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Abstract: Although recent treatment advances have improved outcomes for patients with multiple
myeloma (MM), the disease frequently becomes refractory to current therapies. MM thus remains
incurable for most patients and new therapies are urgently needed. Oncolytic viruses are a promising
new class of therapeutics that provide tumor-targeted therapy by specifically infecting and replicating
within cancerous cells. Oncolytic therapy yields results from both direct killing of malignant cells and
induction of an anti-tumor immune response. In this review, we will describe oncolytic viruses that
are being tested for MM therapy with a focus on those agents that have advanced into clinical trials.

Keywords: multiple myeloma; oncolytic virotherapy; reovirus; measles virus; vesicular stomatitis virus;
vaccinia virus; myxoma virus; adenovirus

1. Introduction

Multiple myeloma (MM) is a malignancy of clonal plasma cells. It is the second most common
hematological cancer in the United States with an estimated 30,280 newly diagnosed cases and
12,590 deaths in 2017. MM primarily affects elderly patients with a median age at diagnosis of 69 years
in the United States. It currently accounts for 2.1% of all cancer-related deaths [1].

MM belongs to a group of conditions collectively known as monoclonal gammopathies, which are
characterized by abnormally high levels of monoclonal immunoglobulin protein and clonal plasma
cells in the bone marrow [2]. The most common of these disorders is monoclonal gammopathy of
undetermined significance (MGUS). MGUS itself is asymptomatic, but can progress to active MM.
The risk of progression is approximately 1% per year [3]. An intermediary stage known as smoldering
myeloma may occur during progression from MGUS to MM [4]. Active MM is characterized by
hypercalcemia, renal insufficiency, anemia, and bone lesions [2].

Current treatment options for MM are pharmacological therapy and autologous hematopoietic stem
cell transplant (AHSCT). Three classes of drugs are primarily used for MM therapy: immunomodulatory
agents, proteasome inhibitors and monoclonal antibodies. The immunomodulatory drugs lenalidomide
and pomalidomide are thalidomide-derivatives that are thought to alter the tumor microenvironment in a
manner that promotes MM cell killing by the immune system in addition to having anti-proliferative
and anti-angiogenic effects [5]. Proteasome inhibitors, such as bortezomib and carfilzomib,
induce apoptotic death by preventing the normal turnover of cellular proteins. Cells that produce
large quantities of protein, such as malignant plasma cells, are particularly sensitive to the effects
of proteasome inhibition [6]. Combination therapy with these drugs has significantly improved
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patient survival time [7]. Lenalidomide and bortezomib in combination with the corticosteroid
dexamethasone is currently the treatment of choice for initial presentation of MM. AHSCT, in which a
patient’s hematopoietic stem cells are collected, purged of malignant cells, and then reinfused into the
patient, has become less common due to improvements in pharmacological therapy. When AHSCT is
used today, it is often combined with immunomodulatory and proteasome inhibitor treatments [2].
In addition to these strategies, two monoclonal antibodies, elotuzumab (targeting CS1/SLAMF7) and
daratumumab (targeting CD38), have recently been approved for MM therapy [8].

The introduction of targeted chemotherapeutics and AHSCT has significantly increased survival
time for MM patients. However, none of the therapies are curative and most patients will eventually
become refractory to current treatment options. Therapeutics with new mechanisms of action are
therefore needed to treat drug-resistant MM. Oncolytic viruses have emerged as a promising new class
of agents with great potential for the treatment of MM.

2. Viral Oncolytics for Multiple Myeloma

Oncolytic viruses specifically replicate in and kill tumor cells (Figure 1). All oncolytic virotherapies
are derived from naturally occurring viruses. However, many of the viruses being developed for
oncolytic therapy have been modified to increase their specificity for cancer cells or enhance their
ability to promote tumor clearance. MM has several features that make it an ideal target for oncolytic
virotherapy. These include mutations in signaling pathways that render MM more sensitive to
viral infection and overexpression of cell surface proteins that are commonly used as viral entry
receptors [9–11]. In the following section, we will describe oncolytic viruses that are currently being
tested as therapeutics in MM (Table 1). Most research has focused on developing oncolytics that can
be directly administered to MM patients. However, some viruses are also being explored for use as
purging agents in AHSCT.Cancers 2018, 10, x  3 of 16 

 

 

Figure 1. Reovirus (RV) selectively replicates in multiple myeloma cells. Normal peripheral blood 
mononuclear cells (PBMCs) and LP-1 MM cells were treated with 30 plaque forming units/cell RV for 
48 h. RV was detected by electron microscopy. Arrows denote RV. 
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the respiratory and enteric tracts and is generally benign in humans. Most of the circulating 
antibodies against RV in adults are likely from childhood exposure to the virus [13–15]. Three 
different RV serotypes have been identified based on hemagglutination and neutralization assays 
[16]. Currently, the only RV under development for oncolytic therapy is the human type 3 Dearing 
strain. The recent development of a reverse genetics system for RV should make genetic 
manipulations more feasible in the future [17]. 

RV entry into cells requires sequential binding to different host receptors. Initial attachment is 
mediated by extracellular sialic acid followed by engagement of junctional adhesion molecule A 
(JAM-A) [18–20]. JAM-A expression in the epithelium and endothelium helps maintain tight junction 
integrity. It is also expressed on hematopoietic cells, where it regulates leukocyte transmigration [21]. 
Endothelial expression of JAM-A is required for RV egress from the bloodstream to other sites in the 
body, which has important implications for the use of RV as an oncolytic therapy [22]. Following 
endocytosis of the virion, the outer shell of the RV capsid is degraded by lysosomal cathepsins B and 
L, which in turn frees the inner core to enter the cytoplasm where viral replication occurs [23].  

In normal cells, viral transcripts generated during replication can induce phosphorylation and 
activation of protein kinase R (PKR), a serine/threonine kinase that acts as a sensor of viral infection 
[24]. Activated PKR phosphorylates the α subunit of elongation initiation factor 2, which results in 
shutdown of most cellular translation [24]. Thus, in healthy tissue RV infection is aborted as no new 
viral particles can be made. However, in cells with constitutively active Ras signaling PKR activation 
is blocked and protein translation and viral particle formation can proceed uninhibited [25]. The 
dependency on Ras signaling has made RV an attractive candidate for oncolytic therapy [26] as 
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Table 1. Oncolytic viruses currently being developed for multiple myeloma therapy.

Reo Measles VSV Vaccinia Myxoma Coxsackie Adeno

Genome dsRNA ss(−)RNA ss(−)RNA dsDNA dsDNA ss(+)RNA dsDNA

Enveloped No Yes Yes Yes Yes No No

Replication Site Cyto Cyto Cyto Cyto Cyto Cyto Nuc/cyto

Receptors for Multiple
Myeloma JAM-A CD46 LDLRs UK UK ICAM-1, DAF UK

Genetic Manipulation Difficult Easy Easy Easy Easy Easy Easy

Combination Therapy BZ, LND, PMD,
anti-PD-L1 CP BZ, CP NR NR NR NR

Abbreviations: Cyto-cytoplasm; Nuc-nucleus; UK-unknown; BZ-bortezomib; LND-lenalidomide; PMD-pomalidomide;
CP-cyclophosphamide; NR-none reported; VSV-Vesicular stomatitis virus.

2.1. Reovirus

Mammalian reoviruses (RV) belong to the Reoviridae family of viruses. The genome consists of
10 double-stranded RNA segments contained within two concentric protein shells [12]. RV infects the
respiratory and enteric tracts and is generally benign in humans. Most of the circulating antibodies
against RV in adults are likely from childhood exposure to the virus [13–15]. Three different
RV serotypes have been identified based on hemagglutination and neutralization assays [16].
Currently, the only RV under development for oncolytic therapy is the human type 3 Dearing strain.
The recent development of a reverse genetics system for RV should make genetic manipulations more
feasible in the future [17].

RV entry into cells requires sequential binding to different host receptors. Initial attachment
is mediated by extracellular sialic acid followed by engagement of junctional adhesion molecule A
(JAM-A) [18–20]. JAM-A expression in the epithelium and endothelium helps maintain tight junction
integrity. It is also expressed on hematopoietic cells, where it regulates leukocyte transmigration [21].
Endothelial expression of JAM-A is required for RV egress from the bloodstream to other sites
in the body, which has important implications for the use of RV as an oncolytic therapy [22].
Following endocytosis of the virion, the outer shell of the RV capsid is degraded by lysosomal
cathepsins B and L, which in turn frees the inner core to enter the cytoplasm where viral replication
occurs [23].

In normal cells, viral transcripts generated during replication can induce phosphorylation and
activation of protein kinase R (PKR), a serine/threonine kinase that acts as a sensor of viral infection [24].
Activated PKR phosphorylates the α subunit of elongation initiation factor 2, which results in shutdown
of most cellular translation [24]. Thus, in healthy tissue RV infection is aborted as no new viral particles
can be made. However, in cells with constitutively active Ras signaling PKR activation is blocked
and protein translation and viral particle formation can proceed uninhibited [25]. The dependency
on Ras signaling has made RV an attractive candidate for oncolytic therapy [26] as greater than
30% of all human tumors contain Ras-activating mutations [27]. However, recent studies have
suggested that mechanisms other than Ras activation may sensitize some cell types to RV killing [28,29].
For example, Ras activation status does not confer susceptibility to RV in MM. Instead, sensitivity to
RV positively correlates with JAM-A expression, which is upregulated in MGUS and MM patient
specimens (Figure 2) [30].
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Figure 2. Primary mechanisms of tumor specificity for oncolytic virotherapies in multiple myeloma.
(a) For RV, CV and MV tumor specificity is dictated by their respective receptors, each of which
is overexpressed in MM; (b) Deficiencies in IFN signaling and PKR activity, which are common
in MM, provide tumor specificity for VSV; (c) VV tumor specificity is driven by engineered
deletions in the vaccinia genome that eliminate genes essential for viral replication in normal cells.
Additional mechanisms of tumor specificity exist for many of the viruses depicted; see the text
for details.

Several pre-clinical studies have demonstrated the efficacy of RV therapy in MM. RV kills MM
cell lines and primary patient cells by inducing endoplasmic reticulum (ER) stress, apoptosis and
autophagy and significantly reduces tumor burden in mouse xenograft models of MM [31,32].
Furthermore, combination treatment with RV and bortezomib results in a significantly greater reduction
of disease than either single agent treatment [31]. Combining RV with the immunomodulatory agent
lenalidomide also enhances MM cell killing [33]. Given that most MM patients become refractory
to conventional therapies, Kelly et al. tested the efficacy of RV treatment in bortezomib-resistant
MM. Bortezomib-resistant MM cell lines and samples from refractory patients were significantly more
sensitive to killing by RV than bortezomib-sensitive controls. Increased sensitivity to RV correlated with
JAM-A expression, which is significantly upregulated in the relapsed/refractory patient population
compared to newly diagnosed patients [31]. These results indicate that RV may be a particularly
effective therapy for patients with relapsed/refractory MM. Given this finding, it is interesting to
note that histone deacetylase (HDAC) inhibitors have been reported to enhance RV killing of MM via
upregulation of JAM-A [34]. This suggests that pharmacological agents that induce JAM-A expression
may be useful for augmenting RV therapy. RV has also been investigated as a purging agent for
AHSCT, to remove contaminating CD138+ cells prior to reinfusion [35,36].

A phase I single agent trial of RV in patients with relapsed MM was reported in 2014
(Table 2) [37]. The treatment was well tolerated, and viral RNA was detected in most of the specimens.
However, few virus-containing cells stained positive for caspase 3, indicating a lack of oncolytic
killing and the best responses observed were stable disease. These results suggest that RV is not an
effective monotherapy in MM. There are three active phase I trials combining RV with approved
MM therapeutics: the immunomodulatory agents lenalidomide or pomalidomide (NCT03015922),
bortezomib plus dexamethasone (NCT02514382), and carfilzomib plus dexamethasone (NCT02101944).
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In addition, a clinical trial investigating RV with anti-PD-1 antibody therapy is currently being
developed by our group based on promising preclinical data [38].

Table 2. Clinical trials for oncolytic viruses in multiple myeloma.

Therapy Phase Combination Agents Clinicaltrials.gov Identifier

Reovirus (Reolysin)

I None NCT01533194 [37]
I Lenalidomide or pomalidomide NCT03015922
I Bortezomib + dexamethasone NCT02514382
I Carfilzomib + dexamethasone NCT02101944

Measles (MV-NIS)
I/II ±Cyclophosphamide NCT00450814
II Cyclophosphamide NCT02192775
I ±Cyclophosphamide NCT00450814

VSV
(VSV-IFNB-NIS)

I ±Cyclophosphamide NCT03017820
I ±Cyclophosphamide NCT00450814

2.2. Measles Virus

Measles virus (MV) is an enveloped negative-sense single-stranded RNA virus in the family
Paramyxoviridae. It is the etiological agent of measles, a childhood disease of the respiratory tract.
Today, all vaccines are based on the lab-attenuated Edmonston strain that was first isolated in 1954
and has a long history of safe use in humans [39]. The Edmonston strain is also the basis for measles
oncolytics being tested with MM.

MV enters host cells by binding to receptors on the cell surface. This binding induces conformational
changes that allow for fusion of the viral envelope with the plasma membrane and delivers the measles
genome into the cytoplasm, where replication occurs [39]. Wild type measles strains utilize two
cell-type specific receptors: the signaling lymphocyte activation molecule (SLAM) on dendritic cells
and macrophages [40] and nectin 4 on epithelial cells [41]. However, the Edmonston strain enters
cells via binding to CD46 [42], a type I integral membrane protein found on the surface of all somatic
cells [43] and overexpressed in many cancers, including MM [44,45]. Tumor specificity is largely driven
by the Edmonston strain’s tropism for CD46 (Figure 2). Increased CD46 levels on CD138+ MM cells
positively correlate with MV cellular entry, replication, and cytopathic effects. Importantly, normal BM
cells from myeloma patients do not overexpress CD46 and are not susceptible to MV killing [44].
The cytopathic effects of MV infection are primarily mediated by virus-induced intercellular fusion,
which allows infection to spread without the production of new progeny virus [46]. Anderson et al.
found that high CD46 receptor densities are required for MV-induced intercellular fusion, which greatly
enhanced cell killing [47]. Other factors that likely contribute to the tumor specificity of MV are
impairment of both PKR activation and interferon (IFN) signaling in cancer cells [45].

The oncolytic potential of MV in hematological malignancies was first recognized in the 1970s,
when a series of case studies documented regression of leukemia, Burkitt’s lymphoma and Hodgkin’s
disease in patients with concurrent measles infections [48–51]. The first preclinical study in MM
showed that the Edmonston strain of MV selectively replicates in and effectively kills myeloma
cells from both established tissue culture lines and primary patient samples. Significant reductions
in tumor volumes were also observed in mouse xenograft models following treatment with either
intratumoral or intravenous injection of MV [52]. Reverse genetics [53] have been used to create
versions of MV that can specifically target MM via receptors other than CD46 [54–56], evade innate
immune defenses to prevent viral clearance [57], or express reporter genes for monitoring efficacy of
treatment in patients [58–60]. The best characterized of these systems is a variant of the Edmonston
strain that has been engineered to express the human sodium iodide symporter (MV-NIS) [58]. NIS is a
membrane ion channel expressed by thyroid follicular cells to import iodine for use in thyroid hormone
synthesis. This results in highly concentrated levels of iodine within the thyroid (20–40 times greater
than plasma levels) [61]. The ability of NIS to concentrate iodine at such high levels allows for the use
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of radioactive iodine in imaging (I123) and treatment (β-emitting I131) of malignancies expressing high
levels of NIS [62]. In a mouse xenograft model of MV-resistant MM, treatment with MV-NIS plus I131

radiotherapy significantly improved tumor regression compared to MV-NIS treatment alone [58].
Based on the preclinical results, a phase I/II trial (NCT00450814) was initiated to test MV-NIS

treatment in patients with recurrent or refractory myeloma in combination with or without
cyclophosphamide (Table 2), an alkylating agent that is approved for myeloma therapy [2]. Phase I
of the study, which did not include co-treatment with I131, found that MV-NIS was reasonably well
tolerated at high doses and preferentially infected CD138+ cells over CD138− cells. One patient
attained complete remission lasting nine months and four others experienced transient drops in free
light chain serum levels [63]. Two other clinical trials for MV are currently active. NCT02192775 is
a phase II trial combining MV-NIS with cyclophosphamide in relapsed/refractory MM; no results
have yet been published. NCT03456908 is new phase I trial in patients with recurrent/refractory MM.
It will test whether the usage of PET scans provides superior imaging to SPECT scans for monitoring
NIS expression following MV-NIS treatment. Subjects will be recruited from eligible patients already
enrolled in NCT00450814.

2.3. Vesicular Stomatitis Virus

Vesicular stomatitis virus (VSV), a member of the family Rhabdoviridae, is an enveloped
negative-sense single-stranded RNA virus. VSV commonly infects cattle, horses, and pigs, where it
causes the characteristic vesicular lesions from which its name is derived. Human infections, which can
result in acute flu-like disease, are limited to those in direct contact with infected animals [64]. The lack
of a human reservoir for VSV makes it an attractive candidate for oncolytic therapy.

VSV enters the cell via receptor-mediated endocytosis. Inside early endosomes, the viral envelope
fuses with the endosomal membrane, releasing the nucleocapsid into the cytoplasm, where replication
occurs [65]. VSV binding to host cells is mediated by the low density lipoprotein family of receptors
(LDLRs) [66]. Members of the LDLR family are ubiquitously expressed throughout the body [67],
which likely explains the broad cellular tropism of VSV. Although VSV can enter a variety of cell types,
productive infection in humans is usually prevented by the exquisite sensitivity of VSV to the human
innate immune response. In normal cells, PKR activation and type-I IFN production potently inhibit
VSV replication. However, VSV readily replicates in a variety of tumor types with defects in PKR
activation or type-I IFN signaling (Figure 2) [68,69]. Stojdl et al. created a further attenuated strain by
deleting methionine 51 in the VSV matrix protein (VSV∆51). This mutation ablates the virus’ ability
to block type-I IFN production, thus preventing infection of healthy cells, while maintaining a high
degree of lytic activity in IFN-deficient tumor cells [70]. VSV∆51 is the basis for most of the oncolytic
VSV therapeutics currently being developed.

Preclinical studies have demonstrated the effectiveness of VSV in both in vitro and in vivo models
of MM. VSV was engineered to express NIS, allowing for imaging and treatment with radioactive iodine
as described above for MV [71]. Treatment with the resulting strain, VSV-NIS, reduced tumor volumes
in a syngeneic, immunocompetent mouse model of MM. Radiotherapy with isotope I131 augmented
this reduction. To further enhance oncolytic activity and improve safety, the IFN-β gene was inserted
into the VSV genome [72,73]. For mouse studies, the murine IFN-β gene was utilized, as human IFN-β
is not functional in mice. VSV-mIFN-β-NIS treatment significantly improved tumor responses and
prolonged survival compared to treatment with control VSV [72,73]. Notably, although bortezomib
antagonizes VSV replication in MM cell lines, combining the two therapies in vivo led to a greater
reduction of tumor volumes than VSV alone [74].

The promising preclinical data has led to the establishment of a phase I trial for VSV (Table 2).
This trial (NCT03017820) will establish dosage and toxicities for VSV-hIFN-β-NIS in patients with
relapsed/refractory MM. A comparison of PET and SPECT scans for imaging of VSV-hIFN-β-NIS
infected lesions is also being tested in the same trial (NCT00450814) that is testing those imaging
systems for use with MV-NIS (see above).
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2.4. Other Oncolytic Viruses

The viruses described below, while not yet in clinical trials for MM, have shown promise in
preclinical studies.

2.4.1. Poxviruses

The Poxviridae are a family of large enveloped double-stranded DNA viruses [75]. Members of this
family infect a variety of arthropods and animals including humans. Poxviruses can enter and replicate
within a variety of cell types and their cytoplasmic replication lessens the chances of recombination
into the host genome. Additionally, their large DNA genomes make poxviruses well suited to genetic
manipulation by allowing insertion of exogenous genes that could modulate cell killing.

Vaccinia virus (VV) is derived from the original cowpox or horsepox virus that Edward Jenner
first used to vaccinate against smallpox in the eighteenth century [76]. Live vaccinia vaccines have
been administered by the World Health Organization to over 200 million people worldwide, giving the
virus an excellent history of safety in humans [77]. Wild type VV is not inherently oncotropic.
Therefore, viral genes that are essential for VV replication in normal cells, such as thymidine kinase
(TK) and vaccinia growth factor (VGF), must be deleted to confer tumor specificity (Figure 2) [78,79].
The first reported use of vaccinia as an oncolytic therapy for MM occurred in 1987, when a patient
with IgA MM saw a significant decrease in IgA levels and an increase in natural killer cell activity after
intravenous treatment with VV [80]. Subsequent in vitro studies utilizing a strain double deleted for
TK and VGF showed that MM cell lines are susceptible to killing by VV [81,82]. Viral replication was
observed in primary MM cells, but not in normal peripheral blood mononuclear cells (PBMCs) [81].
The double deleted strain also reduced tumor volume and increased survival time in a mouse xenograft
model of MM [81]. Recently, Lei et al. used a TK-deleted VV strain to overexpress two anti-tumor
factors, miR-34a and Smac, which are frequently dysregulated in MM. Combined treatment with
VV-miR-34a and VV-Smac showed increased efficacy against MM both in vitro and in vivo when
compared to treatment with the parental virus, VV-miR-34a, or VV-Smac individually [83].

Myxoma virus (MYXV) has a strict tropism for rabbits and hares [75] and therefore does not
cause significant disease in humans. Although it cannot infect normal human cells, MYXV has
been shown to productively infect a variety of cancer types [84]. In MM cell lines, MYXV induces
efficient cell killing that is dependent upon caspase-8 mediated apoptosis and by inhibiting ATF4
expression during the unfolded protein response [85–87]. Killing occurs in both bortezomib-sensitive
and bortezomib-resistant cells [87], suggesting that MYXV may be useful for treatment of
refractory MM. In a syngeneic mouse model of MM, MYXV treatment significantly reduced tumor
burden and prolonged survival time, while leaving the healthy bone marrow niche intact [88].
Notably, MYXV-induced cell death is rapid and occurs independent of viral replication [85]. Due to its
rapid killing time in MM, MYXV has been proposed as an efficient purging mechanism for AHSCT.
To this end, pretreatment with MYXV prevented engraftment of human MM cell lines in a mouse
xenograft model. Furthermore, MYXV eliminated CD138+ cells from MM patient BM samples within
24 h of treatment [85]. Recent work has shown that MYXV treatment can reduce graft-versus-host
disease (GVHD), while promoting graft-versus-tumor responses. MYXV infection of T lymphocytes,
which are frequent drivers of GVHD, inhibited their proliferation and activity [89]. In contrast,
MYXV treatment of mouse BM-derived neutrophils lead to increased neutrophil activation and more
efficient killing of mouse MM cells [90].

2.4.2. Coxsackie Virus

Coxsackie viruses (CV) are non-enveloped positive-sense single-stranded RNA viruses in the family
Picornaviridae [91]. At least 29 strains of CV have been identified [91]. CVA21, which causes mild
respiratory disease in humans [91], is the primary isolate being developed for use in oncolytic therapy.
A preclinical study demonstrated that CVA21 effectively killed MM cell lines as well as CD138+ cells
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from patients with MGUS, newly diagnosed MM and relapsed MM [92]. MM cells were shown to
have increased expression of both ICAM-1 and DAF [92], which form a complex to facilitate CVA21
cellular entry [93]. Intriguingly, intratumoral injection of CVA21 RNA alone was sufficient to reduce
tumor volumes and increase survival time in a mouse xenograft model of MM [94]. One barrier to
using CVA21 in oncolytic therapy is its potential to cause myositis in patients [95]. To circumvent
this problem, muscle-specific miRNAs were inserted into the 3′ untranslated region of the CVA21
genome [96]. Intratumoral injection of CVA21 into mice bearing MM xenografts reduced tumor
volumes and prolonged survival. Importantly, while mice treated with wild type CVA21 experienced
significant muscle inflammation and necrosis, those treated with the muscle-specific miRNA CVA21
exhibited no such pathology [96].

2.4.3. Adenoviruses

Adenoviridae is a family of non-enveloped double-stranded DNA viruses that infect a broad range
of vertebrate hosts [97]. In humans, 57 different adenovirus (AdV) serotypes have been identified [98].
AdVs are highly amenable to genetic manipulation and have been investigated extensively as vectors
for gene therapy [98] and oncolytics, primarily in solid tumors [99]. Preclinical studies have identified
several AdV serotypes with oncolytic activity in MM including species B AdV5 [100], the best studied
AdV oncolytic in solid tumors [99], and several relatively uncharacterized species D AdV [101].
Improved oncolytic activity against MM cells has been reported with AdV that were engineered to
express a CD40 ligand transgene [102] or with the herpes simplex virus TK gene in conjunction with
ganciclovir treatment [103].

3. Strategies for Improving Oncolytic Virus Efficacy

3.1. Carrier Cells

Several of the oncolytic viruses being developed for MM treatment are human pathogens.
Therefore, many patients have pre-existing immunity to them either through environmental exposure
or vaccination. This presents a challenge for successful therapy as it shortens the length of time
that virotherapies can function before they are cleared by the immune system. Even viruses that
are not endemic to humans, such as VSV and MYXV, will eventually induce anti-viral responses.
Several strategies are being developed to reduce anti-viral responses during oncolytic therapy in
MM including serotype switching [104], chemical shielding with polymers [105,106], or the use of
immunosuppressive drugs. One novel strategy is the use of carrier cells to deliver viruses directly to
tumor targets. Liu et al. used lethally irradiated MM cells to deliver MV-NIS to tumor sites in a mouse
model of disseminated myeloma. Treatment with MV-loaded MM cells prolonged survival rates even
in the presence of anti-MV neutralizing antibodies [107]. Furthermore, in the case of RV, it has been
shown that PBMCs transiently carry the virus after infusion, protecting it from neutralization [108].
These results suggest that carrier cells may be a useful method to boost oncolytic virus longevity and
efficacy in MM treatment.

3.2. Combination Therapy

Given that oncolytic viruses stimulate a robust immune response, combination therapy with
immunomodulatory drugs is an approach to heighten the anti-tumor immune response. RV is currently
under clinical investigation in combination with lenalidomide or pomalidomide, immunomodulatory
agents that are commonly used in MM therapy (Table 2). The alkylating agent cyclophosphamide
also is attractive for combination therapy with oncolytic viruses because of its potential to suppress
anti-viral immune responses. Cyclophosphamide is an approved therapeutic for MM and is also used for
immunosuppressive treatment in autoimmune disease and transplantation [109]. Combination treatment
with cyclophosphamide improves the efficacy of oncolytic viruses by downregulating anti-viral immune
responses [110–113]. It has also been shown to specifically reduce production of anti-MV and anti-VSV
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neutralizing antibodies [114]. Given that the majority of the population already has immunity against
MV [115], cyclophosphamide could be a particularly valuable tool for measles oncolytic therapy.
Combination therapy with cyclophosphamide is currently being used in clinical trials for both MV
and VSV (Table 2).

Immune checkpoint inhibitors also show great promise for combination with oncolytic viruses.
PD-1 and PD-L1 inhibitors block the association of the ligand (PD-L1) with its receptor (PD-1).
Interaction of these cell surface proteins suppresses the immune response and is a mechanism that
allows tumor cells to avoid immune surveillance. Several PD-1/PD-L1-based therapies for MM are
currently being investigated in clinical trials [116]. Anti-PD-1/PD-L1 antibody therapy requires high
levels of PD-L1 expression by tumor cells to be effective. Unfortunately, CD138+ cells from MM patients
do not significantly overexpress PD-L1 compared to normal plasma cells [38]. This finding may explain,
in part, why a phase I clinical trial using nivolumab found that patients with relapsed/refractory MM
had little response to anti-PD-1 antibody treatment [117]. To overcome this problem, RV therapy was
used to boost PD-L1 expression prior to treatment with anti-PD-L1 antibody. RV infection was shown
to enhance expression of PD-L1 on both MM cell lines and CD138+ patient samples. In a mouse model
of disseminated MM, RV/anti-PD-L1 antibody therapy significantly decreased tumor volumes and
serum immunoglobulin levels while prolonging survival compared to either single agent therapy [38].
This is the first example of an oncolytic virus being combined with an immune checkpoint inhibitor to
improve therapy in MM. Anti-PD-L1 therapy has also been successfully used with VSV-IFN-β-NIS in
a mouse model of AML [118], suggesting that combining oncolytic viruses and immune checkpoint
inhibitors may be a useful strategy for hematological malignancies.

Studies have demonstrated that MM cells are under intrinsic ER stress resulting from production
of large amounts of immunoglobulin [119,120]. Consistent with this phenomenon, induction of
ER stress due to the accumulation of undegraded ubiquitinated proteins is a major contributor to
bortezomib’s anti-myeloma activity [120–124]. Therefore, agents with the ability to increase ER stress
show strong anti-myeloma activity and augment bortezomib-mediated cell death. The accumulation
of viral particles following treatment with RV, along with ubiquitin-conjugated protein accumulation
in MM cells stimulated by bortezomib, promotes synergistic levels of ER stress and apoptosis [31].
RV and bortezomib combination therapy is currently under investigation in a phase I trial in patients
with relapsed/refractory MM (Table 2).

4. Conclusions

Although significant progress has been made in the treatment of MM, it remains an incurable
disease. New treatments options are urgently needed, particularly for patients that become resistant to
conventional therapies. Oncolytic viruses are a new class of therapeutics that provide tumor-targeted
therapy. Preclinical studies have identified several oncolytic viruses that are promising candidates for
MM therapy. Three of these (RV, MV and VSV) have progressed to clinical trials. However, early clinical
trials demonstrate that oncolytic viral therapy may be most impactful in combination with other
anticancer agents. Future work should identify new strategies to enhance the efficacy of existing
oncolytics. Specifically, treatment with immune checkpoint inhibitors have shown significant promise
in combination with oncolytic viral therapy. Analysis of specimens from patients treated on clinical
trials with antibodies that target PD-1 demonstrate that high basal expression of PD-L1 on tumor cells
may be necessary to elicit significant clinical benefit [125]. This suggests that novel immune priming
strategies, such as oncolytic viral therapy, that stimulate upregulation of PD-L1 on malignant cells
could render agents that target the PD-L1/PD-1 axis significantly more effective for cancer patients
with low PD-L1 expression, including patients with MM. Immune checkpoint inhibitor and oncolytic
viral therapy combination clinical trials are currently being developed to investigate this promising
therapeutic approach in patients with MM and other malignancies. The great potential that oncolytic
virotherapies have shown makes this an exciting time for both researchers and patients with MM.
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The following abbreviations are used in this manuscript:

MM multiple myeloma
MGUS monoclonal gammopathy of unknown significance
AHSCT autologous hematopoietic stem cell transplant
RV reovirus
JAM-A junctional adhesion molecule A
PKR protein kinase R
MV measles virus
SLAM signaling lymphocyte activation molecule
IFN interferon
NIS sodium iodide symporter
VSV vesicular stomatitis virus
LDLR low density lipoprotein family of receptor
VV vaccinia virus
TK thymidine kinase
VGF vaccinia growth factor
PBMC peripheral blood mononuclear cell
MYXV myxoma virus
GVHD graft-versus-host disease
CV coxsackievirus
AdV adenovirus
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