozoa harbor the virus?,
(4) how long does the virus remain viable in the male genital tract?, (5) how can the prolonged presence
of ZIKV in the male genital tract cause infertility?, (6) is this ZIKV-induced testicular damage reversible?
Based on these questions, it is clear the importance of continuing to investigate the role of ZIKV in
the male reproductive system. In addition, a vaccine against ZIKV may be the best way to protect
the population from infection, and control the disease and its consequences. The vaccination should
protect against future and possible damage to the male genital tract, avoiding fertility-related problems.
Therefore, in this review, we will address recent findings of ZIKV infections in the MRT, focusing on
cellular mechanisms, immune and physiological responses, and the ability to other arboviruses to
remain in the testicle.

2. Male Reproductive Tract (MRT) and Cellular Composition of Testis

The MRT is composed of sexual organs that play a major role in the male germ cells (or sperm)
production. It has mainly consisted of a pair of testicles that are specialized for androgen hormones
and gamete production, an intromittent organ that is responsible for depositing sperm on the female
reproductive tract and finally a couple of sexual accessories ducts and glands vital for sperm maturation,
nutrition, and storage [22,23]. The different cell types that compound these tissues of MRT maintain
crosstalk that allows the production of viable sperm in the testis (Figure 1). Once the homeostasis of
the system is broken, this process is impaired and the fertility capacity is altered [24].

The testis is composed of interstitial LCs located between blood vessels and the seminiferous
tubules, where sperm is produced [25]. LCs secrete androgens that participate in conjunction with
pituitary hormones (gonadotropin) in germ cell development [26]. On the other hand, seminiferous
tubules include the germ cells, which give rise to spermatozoa through a series of differentiation steps
and the somatic SCs [23]. Somatic SCs are essential not just for testes formation but are one of the
major conductors of gametogenesis [27]. The immunological infiltrate in the interstitial compartment
of the normal testis, especially resident macrophages, is also important to directly influence testicular
microenvironment [28].



Cells 2020, 9, 1006 3 of 17Cells 2020, 9, x FOR PEER REVIEW 3 of 17 

 

 

Figure 1. Cellular crosstalk during normal spermatogenesis. Pituitary hormones follicle-stimulating 
hormone (FSH) and Luteinizing Hormone (LH) have an important role in spermatogenesis. FSH leads 
to Sertoli cell proliferation stimulating the release of inhibin. LH triggers the production of the 
testosterone by Leydig cells, which can stimulate the release of metabolic and growth factors by Sertoli 
cells and indirectly trigger spermatogenesis in germ cells. Metabolic factors, such as lactate and 
growth factors, can directly drive the spermatogenesis in germ cells. Oppositely, inhibin produced by 
Sertoli cells can inhibit FSH release by pituitary gland acting as a negative feedback regulation. 
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junctions of adjacent SCs in addition to epithelial and myeloid cell interaction [27]. The presence of 
this barrier creates separated compartments and protects against immunological infiltrate that could 
lead to testicular inflammation [30]. The unbalanced inflammatory response can disrupt BTB 
integrity, causing non-specific entry of harmful molecules that impair sperm cell maturation. 
Nevertheless, cytokine release is a regulatory factor during spermatogenesis in controlled levels [31]. 
It is important to emphasize that the transit of immune cells is not fully blocked once leukocytes have 
been reported in normal testicular surroundings, especially close to spermatozoa. Macrophages are 
the most abundant immunological cells that reside in seminiferous tubules environment and present 
an important role of immune-surveillance of the germ cell development process. 

Figure 1. Cellular crosstalk during normal spermatogenesis. Pituitary hormones follicle-stimulating
hormone (FSH) and Luteinizing Hormone (LH) have an important role in spermatogenesis. FSH leads
to Sertoli cell proliferation stimulating the release of inhibin. LH triggers the production of the
testosterone by Leydig cells, which can stimulate the release of metabolic and growth factors by Sertoli
cells and indirectly trigger spermatogenesis in germ cells. Metabolic factors, such as lactate and growth
factors, can directly drive the spermatogenesis in germ cells. Oppositely, inhibin produced by Sertoli
cells can inhibit FSH release by pituitary gland acting as a negative feedback regulation.

The seminiferous tubules present an anatomical barrier that impairs the blood-derived factor input
to the testicular microenvironment without any regulation [29]. BTB is the main factor responsible
for regulating the paracellular transit of molecules. The BTB is the result of tightly cellular junctions
of adjacent SCs in addition to epithelial and myeloid cell interaction [27]. The presence of this
barrier creates separated compartments and protects against immunological infiltrate that could lead
to testicular inflammation [30]. The unbalanced inflammatory response can disrupt BTB integrity,
causing non-specific entry of harmful molecules that impair sperm cell maturation. Nevertheless,
cytokine release is a regulatory factor during spermatogenesis in controlled levels [31]. It is important
to emphasize that the transit of immune cells is not fully blocked once leukocytes have been reported in
normal testicular surroundings, especially close to spermatozoa. Macrophages are the most abundant
immunological cells that reside in seminiferous tubules environment and present an important role of
immune-surveillance of the germ cell development process.

In the testis, macrophage characterization demonstrated novel functions associated with germ cell
development, androgen hormone production, and maintenance of a homeostatic microenvironment [28].
Studies have shown that there are two distinct macrophages populations in testicular surroundings:
the CD163− newly arrived macrophages and CD163+ resident testicular macrophages. The CD163+

macrophages are polarized to the type 2 macrophage (M2) profile that constantly secretes
anti-inflammatory molecules, such as interleukin-10, in the seminiferous tubules acting as a protective
component against sperm cell damage [32]. On the other hand, newly arrived CD163− macrophages
are related to the inflammation maintained in the seminiferous tubules. These cells secrete higher levels
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of pro-inflammatory cytokines, such as interleukin-1β and tumoral necrosis factor-α, and present a
higher expression of nitric oxide synthase (iNOS), demonstrating a pro-inflammatory profile, a key
characteristic of type 1 macrophage (M1) [32]. The communication of these cells with LCs, SCs,
and germ cells seems to be important in the development process that leads to sperm production.
Macrophages are being called as true sentinels of testis function [28]. In addition, Matusali and
colleagues have found evidence of ZIKV infection of the testicular CD163+ resident macrophages [33].
ZIKV-induced cell death of CD163+ resident macrophages could also contribute to the inflammation
in testis.

In addition to macrophages, other immunological cells are found in testicular surroundings.
DC are antigen-presenting cells found in testicular interstitial spaces and represent a minor population
of leukocytes in the testis. DCs induce activation and differentiation of lymphocytes in response
to allo-antigens and minimize autoimmune response by tolerating T-cells to auto-antigens under
physiological conditions [12]. Other immune cells, including NKs, T-cells, and CD4+CD25+ regulatory
T-cells (Tregs), are also found [10]. Besides, mast cells are present in a great number regarding
immune cell populations in the testis during puberty [34]. However, the functions of these cells in the
maintenance of testicular immune-privileged sites remain unclear [35].

The process of male mature gamete production is called spermatogenesis and consists of the
intense proliferation and subsequent differentiation of spermatogonial stem cells to spermatozoa [25].
The crosstalk between constituent cells of the testis is essential in this process [36,37], once the energy
source of gametes during differentiation depends on the lactate that is provided by SC. On the other
hand, glucose capitation depends on androgen hormone signalization provided by LC, as well as
pituitary hormones, insulin sensibility, and paracrine communication [36,37]. This is one of the
central reasons that explains why altering testicular cell metabolism impairs the production of viable
sperm [38]. Important factors as epigenetics (including miRNA regulatory activity), growth factors,
and cytokine release also influence the process in the quantity and quality of the sperm [39,40].

Spermatogenesis starts in puberty, long after the perinatal self-tolerance process. For this reason,
sperm cells contain a new repertory of proteins that present a great potential of activating an immune
response, leading to autoimmunity [3]. Studies have shown that activation of T-lymphocytes and the
production of specific antibodies against sperm cells are related to the infertility process. It was also
reported that the production of intense pro-inflammatory cytokines is related to loss of BTB integrity
and loss of viable sperm, leading to infertility [30,41]. Avoiding this massive activation, the testis
presents a unique tolerogenic microenvironment, making the organ immune-privileged, and protecting
mature gametes against the immune-cell-induced death and inflammation.

The immune-privileged microenvironment is essential for the viability of sperm cells and
maintenance of testis function while, at the same time, serving as a site for the persistence of infections
due to the tolerogenic surrounding. Microorganisms coming from blood or urogenital infections
enter into a testicular environment and disrupt tissue homeostasis, leading to activation of local
immune system [3]. This process triggers testicular inflammation and may alter tissue metabolism,
signalization, cellular function, and leading to impaired spermatogenesis and spermiogenesis [42,43].
Many pathogens have been shown to cause male infertility by many mechanisms, induced inflammation
being the key for most of them.

3. Flavivirus and ZIKV Features

The Flavivirus genus is composed by viruses of small single-stranded RNA. The flaviviruses can
cause mild symptoms, such as fever, pain, and cutaneous rash but also covers severe disturbances,
such as encephalitis, neurological complications, and hemorrhagic fever [44]. Flaviviruses are
arthropod-borne pathogens typically transmitted by mosquitoes or tick vectors and are related to
significant mortality and morbidity worldwide [45]. Members with clinical relevance of this genus
include Dengue virus (DENV), Yellow Fever virus (YFV), Japanese Encephalitis virus (JEV), West Nile
virus (WNV) and ZIKV. The geographic distribution of flaviviruses and the diversity of arthropod
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vectors make them of great interest for epidemiological surveillance. Moreover, the easy entry and
adaptation of these viruses in new environments make this genus relevant to extensive research and
experimental studies [44].

ZIKV is a vector-borne flavivirus belonging to the Flaviviridae family, with two main lineages:
the African and the Asian lineage [46]. It is an enveloped virus measuring about 50 nm in diameter with
a non-segmented, positive single-stranded ribonucleic acid (RNA) genome (Figure 2). The genome is
made up around of 11 kb with a single open reading frame that codes structural proteins: Capsid (C),
Envelope (E), precursor membrane (prM); and non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A,
NS4B, and NS5) [47] (Figure 2).

The first ZIKV isolate was identified in primates in 1947 in Uganda Protectorate in a program for
surveillance of yellow fever in primates [48]. The first human infection was reported in 1954 in Nigeria;
for decades, ZIKV cases were restricted to Africa and Asia [49]. Since 1954, several outbreaks with
increasing number cases have been reported worldwide [50,51]. The last outbreak was documented
in 2015 in America, which was the largest epidemic ever described of ZIKV affecting more than
20 countries [52,53]. In 2016, WHO considered ZIKV a public health emergency of international
concern [20].
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Figure 2. Zika virus (ZIKV) structure and features. ZIKV is an enveloped positive-sense single-stranded
RNA virus composed by envelope, capsid, membrane protein, and single-stranded positive-sense
RNA. The lower part represents the polyprotein which is cleaved by viral and cellular proteases four
structural proteins: capsid (C), envelope (E), precursor membrane (prM), and membrane (M) and
seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). During infection,
the ZIKV E proteins bind to host cell receptors and the viral particle is endocytosed. The E
proteins enable the fusion of the virus with the endosomal membrane, leading the release of the
genomic RNA into the host cell cytoplasm. The translation of the RNA genome occurs in the
endoplasmic reticulum. The RNA is translated as a single polypeptide chain encompassing all the viral
proteins: C-prM-E-NS1-NS2A-NS2B-NS3-NS4A-NS4B-NS5.

ZIKV has different pathways of transmission. The ZIKV transmission in humans was firstly
reported through bites of infected Aedes aegypti or Aedes albopictus mosquito [54]. However, the virus
was identified and isolated from seventeen different Aedes mosquitos species, Culex quinquefasciatus,
Culex perfuscus, Mansonia uniformis, Anopheles coustani, and Anopheles gambiae mosquitoes [55–59].
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Another important fact about ZIKV transmission became apparent during the 2015 outbreak,
when several cases of ZIKV vertical transmission were identified from an infected mother through
the placenta to the fetus and sexual transmission (male-to-female; female-to-male; male-to-male) [60].
This novel mode of ZIKV transmission in humans had never been reported before in flavivirus
infection [60–62]. ZIKV was the first arbovirus detected in human semen [63]. While needing more
consistent evidence about the ZIKV transmission, these findings suggest the complexity of ZIKV
dynamics transmission [64,65].

4. ZIKV on Male Reproductive Tract

The male reproductive system includes the penis, scrotum, testicles, epididymis, vas deferens,
prostate and seminal vesicles (Figure 3). Recent studies have demonstrated the presence of ZIKV
RNA in semen, as well as in male and female reproductive tracts, indicating the occurrence of the
sexual transmission [66]. The first sexual transmission became evident in 2011, and many cases have
supported the idea of one potential transmission pathway [62]. Moreover, ZIKV could be detected in
semen six months after infection in negative ZIKV serum from a patient [67]. Similarly, ZIKV RNA
was detected in semen in symptomatic and asymptomatic-infected patients [68–70]. A case report
showed ZIKV RNA presence in total semen and also in the sperm fraction used in assisted reproductive
technology up to 112 days after infection [71]. Taken together, all these data indicate that infected men
can be a potential reservoir for sexual transmission, even a long time after the infection [72].

In a mouse model, ZIKV sexual transmission was recently characterized, showing that epididymal
epithelial cells and leukocytes should be the main source of ZIKV RNA shedding [73]. ZIKV can persist
and replicate in MRT [74]. In cases of ZIKV infection, is it known that SCs can support a high level of
ZIKV replication [75,76]. In the early stages of infection, ZIKV suppresses cell growth, cell proliferation,
and dysregulation of germ cell–SC junction signaling [77]. ZIKV downregulated the secretion of
inhibin B, a hormone mostly produced by SCs [78]. Strange and colleagues demonstrated a unique
cross-talk between ZIKV infection and SC immune response, which in the course of infection, the viral
persistence was associated with activation of canonical pro-inflammatory pathways. That includes the
upregulation of genes of the human leukocyte antigen (HLA) class I, pro-inflammatory genes such as
interleukin-23 subunit alpha (IL23A) and lymphotoxin beta (LTB), NF-kappa-B-epsilon (NFKBIE), IL6,
STAT1, STAT2, and IFN [77].

The IFN response is a strong key in the innate immune response against virus dissemination in testicles.
Two animal models of Mus musculus species, susceptible to ZIKV infection, are important for understanding
the pathogenesis of this virus. These models are A129 and AG129 mice, both immunocompromised
mice. A129 mice do not have the receptor for interferon type I (IFN α/β). AG129 mice do not have the
receptor for interferon type I and II (IFN α/β/γ) [79]. IFNAR−/− mice are one of the best mice models
for ZIKV susceptibility studies [80]. Siemann and colleagues have shown that in the first hours of
infection, ZIKV does not induce IFN-α in SC, but it presents a modest induction after 48 and 72 h of
infection. However, high levels of pro-inflammatory cytokines such as interleukin-1α (IL-1α), IL-1β,
IL-6, IL-8, and TNF-α were found in the supernatant of infected SC, and in the chemokines such as
RANTES (CCL5), fractalkine (CX3CL1), and IP-10 (CXCL10). These levels increased significantly 72 h
after infection. Although SCs generate a strong immune response against ZIKV, the virus can persist in
the male reproductive tract for a long time [81].

The TAM receptor, AXL, promotes the ZIKV entrance in SCs and contributes negatively to the
antiviral states of SCs [82]. SCs are one type of cell that expresses high levels of TAM receptors,
TGF-β expression, and activin-A to maintain the immune regulation in the seminiferous tubules.
SCs play an important role in testicular physiology, creating a BTB and contributing to the nourishment
of the spermatozoa. This cellular physiology and ZIKV modulation can develop an important factor
that may lead to the establishment of viruses in this organ. Other cell types in the testicle can support
the ZIKV infection, such as testicular fibroblast, germ cells, and spermatocyte [43,83].
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Figure 3. ZIKV reservoir in the male reproductive tract. ZIKV has been found in several portions of the
male reproductive tract, including the prostate gland, testicle, epididymis, and seminiferous tubules.
ZIKV-infected men have presented prostatitis, hematospermia, and microhematospermia. ZIKV RNA
has been detected in semen from ZIKV-infected men and sexual transmission is an important route
of contagious ZIKV. Some testicular cells are susceptible to ZIKV infection, such as spermatogonia,
primary spermatocytes, Sertoli cells, and spermatozoa. Moreover, ZIKV can infect and replicate in
mature sperm, leading to male infertility.

LCs and testicular macrophages are part of the first line of defense in the seminiferous tubules [84].
LCs are not highly susceptible to ZIKV infection in mice models, but more studies in humans are
necessary. However, LCs are the main source of testosterone in testis, and during ZIKV infection,
the levels of testosterone are significantly modulated [78]. Testicular macrophages are infected by
ZIKV [33], and the infection promotes an increase of mRNA transcript levels of the IFN-α and IFIT1
genes, inducing the secretion of pro-inflammatory cytokine TNF-α, IL-1α, and IL-8 and chemokines,
such as GRO, IP-10, and monocyte chemoattractant protein 1 (MCP-1). These inflammatory mediators
are correlated with the possibility that ZIKV infection can compromise SC barrier integrity [81].
ZIKV does not modulate the expression of tight junction proteins (TJPs). The virus can cross BTB
efficiently and persist in abluminal side seminiferous tubules by the induction of adhesion molecules
expression such as VCAM-1, which facilitates the adhesion of immune cells, compromising BTB
permeability [81].

In spermatogonia, the infection can promote cell death, leading to the destruction of seminiferous
tubules and triggering male infertility by damaging the male reproductive system [75]. Low sperm
counts are observed in patients infected with ZIKV [69,85]. Several studies have shown the effect of the
ZIKV infection promoting genital damage, modulation of testicular immunity leading to orchitic and
viral replication, promoting a long infection establishment. ZIKV does not affect only the testes. In mice
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and monkey models, ZIKV infection causes acute and chronic prostatitis [86]. Male rats infected with
the Mexican ZIKV strain presented a significant decrease in testicle size compared to uninfected rats.
Testicle atrophy may have occurred due to decreased testosterone levels in cells infected with this
virus [87].

Several studies have shown alterations in mature sperm infected by ZIKV [85,88]. Such findings
may also be an additional indication that ZIKV reduces male fertility. Furthermore, it is important to
evaluate sperm banks regarding the presence of ZIKV-infection in donors due to the implications for
assisted reproduction.

Therefore, ZIKV is capable of entering the testicular microenvironment, disrupting cellular
metabolism, altering testicular physiology, and activating an intense immune response, which can
result in severe testicular damage and infertility. A better understanding of how ZIKV affects the
regulation of cell survival pathways and the testicle physiology can help evaluate pathogenesis and
may be used for vaccine studies to identify intervention strategies (Figure 4).
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Figure 4. Testicular cells infection by ZIKV. ZIKV infection can cause serious physiological,
immunological, and endocrine damage in the testes, impairing spermatogenesis. ZIKV can infect
several cells in the male reproductive tract. Leydig cells are less susceptible to the infection when
compared to other cells in the male reproductive tract. Testosterone, the main hormone produced by
Leydig cells, is modulated by ZIKV, impairing the endocrinological function. Testicular macrophage
is infected by ZIKV, triggering upregulation of IFN-α, IFIT1, TNF-α, IL-1a and IL-8, GRO, IP-10,
and MCP-1. Inside the seminiferous tubule, Sertoli cells have high expression levels of AXL receptors,
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which is used by ZIKV to invade cells. Sertoli cells support high levels of ZIKV replication, and the
infection promotes the upregulation of genes related to antigen presentation (HLA-1), proinflammatory
cytokines (lymphotoxin-beta LTB, IL-6, IL-23a) and transcription factor related to inflammation (NF-kb,
STAT1, and STAT2). The release of proinflammatory cytokines such as IL-1α, IL-1β, IL-6, IL-8,
TNF-α, and chemokines such as RANTES, CXC3CL1, and CXCL10 in SCs is also promoted by the
infection. These molecules can promote the chemoattraction of more immunological cells and lead
to an inflammatory profile, impairing efficient spermatogenesis. Inhibin-B, produced predominantly
by SCs, can control follicle-stimulating hormone (FSH) secretion and is downregulated by ZIKV
infection. ZIKV increases the expression of VCAM-1 in SCs which can facilitate the immune cells
adhesion. Inside the seminiferous tubules, ZIKV can infect spermatogonia, primary spermatocytes,
and mature spermatozoa.

5. The Immune System of Testis during Viral Infection

MRT requires a homeostatic microenvironment for viable germ cell production and nutrition.
The crosstalk between SCs and LCs is fundamental to spermatozoa development [89,90].

In the testicular surroundings, an important immunological component maintains a proper
environment for spermatogenesis, turning the testis into an immune-privileged organ [91]. Once MRT
homeostasis is broken, spermatogenesis key steps are impaired and inflammation can be trigged.
Many pathogens have shown to infect and persist in the MRT [3,26,84]. Testicular abnormalities,
infertility, or sexual transmission are some of the major consequences of pathogen persistence in
the MRT. Considering the important findings regarding ZIKV RNA detection in the semen, the scientific
community has turned their attention to the possibility that other flaviviruses promote similar
effects [92]. Once their detection becomes proven, the possibility of sexual transmission or impaired
spermatogenesis is another important factor to be explored. Preliminary studies about this have
provided us with information on a possible threat derived from different flaviviruses in the MRT.
Nevertheless, this question is far from clear and molecular mechanisms still under investigation.

Some studies have been reported flavivirus infection in the MRT [19]. The viral load could be
found for some of them, and the presence of leukocytes in the semen suggests an inflammatory process
caused by the infection. Salam and colleagues found viruses from several families in the semen,
including Adenoviridae, Filoviridae, Flaviviridae, Herpesviridae, and Retroviridae [19].

DENV is a considerably more common flavivirus than ZIKV, and the knowledge about DENV
effects in the testis is scarce. The first case report linking DENV infection to MRT modulation was
published in 2011 [93]. In this report, scrotal and penile edema was a rare complication associated
with DENV infection. However, the mechanism by which this edema was formed was not evaluated;
neither could DENV be detected in penile fluids. Currently, there is no data reporting if testicular
abnormalities could be trigged by DENV-associated inflammation in MRT. In 2018, two controversial
publications raised questions about the possible impact of DENV in the MRT. The first one demonstrated
that DENV RNA was not detected in the semen of five confirmed patients during the acute infection [94].
The second one is a case report released a few days later, demonstrating that DENV was detected in
the semen of an infected man 37 days after the related symptoms. The report demonstrated DENV
RNA in the cellular fraction, suggesting the possibility of sexual transmission [95]. New evidence of
DENV sexual transmission was published in 2019, where a case report from Spain detected the viral
RNA in the semen of two men who were partners [96]. Only one of the men had contact with a DENV
endemic area and his partner presented the symptoms a few days after the first one. This is the first
evidence of DENV sexual transmission. Nevertheless, clinical trials aiming to concisely respond to this
question are underway and may be published soon (Clinical Trial Identifier: NCT03612609).

In 2018, a case report was published regarding YFV RNA detection in the semen and urine of
a Brazilian man in the convalescent phase of the disease [97]. The integrity and infectivity of the
viral particles were accessed and confirmed in the report. This strongly suggests that this virus can
be sexually transmitted once it is capable of maintaining infective parameters, although no data are
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available confirming the capability of YFV persistence and impact in the MRT, or sexual transmission
associated with the infection.

Zheng and colleagues showed that the JEV infection induces inflammation of pig testicles by
activating RIG-I/NF-kB pathway signaling [98]. This also leads to orchitis, which is a type of chronic
inflammation in the testes caused by viral or bacterial infections, associated with pain, swelling,
along with blood and swelling in prostate ejaculate [81,99]. Testes infection with JEV showed a
differential production of pro-inflammatory cytokines, such as IL-1β, IL-6, IL-8, chemokine RANTES,
and TNF-α, as well as an increased presence of NS5 (non-structural protein of the virus), RIG-I,
TLR3 and -7 [98]. Smith and colleagues showed that a 43-year-old patient presented signs of
encephalitis and orchitis caused by WNV [100]. In this report, histological sections showed lymphocyte,
SCs, and interstitial multinucleated cells infiltrate, as well as marked thickening of the basement
tubular membranes and absence of spermatogenesis, an indication of atrophy. Numerous foci of dense
chronic interstitial inflammatory infiltrate and necrotic cell death was observed in the seminiferous
tubules [100].

DENV, YFV, and JEV are classified both as arbovirus and flavivirus and present major clinical
relevance within these groups. Nevertheless, another important virus that compounds arbovirus group
but is a member of a distinct family, presents important findings regarding MRT infection. For this
reason, an analysis of the available data for this arbovirus is relevant and will also be explored in
this section.

The Chikungunya virus (CHIKV) is a small, enveloped, single-stranded positive-sense RNA
virus that belongs to Alphavirus genus and Togaviridae family. Chikungunya is a vector-borne disease,
also transmitted by the bites of mosquitoes from the Aedes genus, mainly Ae. aegypti and Ae. albopictus,
causing arthritis or arthralgia, which is accompanied by fever and rash [101]. CHIKV RNA has been
detected in semen and urine, as reported in a case published in 2016. This study showed a patient
presenting CHIKV and DENV (type 3) dual infection, in which only CHIKV was detected [102] in
both the acute and convalescence phases of the disease, within 30 days after symptoms. Thereby,
it is important to emphasize that CHIKV presents tropism and cytotoxic effects on monocyte-derived
macrophages [103], which can be later recruited to testicular microenvironment [32]. In this context,
macrophages are being identified as a possible source of CHIKV RNA in the testis, acting as a testicular
trojan horse. However, more studies are necessary to verify this hypothesis [102].

Numerous questions related to viruses infection in MRT remain to be answered. The long-term
effects of persistent infection for several flaviviruses in male reproductive function, as well as production
and fertility of spermatozoa need to be investigated. Importantly, in the case of ZIKV, cryptorchidism,
hypospadias and micropenis have been reported in newborn infants of infected mothers [104],
although its prevalence is unknown. An effect of arboviruses infection in male fertility will only be
fully understood in long-term epidemiological studies and suitable animal model experiment design.

6. ZIKV Vaccines and Treatment to Improve the Host Response in the MRT

Sexual transmission of ZIKV and the viral persistence in the MRT are the strongest challenges for
outbreaks control, vaccines, and antiviral drug development [105–107]. The impact of ZIKV infection
in the population leads to a significant global efforts to develop vaccines. Spectacular progress has been
made in ZIKV vaccine development, and several strategies have been proposed to increase vaccine
protection in immune-privileged organs [105,108–112].

Antibody usage has shown a promising strategy to protect ZIKV in the testicle. Some subclasses
of immunoglobulin (IgG) can cross the BTB [113]. The administration of human antibodies to DENV
E-dimer epitope (EDE1-B10) 3 days after infection was able to reduce the viral load in testis, reducing the
inflammation and preserving sperm count. The protection is not effective for the long duration [114].
Further studies in this area have explored the pathogenesis pathways and the host cellular response,
suggesting potential targets to develop vaccines, including DNA-based vaccines. DNA-based vaccines,
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and live attenuated ZIKV have shown testicular protection against infection, avoiding atrophy, damage,
and male infertility [74,115].

The combined strategies of DNA-based vaccines and live attenuated ZIKV vaccines demonstrated
efficacy when used in a single-dose in A129 mice. This vaccination promotes the complete prevention of
testicle infection, injury, and oligospermia [116]. Another live-attenuated ZIKV vaccine, which presents
one deletion in the 3′ untranslated region of the ZIKV genome (ZIKV-3′UTR-LAV), presented protection
after a single vaccination in mice and non-human primates. This protection was evaluated for preventing
mother-child vertical transmission and the prevention of testicle damages [117].

DNA-based vaccination of recombinant chimpanzee adenovirus type 7 (AdC7) expressing ZIKV
M/E glycoproteins presents high efficacy in a single vaccination. AdC7-M/E induced a potent
neutralizing antibody in immunocompetent and immunodeficient mice and full protection against
ZIKV-induced testicular damage [118]. Another DNA-based vaccine, encoding ZIKV pre-membrane
and envelope (prME) in pVAX vector, protected mice completely against ZIKV, promoting protection
in testes and sperm and decreasing viral persistence in MRT [115]. Moreover, this vaccine was also
effective in reversing mouse infertility [119].

A few drugs against ZIKV have also been proposed and may have an impact on testicles [106,120,121].
Recently, Z2 an amphipathic peptide derived from the stem region of ZIKV envelope protein was reported
to inhibit vertical ZIKV transmission in a mouse model and reduce viral load in the testicle and
epididymis. This was also reported to reduce pathological damage while improving sperm quality [122].
Simanjuntak and colleagues demonstrated that ZIKV-infected testicles presented progressive damage
with a significant oxidative microenvironment, with high levels of reactive oxygen species, nitric oxide,
glutathione peroxidase 4 and pro-inflammatory cytokines as IL-1β, IL-6, and G-CSF. They proposed the
use of the antioxidant ebselen (EBS) to prevent the sexual transmission of the virus and to improve host
testicular immune response [123].

7. Conclusions

ZIKV can infect and persist in testicular somatic and germ cells, as well as, spermatozoa, leading to
cell death and testicular atrophy. ZIKV has also been detected in semen samples from ZIKV-infected
patients. This has huge implications for human reproduction. DNA-based vaccination and/or live
attenuated ZIKV vaccines showed high efficacy against MRT damage induced by ZIKV and are a very
prominent therapeutic tool to prevent male infertility caused by ZIKV.

It is important to note that, often, no evident testicular inflammatory response is usually observed
against ZIKV infection in testes, with normal testicular morphology and hormone production remaining
unaffected after ZIKV infection. This indicates that ZIKV can remain quiescent in the testes, acting as a
trojan horse, and maintaining asymptomatic ZIKV sexual transmission. The better understanding of
the mechanisms that mediate the cellular impact of the ZIKV on MRT, regulating testicular immune
and physiological responses, is the key factor to the correct design of efficient anti-ZIKV therapeutic
strategies to prevent male infertility caused by ZIKV.
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